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Abstract Multi-target tracking has important applications in many fields including logistics and trans-
portation, security systems and assisted driving. With the development of science and technology, multi-
target tracking has also become a research hotspot in the field of sports. In this study, a multi-attention
module is added to compute the target feature information of different dimensions for the leakage prob-
lem of the traditional fifth-generation single-view detection algorithm. The study adopts two-stage
target detection method to speed up the detection rate, and at the same time, recursive filtering is
utilized to predict the position of the athlete in the next frame of the video. The results indicated that
the improved fifth generation monovision detection algorithm possessed better results for target tracking
of basketball players. The running time was reduced by 21.26% compared with the traditional fifth-
generation monovision detection algorithm, and the average number of images that could be processed
per second was 49. The accuracy rate was as high as 98.65%, and the average homing rate was 97.21%.
During the tracking process of 60 frames of basketball sports video, the computational delay was always
maintained within 40 ms. It can be demonstrated that by deeply optimizing the detection algorithm,
the ability to identify and locate basketball players can be significantly improved, which provides a solid
data support for the analysis of players’ behaviors and tactical layout in basketball games.

Keywords: YOLOV5, object detection, action characteristics, recursive filtering, Mahalanobis distance,
Hungarian algorithm.

1. Introduction

In the field of sports competition, basketball possesses the characteristics of high-speed
confrontation and precise cooperation. In-depth analysis of athletes’ performance is the
key to improve team tactics and individual skills [24]. With the rapid development of
computer vision and artificial intelligence technology, algorithms are gradually applied
to target tracking (TT) of basketball players, showing great potential [4]. Through high-
precision image processing and intelligent recognition technology, the algorithms are able
to track key information such as the position, speed and movement trajectory of each
player on the court in real time. This provides coaching teams with unprecedented game
insight data [27]. This not only changes the way of training, but also promotes the
scientific development of game strategies, enabling basketball to move towards a smarter
and more efficient future in the wave of digitization.

In terms of target detection, Song et al. designed an intelligent recognition system
combining multi-TT algorithm and YOLOv5 ware in order to solve the problem of
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fine target occlusion affecting helmet detection. The actual test results at a complex
construction site indicated that the average accuracy of the intelligent recognition system
was 94.5%, and the detection speed was up to 40 fps, which basically realized the real-
time detection [21]. Zhan et al. improved the algorithm’s target detection performance in
UAV scenarios and chose to incorporate four methods to improve small target detection
accuracy based on YOLOv5. The findings demonstrated that the model that combined
the several improvement techniques not only significantly increased detection accuracy
but also successfully decreased detection speed loss up to 55fps [32]. Bharathi and
Anandharaj developed a YOLOv5 multi-TT model that could detect, track and recognize
individuals in order to help surveillance cameras measure social distances in road traffic
videos. The results of the study found that the model achieved good results with 93%
precision, 94% recall and 95% all class average precision for measuring social distance
by object classification and localization in real time traffic surveillance video [1].

In terms of real-time tracking of motion trajectory, Hao et al. used the maximum
interclass variance method for grayscale feature processing in an attempt to solve the ef-
ficiency problems of the current algorithms related to athlete detection and recognition.
The study was based on Harris corner extraction algorithm and proposed multi-TT com-
bining target corner features. The study showed that the algorithm performed well and
had some practical effects [9]. Facchinetti et al. proposed an algorithm to automatically
identify the active period of the sport using the tracking data of the athletes in basketball
in order to obtain the accurate data of basketball between the course of the game and the
intermission [5]. A basketball, a basket, and athletes were the feature extraction (FE)
objects in Wang and basketball sports video TT method, which they combined with an
upgraded gray neural network technique to better assess the condition of athletes in the
video. The approach could successfully and accurately identify basketball movements,
according to the findings of experimental testing, offering a new technique for basketball
movement detection [25].

In summary, in the field of target detection and motion trajectory tracking, although
some progress has been made in existing researches, such as improving detection accuracy
and real-time performance, the detection efficiency is not high, and it is easy to miss
detection in the case of target overlap and occlusion. Based on this, the research creates
a new enhanced visual inspection algorithm (improved you only look once version 5, I-
YOLOV5). To solve the missed detection problem caused by overlapping targets, a multi-
attention module (AM) is innovatively added, and recursive filtering is used to predict
the next position of the player, and then the prediction results are corrected by the
actual situation.
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Fig. 1. Detection of basketball players by YOLOvVS5.

2. Methods

2.1. I-YOLOvV5 algorithm for adding an attention module

With the increasing demand for sports event analysis and automated referee systems,
computer detection plays an important role in real-time monitoring, action recogni-
tion, event detection, and content understanding. The traditional YOLOv5 algorithm
is widely used in object detection due to its excellent real-time performance and high
detection accuracy. However, the YOLOvV5 algorithm is prone to inaccurate and unde-
tected targets with small volume and high density, especially when dealing with complex
backgrounds, athlete occlusions, and rapid movements, which may encounter problems
such as missed detections, false detections, or unstable tracking [33]. The detection pro-
cess of YOLOV5 algorithm for basketball players is shown in Figure 1. In this Figure, the
YOLOV5 algorithm for the detection of the target, is required to cut the sports scene into
multiple parts before detection, two for the absence of human body features of the block
does not do the detection, which can reduce the algorithm’s resource usage. However,
for the basketball sports scene with more personnel, some basketball players only show
part of their bodies due to the overlapping occlusion of personnel. The feature details
are easily erased after the cutting process, resulting in a missed detection during the
tracking detection process. For example. There should have been 7 people in the scene,
but it is omitted to be detected as 5 people. For this reason, I-YOLOV5 is created by
improving the YOLOv5 algorithm. In the I-YOLOv5 algorithm, a multi-AM is added to
model the multi-dimensional situation simultaneously, and the information of different
dimensions is fully displayed. The necessity of Global Average Pooling (GAP) lies in its
ability to effectively aggregate feature map information into a global information rep-
resentation, thereby reducing the number of model parameters, lowering computational
complexity, and improving the model’s generalization ability. The specific calculation
method of GAP is to sum up all pixel values of the feature map and then divide by
the total number of pixels. In the multi-AM, the introduction of GAP helps to enhance
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the model’s attention to important features, improve the quality and diversity of feature
representation. The formula for GAP in multi-AM is shown in Equation (1) [26].

K—1G-1
CA(T,) = Zomo 2omo 1ol )

KxG
where CA(T),) represents the global information under the zth channel of the image,
T represents the image, (a,b) represents the coordinate point position, a represents the
width coordinate, b represents the height coordinate, K represents the image width,
and G represents image height. The global information is obtained using only the basic
features of the image without adding other information. To make the channel informa-
tion richer and to obtain more representative global information, the 2D discrete cosine
transform is combined to obtain channel information of more frequency bands, which
is used to enrich the global information. The computation of the 2D discrete cosine

transform spectrum is demonstrated by Equation (2) [31].

K-1G-1

P ="y miaony, (2)

k=0 g=0

where PQB represents the two-dimensional discrete cosine (2D-DC) transform spectrum
under the height dimension frequency score g and width d1mens10n frequency score k,
Inayb represents the two-dimensional input parameters, Q}’ kg represents the weight score,
and D represents dimension. The weighting score is calculated as shown in Equa-

tion (3) [16].
0.5 k(b+ 0.5
Q (Wg(ag )> X €08 (ﬂ- ( ; )> , (3)
where both the height- dlmensmnal frequency score g and the width-dimensional fre-
quency score k are 0, and Q kg = 1- The relation between the 2D-DC transform spectrum
and the GAP is shown in Equation (4).

K-1G-1

ZZInabexGxCA( %), (4)

k=0 g=0
where T, represents the x channel of image T'. At this point the 2D discrete cosine trans-
form spectrum and the global mean pool are in a positive correlation. The same applies
for frequency scores of different dimensions, and feature information of many different
dimensions can be calculated [22]. Figure 2 depicts the structure of the channel AM.
In Figure 2, the channel AM splits the image into slices of different parts. Equa-
tion (5) specifies how each slice’s channel score is determined [20].

K-1G-1

= > > IghQp, =2DT, (5)

k=0 g=0
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where P€ represents the calculated channel score, 2DT represents the 2D-DC transform.
The new merged channel is formed after integrating all the sliced processed channel
scores. The merging process is shown in Equation (6) [8].

PZ :cat([Pl,P27...,Pn]), (6)

where P, represents the sliced channel parameters of different layers, Pz represents
the merged channels, and cat(-) represents the merge operation. The new channels are
subsequently integrated with the slices to form a new channel AM [30]. The structure of
another coordinate AM in the I-YOLOvV5 algorithm is shown in Figure 3. In this Figure,
in order to accurately capture the key information of the image in the width and height
dimensions and encode the positions, it is necessary to apply special pooling operations
to the input feature map (FM) along the horizontal and vertical directions, respectively.
After determining the input parameter features, the special positions of all channels in
the width direction are numbered. The vertical data of the channels are calculated as
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K

Fig. 2. Structure diagram of the channel attention module.
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Fig. 3. Coordinate the structure of the attention module.
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shown in Equation (7) [34].

> nalgna)

0<b<K
ogn = ==l 7
' K, ’ ™

where O9" represents the calculated value of vertical data with height g, under the
zth channel, (a,b) represents the point coordinates, K, represents the width, and
n¢(gr, a) represents the value of the image slice with height g5 and width coordinate a
under the zth channel. Similarly, the horizontal data of the channel is calculated as
shown in Equation (8) [18].

> na(biko)

O = =50 (®)
where OF represents the calculated value of the horizontal data representing the width
of k, under the xth channel, G represents the height, and n, (b, k,) represents the value
of the image slice with width &, and height coordinate b under the zth channel. These
two specific operations are the core steps of feature processing. Integrating information
along two different spatial dimensions, respectively, generates a pair of directionally sen-
sitive FMs [29]. This process not only enhances the model’s ability to capture long-range
dependencies in one spatial dimension, but also subtly maintains precise spatial location
details in the other dimension, thus optimizing the model’s recognition and localization
performance of the target object. With these two transformations, the model is able
to analyze the spatial structure of the image or data more effectively and achieve more
accurate target localization [11]. In order for the algorithm to obtain a faster running
speed, the multi-AM and the coordinate AM are added to the I-YOLOv5 algorithm
using a tandem approach. A brief description of the structure of I-YOLOvV5 is shown
in Figure 4. In this Figure the multi-AM and the coordinate AM also contain different
component modules that implement the processing of the input parameters. The unique-
ness of multi AM in I-YOLOWV5 lies in its combination of Cross Stage Partial Network
(CSP) module and Spatial Pyramid Pooling (SPP) module. The CSP module segments
the input feature map, with one part passed directly and the other part merged after
residual network processing to improve efficiency and feature learning. The SPP module
captures multi-scale features and enhances the detection capability of multi-scale targets
through parallel operations of multi-scale pooling kernels. While generating a coordinate
description parameter through average pooling, the maximum pooling operation is used
to obtain the maximum value of the coordinate parameter. Based on the different fea-
ture descriptions, the parameters are transferred to the data processing center module.
By integrating the various parameters, the eligible feature values are produced, which
enhances the I-YOLOv5 algorithm’s detection performance. For the detection of bas-
ketball players, it is also necessary to input the specified features and the corresponding
feature recognition structure. The current motion image recognition is only good at
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Fig. 4. I-YOLOV5 structure scheme.

tracking simple movements of a single target, while the movements of basketball players
are often complex and variable. For this reason, a module for real-time discrimination
of multiple features is also needed to improve the accuracy of detection.

2.2. Basketball player feature detection module

The key to more effectively deal with the complex and variable action recognition prob-
lem of basketball players is to construct an advanced detection module with adaptive
ability and accurate target placement labeling in the image. Whether it is based on
conventional algorithms or self-learning feature detection modules, the core of the ef-
fectiveness lies in whether or not the target is preset and accurately labeled in the
recognition image. In the field of basketball player tracking, target detection, as a key
technique, is directly related to the accuracy ratio (AR) of the tracking results [15].
Traditional target detection algorithms suffer from candidate region redundancy, high
computation, low FE dependency, lack of robustness and fragmented detection process.
These problems limit the detection efficiency and accuracy. In order to solve these prob-
lems, reduce computational burden and improve feature expression, fusion of detection
links is needed to achieve global optimization. The two-stage target detection (TSTD)
algorithm is an algorithm that provides high accuracy and is divided into two main pro-
cesses. Firstly, it generates pending regions that may contain targets, and subsequently
categorizes and edge-boxes recede from these pending regions. The whole process is
shown in Figure 5 [10].

In Figure 5, the first stage of TSTD algorithm is the Regional suggestion network.
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Fig. 5. Non-maximum suppression technique.

It is respousible for generating high-quality candidate regions from images [7]. The re-
gion suggestion network utilizes pre trained convolutional neural networks to extract
feature maps and places anchor points of different sizes and proportions on them. By bi-
nary classification and bounding boxes (BOBs) regression, the region suggestion network
identifies anchor points that may contain targets and uses non maximum suppression
techniques to remove overlapping and low confidence candidate regions.

The second stage of TSTD algorithm is the Classification and regression networks.
The task of this stage is to refine the candidate regions generated by the region sug-
gestion network [13]. In this stage, the candidate regions are transformed into fixed
size feature maps through region of interest pooling techniques, and then further feature
extraction is performed using fully connected layers or convolutional layers. Finally, the
network outputs the category probability and precise bounding box position for each
candidate region. The architecture of the masked region-based CNN as a commonly
used detection model in region suggestion networks is shown in Figure 6. The input
image is first processed by the masked region-based CNN in Figure 6 before entering the
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classification model’s backbone network. The backbone network is used to extract FMs
with high semantic content by removing fully linked layers. The FM has a certain mul-
tiplicative reduction relation with the original image, and subsequently, the FM enters
the core of the mask region-based CNN (MRCNN), i.e., the region suggestion network
layer. The MRCNN generates candidate regions on the original map by means of small
neural networks. Each FM pixel point corresponds to multiple candidate regions of the
original map. The MRCNN then predicts the coordinate offsets of these candidate re-
gions and the probability of whether they are foreground or not by convolution. The
candidate regions are adjusted and filtered to select regions that are likely to contain
objects. Finally, these candidate regions are accurately mapped and adjusted through
the region of interest alignment layer. Candidate regions are mapped onto the FM by
interpolation and uniformly resized. It is ensured that the candidate regions contain
rich information of the original map to prepare for the subsequent fine recognition [19].
The loss function (LF) of the region of interest alignment layer is calculated as shown
in Equation (9).

Lror = Le + Ly + Ly, , 9)

where Lror represents the LF of the region of interest alignment layer, L. represents the
classification LF, L; represents the candidate region LF, and L,,, represents the mask LF.
The categorization LF mostly shows the discrepancy between the realistic categories and
the predicted categories of the algorithm. The candidate region LF mainly represents the
balance of the samples. The mask LF mainly indicates the loss value of the output value
of each dimension. The control LF can effectively avoid the confusion of recognition of
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approximate features. The second categorization process of TSTD, for each category, the
candidate box with the highest score is selected first [14]. Subsequently, the intersection
ratio between the remaining candidate boxes and the highest scoring candidate box is
calculated. If the intersection ratio exceeds a set threshold, the remaining candidates
are removed, a process known as non-great value suppression. The purpose of non-great
value suppression is to remove redundant candidate frames and ensure that only the best
candidate frames are retained in each category. This step is repeated until all categories
are traversed, ensuring that only one optimal candidate is retained for each category.
After completing the non-extremely large value suppression, the remaining candidate
boxes are further filtered. The remaining candidate frames in each category are then
fine-tuned using multiple category-specific regressors designed to optimize their position
and size. Eventually, each category will output a regression-corrected and highest-scoring
edge box as the final detection result of the target in that category. As for the basketball
players during the motion state process, modules with tracking functions are also added
to the detection process because the people are constantly moving.

2.3. Tracking model based on multi-feature fusion algorithm

The athletes in basketball sports scenarios have a significant degree of appearance re-
semblance during the multi-person monitoring procedure. Moreover, their movements
on the court are frequent and staggered, and once staggered movement or body overlap
occurs, it is difficult for the tracking algorithm to accurately differentiate and recognize
each athlete, which leads to the frequent problem of misidentification. For this reason, a
tracking model for basketball players is constructed by combining multiple features and
fusing them. The tracking model is based on a simple real-time tracking algorithm, and
the next position of the athlete is judged by recursive filtering, which has a better pre-
diction effect for the situation of having people in the shade [17]. Recursive filtering by
analyzing the state parameters of the target at different moments for the corresponding
next moment position judgment, in the output results will also be based on the real-time
state of the target to correct the results [23]. The recursive filtering calculates the state
of the target at different moments is shown in Equation (10).

Ziy1r=JZy + Kl (10)

where Z;,1 is the state of the target at moment ¢ 4+ 1, Z; is the state of the target at
the moment, J is the parameter switching matrix, K; is the manipulation matrix, and
I;1 1 is the input moment value at moment ¢ + 1. The formula for recursive filtering
to calculate the covariance moment values of the state parameters at different moments
of the target after predicting the state parameters at different moments of the target is
shown in Equation (11) [12].

X =JXy xJT 4V, (11)
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where Xy, is the state parameter under moment ¢+ 1, X; is the state parameter at mo-
ment ¢, J7 is the moment value operation coefficients at any moment, and V' represents
the noise moment value. Before the recursive filtering is about to output the predicted
state, the output results are also corrected according to the target state parameters
recognized at the current moment. The value-added calculation of recursive filtering is
shown in Equation (12).
yt_',lOTT

(CX41CT- + V)’

where G;11 represents the recursive filtering under moment ¢ + 1, 7). represents any
moment, Yt.i'_]_ represents the detected real-time state parameters under moment ¢t + 1,
C represents the detected moment value, and V represents the detected real-time noise
covariance moment value. Equation (13), which calculates the best estimate of the
target’s state parameters, illustrates the process.

Giy1 = (12)

ZfH = 7t+1 + Giy1(ge41 — 07t+1) ) (13)

where ZﬁH represents the best estimate under moment t + 1, Z;,; is the detected
real-time parameters under moment ¢ + 1, and gy is the detected parameters under
moment t + 1. The corrected covariance moment values of the state parameters are
calculated as shown in Equation (14).

Xit1=(1—-G10)X 141, (14)

where X, represents the corrected state-parameter covariance moment values under
moment ¢+ 1. Based on X;,, the target-parameter position prediction under ¢+ 2 can
be performed. When dealing with the multi-target following task, in order to efficiently
approve the targets in consecutive frames, metrics such as intersection and merger ratios
or feature similarity distances are often utilized to construct a loss moment value. The
construction of this moment value lays the foundation for the subsequent data associ-
ation step, and the core of constructing the loss moment value lies in transforming the
multi-target following task into an optimal allocation problem. To handle such allocation
difficulties, the Hungarian method is applied. Its basic principle is to work on a lossy mo-
ment value with equal rows and columns. Among them, each row of the moment values
represents a goal in the previous moment, while each column corresponds to a goal in the
next moment. The goal of the Hungarian algorithm is to find multiple elements of loss
moments with the smallest loss without violating the “one row, one column” principle.
Minimum loss elements are ideally 0, which represents no loss or the best match. The
row and column indices of these elements directly indicate the correct correspondence
of the targets in the preceding and following frames. With the Hungarian algorithm for
loss moment values, the multi-objective following problem is transformed into a prob-
lem of finding the optimal set of elements in the loss moment values for a particular

Machine GRAPHICS & VISION 34(1):3-24, 2025. DOI: 10.22630/MGV.2025.34.1.1.


https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.1.1

14 Basketball player target tracking. . .

P

Recursive Filtering
Predicts Athlete Position

< ———

Mahalanobis Cosine End
Distance Distance i
Input Video [ ¢ | 4
l The Loss Moment Value -
—» Is Processed By The Aﬂﬂe}t:):ilteiz;Tnne
Read Feature Frame Hungarian Algorithm “
I-YOLOVS5 Detects Does Yes
Athlete Coordinates The Athlete's Position Updatc ACE
Position Parameters
l Match?
Geometric Center Point Position
Dimensions Of The Boundary Box Cross And Match

Fig. 7. Tracking model structure diagram of fusion algorithm.

pattern. These elements not only minimize the matching loss, but also ensure a one-to-
one mapping between the targets in the front and back frames, resulting in an efficient
and accurate TT association. An effective strategy in determining the final match is
to combine the behavioral correlation with the appearance correlation, which is usually
achieved by introducing a conditioning factor in the correlation evaluation model. The
adjustment coefficient allows the system to flexibly adjust the weights between the two
according to the actual application scenarios, thus calculating a more comprehensive and
accurate athlete association. Equation (15) displays the correlation degree calculation.

Dq, b, = kid™(ay, by) + (1 — k¢)dY(ay, by) , (15)

where D, », represents the association of the b,th athlete on trajectory a,, k; represents
the moderating coefficient, d™ represents the horse distance, and d¥ represents cosine
distance. The final result can be obtained through the correlation degree, which is
combined with the detection network to form the tracking model of the fusion algorithm
to track the state of the basketball player at different moments. The whole flowchart is
shown in Figure 7.

In the basketball sports video tracking model, the real-time position data of the
athlete is initially extracted by the video detector. This includes the geometric center
point position, the size of the BOB, and further extends to include the parameters of the
velocity component. This comprehensive approach allows for a detailed portrayal of the
athlete’s motion state. Subsequently, recursion is used to predict the future position of
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the athlete and combined with the features extracted from the athlete behavior detection
network to enhance the robustness of tracking. Next, the system constructs a compre-
hensive correlation matrix for evaluating the similarity between the detection and the
existing trajectory by calculating the cosine similarity of the appearance features and
making a prediction of the position. The relation between the tracked object and the
detection is swiftly ascertained by using an efficient Hungarian algorithm to the prob-
lem of best matching of similar moment values. After a successful match, the tracking
frame is directly output and the trajectory parameters are updated. For a failed match,
the system tries to perform a secondary correlation by calculating the intersection and
merger ratios to capture possible missed matches. For long time unsuccessful matching
trajectories, the system will clean up to avoid resource waste. Meanwhile, the newly ap-
peared unmatched detections are regarded as the starting point of the initial vectors to
initiate the tracking. The whole process continues to iterate until all frames of the video
are processed. In each iteration, the system dynamically adjusts the tracking strategy
based on the latest information to ensure accurate tracking of athletes in complex sports
scenes.

3. Results

3.1. Algorithm performance comparison

To ensure the efficiency of the tracking model, the operating system used for the experi-
mental study is Windows 10, CPU is Intel Core i9-13900K @ 5.80 GHz, GPU is GeForce
RTX 3070Ti, RAM is 32 G, programming language is Python 3.8, and the development
environment is PyTorch 1.5. The datasets used for the experimental training and valida-
tion process are Detectron dataset [6,28] and SportsMOT dataset [2,3]. The Detectron
dataset supports multiple object detection algorithms, making it suitable for diverse algo-
rithm testing and comparison. The SportsMOT dataset focuses on multi-target tracking
in sports scenes, including sports such as basketball, soccer, and volleyball. It has two
characteristics: fast and variable speed movement, as well as similar but distinguishable
appearance, making it suitable for evaluating the performance of algorithms in complex
sports scenes. The evaluation criteria used are AR, homing rate (HR), trace operation
time (TOT) and frames per second (FPS). AR is mainly to judge the accuracy of the
algorithm to detect the target, the higher means the more accurate. HR is mainly to
judge the performance of the model’s classifier, the higher it is the better the classifica-
tion effect. TOT is to judge the algorithm’s computing speed, the faster the better. FPS
is to judge the rate at which the algorithm handles video tracking and localization, the
higher the better. The comparison algorithms are the traditional YOLOv5 algorithm
and simple online and realtime tracking (SORT). Figure 8 displays the LF decrease
of each algorithm during the dataset’s training procedure. On the Detectron dataset,
the LF of the I-YLOLv5 algorithm stabilizes when the iterations reaches about 40,000,
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Fig. 8. Loss functions of various algorithms.
Tab. 1. Algorithm performance under different cutting ratio of image.
Model SORT YOLOVv5 I-YOLOv5
Size AR HR TOT AR HR TOT AR HR TOT
(%) (%) (s) (%) (%) (s) (%) (%) (s)

5X5 85.14 89.15 1.85 87.08 92.15 1.33 91.25 94.65 0.89
4x4 85.01 89.09 1.54 87.01 92.04 1.01 91.21 94.59 0.58
3 %3 84.89 89.01 1.28 88.89 91.95 0.78 91.16 94.54 0.41
2x2 84.77 88.92 1.05 88.77 91.89 0.65 91.10 94.51 0.33
1x1 84.61 88.85 0.68 88.69 91.88 0.44 91.02 94.47 0.21

and the LF is 0.20. The LF of the YLOLv5 algorithm stabilizes when the iterations
reaches about 50000, and the LF is 0.38. The LF of the SORT algorithm stabilizes
when the iterations reaches about 40000 and the LF is 0.51. In Figure 8b, the SORT
algorithm and the YOLOvV5 algorithm have difficulty in reaching a more stable condition
on the SportsMOT dataset, and the LF increases. Since the I-YLOLv5 algorithm adds
multi-AM, the LF of the I-YLOLv5 algorithm can be stabilized quickly. Moreover, it
can maintain around 0.2 in different datasets and the value of LF is the lowest among
all the algorithms. By segmenting the image to different degrees, the detection of the
segmented image by each algorithm is shown in Table 1. In this Table, the more the
number of chunks of the image cut, the higher the AR and HR. As the chunks of the
image becomes more, the running time of the algorithms becomes longer. After image
cutting, the algorithm running time is mainly spent on the image merging process, while
the coordinate AM of the I-YOLOv5 algorithm has the function of numbering each part
of the image. This makes the I-YOLOvV5 algorithm less affected by the image merging
process, and the operation time is always kept within 1s. In the case where the image
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Fig. 9. Comparison of operation time of various algorithms.

is cut into 5 x 5, the running time of the I-YOLOv5 algorithm is 33.08% shorter than
that of the traditional YOLOv5 algorithm. The SORT algorithm, on the other hand,
has the worst performance situation, with the computation time directly exceeding 1s
once the image has been cut. From this, it can be seen that the I-YOLOv5 algorithm,
with its coordinate attention module, effectively reduces the impact of image merging on
runtime. Even in scenes with many image cuts, the I-YOLOv5 algorithm still exhibits
superior computational efficiency. The running time for each algorithm to complete the
tracking on the Detectron dataset and the SportsMOT dataset is shown in Figure 9.
In this Figure, the TT runtime of each algorithm on the Detectron dataset basically
maintains a linear increase. Among them, the I-YOLOv5 algorithm has the shortest
runtime, which is 21.26% lower than the second YOLOv5 algorithm runtime on average.
In Figure 9b, the average running time of the I-YOLOvVS5 algorithm becomes significantly
shorter when the amount of test data reaches 210 and no longer maintains the previ-
ous growth rate. This is because the TSTD module in the I-YOLOv5 algorithm makes
it run faster during the training process, while the YOLOvV5 algorithm and the SORT
algorithm still maintain the same operation rate. From this, it can be seen that the
I-YOLOv5 algorithm can stably track targets and maintain good stability even when
facing large amounts of data. The algorithms are recognizing each frame of the video as
an image while tracking the basketball players in the video data. The number of images
per second that can be recognized by each algorithm is shown in Figure 10.

In Figure 10a, the FPS of the I-YOLOv5 algorithm on the validation dataset stays
in a relatively stable state with an average value of 40, which is a 31.65% improvement
over the traditional YOLOv5 algorithm. The SORT algorithm, on the other hand, has
a worse performance situation, and SORT shows unstable FPS when processing some
video clips with more complex personnel. In Figure 10b, affected by recursive filtering,
the I-YOLOV5 algorithm got some learning during the testing process, with the ability to
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b Validation.

Fig. 10. Various algorithms can recognize the number of images per second.

Tab. 2. Analysis results of target tracking performance of each algorithm.

Image Video
Data set Model
SORT YOLOv5 I-YOLOv5 SORT YOLOv5 I-YOLOv5

Avg-AR [%] 85.41 92.51 98.98 78.54 88.15 97.21
Detectron

Avg-HR [%] 86.14 90.89 97.87 73.84 89.18 96.25

Avg-AR [%] 84.21 91.58 99.01 76.58 87.51 98.65
SportsMOT

Avg-HR [%] 83.15 90.67 98.59 74.35 87.68 97.21

predict the next frame. The FPS of I-YOLOv5 algorithm has been improved somewhat
during the validation process, with an average FPS of 49, which is 22.50% higher than
the validation process.

3.2. Analysis of the effect of target tracking

In terms of performance, the I-YOLOv5 algorithm has been reflected in the comparison
process in the previous section, while the specific tracking effect is mainly judged by
AR and HR. In order to more accurately analyze the TT effect of basketball players for
the three algorithms of SORT, YOLOv5 and I-YOLOVS5, average accuracy ratio (Avg-
AR) and average homing rate (Avg-HR) are used for comparison. Table 2 displays the
outcomes of the comparison. The I-YOLOv5 algorithm has the highest Avg-AR and
Avg-HR among all the algorithms both in image target detection and video T'T process.
During video T'T on the SportsMOT dataset, the I-YOLOv5 algorithm has an Avg-AR of
98.65% and an Avg-HR of 97.21%. Due to the fact that video has more complexity than
image, the algorithms have smaller AR and HR for tracking video targets than image
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Fig. 11. Target tracking and recognition effect.

target detection. Whereas the I-YOLOv5 algorithm has a recursive filter prediction
module, it still maintains high AR and HR during tracking video targets.

To show the tracking situation more intuitively, the target recognition effect is demon-
strated. The recognition situation is shown in Figure 11. In this Figure, in the scenario
facing personnel stacking, both SORT and YOLOv5 algorithms perform poorly with
missed detection. The I-YOLOv5 algorithm, on the other hand, has precise localization
of the personnel position due to the coordinate AM and avoids leakage detection due
to personnel stacking. In Figure 11b, the SORT algorithm incorrectly treats the off-site
personnel as the detection target. However, the I-YOLOv5 algorithm has more consider-
ations for the correlation matching of the detection targets, so as to achieve the effect of
detecting the targets accurately. For the TT situation of the video, a basketball player
of a basketball game video clip is used as the tracking object, and the algorithm detects
the number of people in each frame of the image to visualize the situation. The video
is 30 FPS, 30 seconds in total, and the actual number of basketball players is 10. To
simplify the data, the average value of target detection every 5 seconds is shown.

Table 3 displays the TT outcomes for each algorithm. The I-YOLOv5 algorithm
maintains a more stable state during the T'T process of the video. The number of target
detections for each algorithm in the 11-15 seconds segment of the video is less than the
actual number of athletes because some segments of the athletes during the game are
out of the video range. The YOLOv5 algorithm appears to be unable to track the target
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Tab. 3. Target tracking results of each algorithm.

Time [s] Track effect evaluation index SORT YOLOv5 I-YOLOv5
05 Target detection average 7 9 10
Missed average 3 1 0
6-10 Target detection average 7 9 10
Missed average 1 1 0
Target detection average 6 7
11-15
Missed average 2 1
Target detection average 5 7 10
16-20
Missed average 5 3 0
Target detection average 8 9 10
21-25
Missed average 2 1 0
Target detection average 9 10 10
26-30
Missed average 1 0 0
— SORT - . — SORT o
4000r  _— yOLOvVS & '12'65 12000r — YOLOVS5 g- 2000 455
£3500f —I-YOLOVS 2 lols3 % 0000l — 1FYOLOYS 2118004403
%3000} == 2 $141600] 35>
225001 8 142 2 8000} 11400 430
) & ) 11200 | 255
3,2000- 6 13 % 2 60001 71000 | 20%
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a 30 fps video. b 60 fps video.

Fig. 12. The delay of each algorithm in tracking different targets.

in the 16-20 seconds segment when some of the basketball players are moving faster.
At this time, the fluctuation is more obvious, and there is only a complete number
of targets detected by the I-YOLOv5 algorithm. From this, it can be seen that the
I-YOLOv5 algorithm can stably track targets without any missed detections, and can
fully monitor all basketball players. Ordinary online game videos of basketball tend to
be in 30 or 60 FPS system. By using different algorithms for TT of the video, whether
or not lagging occurs is an important indicator for judging whether the algorithms can
perform online tracking. The delay of each algorithm in tracking different targets is
shown in Figure 12. In this figure, both the YOLOv5 algorithm and the I-YOLOv5
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Tab. 4. Application test results of I-YOLOv5 and Deep-EloU in basketball match

Index I-YOLOv5 Deep-EloU
Average Delay [ms] 33 67
Avg-AR 99.08 97.54
Avg-HR 99.12 96.83
CPU usage [%] 26.54 35.67
Target loss No No

algorithm show a better steady state during video TT at 30 frames. The TT delays
are all under 10ms, while the SORT algorithm shows a delay of up to 3500ms. In
Figure 12b, under 60 frames video, the traditional YOLOv5 algorithm showed lagging
phenomenon and appeared up to 1800 ms delay. However, the recursive filtering makes
the I-YOLOvV5 algorithm still maintain good stability during the video TT at 60 frames,
with a delay of up to 45ms. Therefore, the I-YOLOv5 algorithm can perfectly support
online real-time tracking of basketball sports videos. To further analyze the performance
of the I-YOLOvV5 algorithm, the study also conducted a test comparison between the
I-YOLOV5 algorithm and the Deep Expansion LoU (Deep IoU) algorithm in a practical
application of a basketball game.

The test results are shown in Table 4. I-YOLOv5 performs better than Deep EloU
in basketball games. The average latency of I-YOLOvV5 is only 33 ms, much lower than
Deep EloU’s 67 ms, demonstrating faster response capability. In terms of accuracy and
regression rate, I-YOLOv5 also leads Deep EloU with scores of 99.08% and 99.12%,
respectively, surpassing Deep EloU’s 97.54% and 96.83%, indicating higher tracking ac-
curacy. Meanwhile, the CPU usage of I-YOLOV5 is relatively low at 26.54%, which is
more energy-efficient than Deep EloU’s 35.67%. Both did not experience target loss,
ensuring the stability of tracking. It can be seen that I-YOLOv5 performs better than
Deep EloU in terms of speed, accuracy, and resource utilization.

4. Conclusion

This research focuses on the tracking of athletes during basketball games. To ensure
real-time tracking of the target, the YOLOvV5 algorithm was improved by fusing the
multi-feature detection module to form a new I-YOLOv5 algorithm. The image to be
detected was first cut to some extent to remove redundant information. Subsequently,
the target was recognized according to the feature parameters, followed by the prediction
of the target’s position in the next frame by calculating the cosine similarity. Finally,
the prediction results were corrected by real-time images and the tracking results were
output. The outcomes revealed that the I-YOLOv5 algorithm had a good performance.
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The LF stabilized to 0.20 when the number of iterations reached about 40 000, and the
images that could be processed per second was 49 on average. The target detection time
of the I-YOLOvV5 algorithm was 33.08% shorter than that of the conventional YOLOv5
algorithm when the image was cut to 5 x 5. The TT runtime of the I-YOLOv5 algorithm
on the Detectron dataset was reduced by 21.26% compared to the traditional YOLOv5
algorithm. On the SportsMOT dataset, the I-YOLOv5 algorithm achieved an average
accuracy of 98.65% and Avg-HR of 97.21%. The tracking latency of the I-YOLOv5
algorithm on 60 fps basketball sports videos was consistently maintained within 40 ms. In
conclusion, the I-YOLOV5 algorithm exhibits a relatively short processing time and high
accuracy. The I-YOLOv5 algorithm is capable of tracking the basketball player’s target
in real time on online videos and exhibits enhanced recognition of overlapping multiple
targets. Furthermore, it is adaptable to the TT of a diverse range of basketball sports
images or videos. While this research addresses the issue of tracking the movements of
a basketball player, it does not extend to other types of targets. As such, additional
studies are needed to examine this approach’s effectiveness in various TT circumstances.
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