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Abstract Skin lesion segmentation identifies and outlines the boundaries of abnormal skin regions.
Accurate segmentation may help in the early detection of skin cancer. Accurate Skin Lesion Segmenta-
tion is still challenging due to different skin color tones, variations in shape, and body hairs. Moreover,
variability in the lesion appearance, quality of the images, and lack of clear skin boundaries make the
problem even harder. This paper proposes a SegNet model with spatial attention mechanisms for skin
lesion segmentation. Adding one component of spatial attention to SegNet allows the proposed model to
focus more on specific parts across the image, eventually leading to a better segmentation of the lesion
boundary. The proposed model was evaluated on the ISIC 2018 dataset. Our proposed model attained
an average accuracy of 96.25%, and the average dice coefficient equals 0.9052. The model’s performance
indicates its possible application in automated skin disease diagnosis.
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1. Introduction

Skin is the largest organ of the human body that is usually directly exposed to the air.
In other words, it is the most vulnerable organ due to its exposure to ultraviolet rays
from the Sun and other environmental toxins. It leads to various skin diseases, including
skin cancer [28]. According to the International Agency for Research on Cancer (IARC),
approximately 3330000 new cases of skin cancer were diagnosed worldwide in 2022 [14].
Moreover, almost 60000 people died from the disease. Furthermore, the TARC has
observed that there are 5.4 million new cases of skin cancer every year [31]. Therefore,
the World Health Organisation ranks skin cancer as one of the most prevalent and
fastest-growing cancers globally [12].

The cause of skin cancer is the proliferation or formation of skin cells unevenly or
abnormally. Depending on their type and strength, this proliferation of skin cells can
infiltrate or disseminate to other areas of the body. Based on different skin cells, the
three important types of skin cancers are basal cell skin cancer, squamous cell skin
cancer, and Melanoma. Physicians use these abnormal cells to determine the type of
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skin cancer [2,13,21]. Basal cell skin cancer and squamous cell skin cancer are less
dangerous as they hardly result in death. However, the most dangerous type of cancer is
Melanoma, accounting for around 75% of deaths attributed to skin cancer. Its formation
starts in melanin-producing cells that develop in melanocytes [11].

Even though Melanoma, a frequently occurring skin cancer, is lethal and the death
rate of this disease is very high, it is easily curable if the detection is made in its early
stages. According to [14], the in-time diagnosis of Melanoma decreases the mortality
rate by 90%. Some other studies reveal that there is a 95% early diagnosis (stage I of
the disease) survival rate and a 20% late discovery rate (stage IV of the disease) [19,31].
It implies that early detection increases the chances of survival and improves therapy
efficacy. For this reason, it is critical to diagnose and treat dermatoses as soon as possible.

One of the conventional methods for the diagnosis of melanoma and other skin cancer
types is the biopsy. This procedure involves taking a sample from a suspected skin
lesion to perform medical tests and determine if it is cancerous. However, undergoing
a biopsy can be challenging as it involves extracting a sample of the lesion. It can be
uncomfortable and requires time for the procedure and the subsequent analysis. The
alternative to biopsy is the visual assessment of skin lesions. Since pigmented lesions
are visible on the skin’s surface, a skilled visual examination can often detect Melanoma
at an early stage. It often involves ABCD Scale [13] that evaluates asymmetry, border
irregularity, color variegation, and lesion diameter. The ABCDE Scale [6,24] is an
extension of the ABCD scale and adds evolving to account for changes in the lesion
over time. Similarly, Glasgow 7-point Checklist [8] includes major criteria such as a
change in size, shape, and color, along with minor criteria like inflammation, crusting or
bleeding, sensory changes, and the diameter of the lesion. These algorithms provide a
structured approach to assess skin lesions and help in the early detection of Melanoma
by identifying key warning signs.

Dermatologists often use a dermatoscope to enhance the visibility of skin lesions by
magnifying them with light. This enhanced visibility allows dermatologists to detect
early Melanoma that might be invisible to the naked eye. While dermoscopy increases
detection accuracy, the complexity of skin lesions and the sheer volume of dermoscopic
images make visual inspection potentially non-reproducible, time-consuming, and sub-
jective in medical practice. That is why advancements in computer-aided diagnostic
systems have become so important, offering more consistent and efficient analysis of
dermoscopic images [9].

Due to the above limitations of visual inspection and dermoscopy, there is a strong
motivation to develop computer-assisted diagnosis (CAD) systems to support dermatol-
ogists in their examinations. A critical aspect of CAD systems for efficiently analyzing
dermoscopic images is automatically segmenting skin lesions from dermoscopic images,
enabling more focused and efficient automated analysis of those areas. This automatic
segmentation significantly aids early skin cancer detection and diagnosis by improving
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diagnostic accuracy. However, accurate automatic segmentation of skin lesions is chal-
lenging due to three main factors: (1) Melanomas can vary greatly in shape, size, color,
texture, and skin type. Distortions and natural features like hair, air bubbles, and blood
vessels complicate the segmentation process. (2) Skin lesions often have fuzzy or un-
even edges, and the contrast between the lesion and surrounding skin can be minimal.

(3) Early algorithms were trained on relatively small datasets. Gathering large-scale

skin lesion annotations from medical experts is difficult.

Existing CAD methods to address the above limitations often give unsatisfactory
outcomes because they struggle with artifacts such as corners and low-contrast regions.
Moreover, hairs against the background remain critical challenges, making boundary
definition a difficult task [25]. On the other hand, the spatial attention mechanism uses
spatial relationships of features and creates a spatial attention map. It has been observed
that spatial attention modules are helpful in many image processing applications [22, 30,
36]. Therefore, this paper proposes a transfer learning-based approach combined with
the spatial attention technique utilizing SegNet to improve the accuracy of skin lesion
segmentation.

The paper’s main contributions are summarized below:

1. The Spatial Attention module is introduced in the feature extraction process of
the encoder. This module effectively captures spatial dependencies. This module
enables the network to selectively emphasize important regions in the feature maps,
improving the understanding of fine details.

2. The bottleneck layer structure of SegNet is modified by integrating a spatial
attention module. This design increases the receptive field and allows the network to
capture contextual information, resulting in more precise segmentation.

We have evaluated the performance of our proposed method on the ISIC 2018 dataset |7,
32]. This dataset contains dermoscopic images for skin lesion analysis. It was selected
because it contains diverse skin lesion types collected from many patients. The proposed
model showed the highest segmentation accuracy on this dataset compared to the pub-
lished results on the same dataset. Hence, it proves the efficacy of the proposed model
in accurate skin lesion segmentation.

2. Background and related works

This section first describes the essential background of skin lesion segmentation tech-
niques. Subsequently, state-of-the-art skin lesion segmentation techniques are presented.

2.1. Background on skin lesion segmentation techniques

Skin lesion segmentation is pivotal in the fight against skin cancer, particularly Melanoma.
Automated image analysis technique separates suspicious moles or lesions from the sur-
rounding healthy skin in digital images, offering several benefits for dermatologists:
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¢ Enhanced Diagnostic Accuracy: It provides a clear picture of the lesion’s bound-
aries, allowing for a detailed analysis of its characteristics, such as color, texture,
and borders. Moreover, it helps to distinguish between benign and malignant moles,
detecting subtle variations that might be missed otherwise.

e Earlier Detection: By clearly highlighting suspicious areas, segmentation aids in
identifying melanomas at an early stage, when treatment is most effective.

e Improved Workflow Efficiency: Automating the isolation of lesions saves time
for dermatologists, allowing them to focus on interpreting the segmented data and
making diagnoses, especially for complex cases.

However, achieving accurate segmentation is challenging due to:

e Variability in Lesions: Skin lesions can vary significantly in color, shape, texture,
and size, making a one-size-fits-all approach difficult.

e Artifacts: Features like hair, blood vessels, or wrinkles can mimic lesion features
and complicate the segmentation process.

e Image Quality: Variations in illumination, camera focus, and resolution can hinder
accurate delineation.

These challenges underscore the importance of advanced techniques and tools in
improving the precision and reliability of skin lesion segmentation.

2.2. Related work on skin lesion segmentation techniques

Researchers are actively working to overcome the hurdles above. The field of skin lesion
segmentation primarily relies on two approaches:

e Traditional Image Processing Techniques: These methods use algorithms to
analyze various image properties like color intensity and texture. While they can be
effective, they often struggle with the high variability in skin lesions, limiting their
accuracy and reliability.

e Deep Learning-based Techniques: These have revolutionized the field by leverag-
ing Convolutional Neural Networks (CNNs). CNNs are trained on extensive datasets
of labeled images, allowing them to learn complex patterns and identify subtle fea-
tures that distinguish lesions from healthy skin. Due to their ability to handle the
variability in lesions and their superior accuracy, deep learning approaches are con-
sidered state-of-the-art.

The initial research on combining transfer learning and fine-tuning techniques with a
melanoma segmentation strategy based on U-net and LinkNet deep learning networks is
found in [3]. The experiments were performed on PH2, ISIC 2018, and DermlIS datasets.

The method faced limitations due to the image capture device, which affected the
model’s learning of disease characteristics like resolution, color, sharpness, and lighting.
The authors claimed that the reproducibility of results is also limited by the diversity of
skin tones across different populations.
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A pyramid module incorporating lateral connections and top-down paths was used
to compensate for the loss of spatial feature information [1].

This method integrated RetinaNet and MaskRCNN, with the Melanoma ISIC 2018
and PH2 datasets serving as training and validation grounds. The method’s limitations
included segmentation accuracy being affected by high occlusions near lesions and data
class imbalance due to the absence of additional lesion data.

In [16], a fully automated multi-class skin lesion segmentation and classification ap-
proach was proposed using the most discriminant deep Learning Features and Improved
Moth Flame Optimization. The proposed methodology’s segmentation performance was
evaluated on the ISBI 2016, ISBI 2017, ISIC 2018, and PH2 datasets. However, the
computational time was one of the work’s limitations.

In response to skin lesion segmentation, a novel EIU-Net method was proposed to
tackle the challenging task [35]. Inverted residual blocks and an efficient pyramid squeeze
attention (EPSA) block were proposed as the main encoders at different stages to capture
the local and global contextual information. In contrast, atrous spatial pyramid pooling
(ASPP) was utilized after the last encoder, and the soft-pool method was introduced
for downsampling. Also, they proposed a novel method named multi-layer fusion (MLF)
module to effectively fuse the feature distributions and capture significant boundary in-
formation of skin lesions in different encoders to improve the network’s performance.
Furthermore, a reshaped decoder fusion module was used to obtain multi-scale informa-
tion by fusing feature maps of different decoders to improve the final results of skin lesion
segmentation. To validate the performance of this network, it was compared with other
methods on four public datasets, including the ISIC 2016, ISIC 2017, ISIC 2018, and
PH2 datasets. Moreover, the main metric Dice Score achieved by the proposed EIU-Net
are 0.919, 0.855, 0.902, and 0.916 on the four datasets; our EIU-Net can improve the
accuracy of skin lesion segmentation [35].

In [23], the authors introduce a novel end-to-end trainable network for skin lesion
segmentation. The proposed methodology comprises an encoder-decoder, a region-aware
attention approach, and a guided loss function. The trainable parameters are reduced
using depth-wise separable convolution, and the attention features are refined using a
guided loss, resulting in a high Jaccard index. We assessed the effectiveness of our
proposed RA-Net on four frequently utilized benchmark datasets for skin lesion segmen-
tation: ISIC 2016, ISIC 2017, ISIC 2018, and PH2.

Integrating conventional treatment methods with deep learning frameworks to en-
hance skin lesion identification is proposed in [29]. The study used image data, hand-
crafted lesion features, and patient-centric metadata for effective skin cancer diagnosis. It
combines image features transferred from Efficient Nets, color and texture information
extracted from images, and pre-processed patient metadata to build a hybrid model.
Each model underwent training and evaluation using the ISIC 2018 and ISIC 2019
datasets widely used for skin cancer analysis. However, a notable limitation of this
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approach is the extreme imbalance in the datasets, which requires careful consideration
of appropriate evaluation metrics. Despite achieving high sensitivity (90.49%) and speci-
ficity (97.76%) on the ISIC 2018 dataset, the model’s performance may vary when applied
to different datasets or real-world scenarios with varying data imbalance or complexity
levels.

A novel deep-learning method named ChimeraNet was proposed for detecting hair
and ruler marks in skin lesion images [17]. ChimeraNet employs an encoder-decoder
architecture, incorporating a pre-trained EfficientNet and the decoder’s squeeze-and-
excitation residual (SERes) structures. However, this technique demands significant
computational resources and training time due to the complexity of the encoder-decoder
architecture and pre-trained models.

For accurate detection and delineation of hair in skin images, a researcher in [4] pro-
posed a deep learning strategy based on a hybrid network of convolutional and recurrent
layers for hair segmentation using weakly labeled data and deep encoded features. The
spatial dependencies between disjointed patches were encoded by feeding the encoded
features into recurrent neural network layers. The proposed method achieved segmenta-
tion accuracy with a Jaccard Index of 77.8 percent.

In [27], the researcher presented a machine learning-based methodology for segment-
ing skin lesions with novel borders and hair removal. The suggested approach removes
any corner boundaries from an RGB skin picture as input. The skin hairs covering the
image are then found and eliminated. The generated picture is then improved, and the
GrabCut method is used to segment lesions. The research showed that the skin lesion
segmentation method proposed in this paper had Jaccard indices of 0.77 and 0.80 on
PH2 and ISIC 2018 datasets, respectively, and Dice indices of 0.87 and 0.82, respectively.
The method failed to perform well on images with tiny affected areas. It automatically
draws a rectangle around the region using the GrabCut method. However, when we deal
with dermoscopic pictures with tiny lesions, initiating too big or too small rectangles for
over-segmentation will occur during this method’s selection process.

Segmentation accuracy degradation and occlusions in dermoscopic images constitute
the significant problems identified here. High resolution and elaborate surface structures
make conventional segmentation algorithms struggle with dermoscopic pictures. A mis-
take in segmentation accuracy may give wrong interpretations or cause detection failures,
which affect the reliability of the diagnosis results. Moreover, occlusions within these
images, such as those brought about by artifacts, hair follicles, and other foreign matter,
block important details required during skin lesion boundary determination, leading to
distortion. Therefore, it is essential to address these challenges if automated methods of
segmenting medical pictures are to be effective in the field of dermatology.

Our proposed method is the Spatial SegNet model, designed based on attention
mechanisms, which work well for increasing precision levels and handling occluded areas
in dermoscopic images.
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Fig. 1. Few examples of skin lesion samples in ISIC 2018.

3. Materials and methods

3.1. Data acquisition

In this research work, the ISIC 2018 dataset [7,32] was used to evaluate the results of our
proposed method. The ISIC 2018 dataset is a comprehensive collection of dermoscopic
images curated for skin lesion analysis. It contains 2594 images in JPG format, each
accompanied by ground truth segmentation masks. This dataset was selected for its di-
versity and the high-quality annotations it provides, which are essential for an accurate
evaluation of segmentation methods. The images in the ISIC 2018 dataset vary signif-
icantly in lesion type and appearance, offering a robust challenge for our segmentation
model. The ground truth masks serve as a benchmark for assessing the performance
of our method, allowing us to measure the accuracy and effectiveness of the segmenta-
tion results quantitatively. Using this well-established dataset, we ensure our rigorous
evaluation is relevant to real-world clinical scenarios. Figure 1 presents some samples of
complex skin lesions in the dataset of ISIC 2018.

3.2. Proposed model

This section presents the details of our proposed method. SegNet has an encoder-decoder
structure followed by a pixel-wise classification layer. The encoder architecture of SegNet
is identical to VGG16’s convolutional layers in topology. The decoder network maps the
encoder feature maps to input resolution-sized feature maps for pixel-wise classification.
In the proposed model, spatial attention layers are added to the encoder network of the
SegNet architecture. In skin lesion images, spatial attention will help the model to focus
on essential parts or regions of interest, thereby improving accuracy in segmentation by
concentrating on relevant areas while ignoring irrelevant or noisy parts. The SegNet
decoder network has several decoders organized in a hierarchy, each corresponding to
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Fig. 2. SEGNET with Spatial Attention Architecture.
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Fig. 3. Spatial Attention Module

one encoder. The correct decoders take their input feature maps and perform non-linear
upsampling using max pooling indices that they receive from their respective encoders.
It was derived from an architecture used for unsupervised feature learning [26]. Here
are many practical advantages of reusing max-pooling indices during decoding. The
architecture of SegNet with Spatial Attention is shown in Figure 2.

This model combines pre-trained VGG16 layers with spatial attention mechanisms
in the encoder network. In the following subsections, every layer is explained in detail.
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Input layer

An RGB image of a fixed size is an input to this layer. It is usually prepared after
normalization, subtracting the mean from the image or scaling all values within a certain
range. It accepts input images of size 256x256x3 (height, width, color channels).

Encoder blocks

Pre-trained VGG16 layers are used for feature extraction in the SegNet encoder net-
work. The following layers from the pre-trained VGG16 model are used in the proposed
architecture. Each convolutional block typically includes 3x3 filters with a stride of 1
and padding of 1 to extract features such as edges, textures, and color patterns. These
layers apply learnable filters to the input feature maps. The filters essentially slide across
the input, extracting features such as edges, textures, and color patterns. The number
of filters used determines the complexity and richness of the extracted features. The
activation function ReLU is applied after the convolutional layers (Conv) to introduce
nonlinearity and allow the model to capture more complex relationships in the data.
The batch normalization layers normalize the activations of the previous convolution
layer. It facilitates faster convergence during training and enhances the stability of the
learning process. The batch norm essentially standardizes the activations across different
mini-batches, mitigating the issue of internal covariate shift. The pooling layers down-
sample the feature maps spatially using max pooling. It also makes the model robust to
translations that occur very close together, while simultaneously making it less sensitive
to noise because features become more generalized.

A Spatial Attention Block is a custom module added to the model to improve the
segmentation of skin lesions (Figure 3). It acts on feature maps encoded in the previous
convolutional block borrowed from the pre-trained VGG16 model. Specifically, it is
inserted after every pooling layer within the VGG16 encoder. Its main objective is to
enhance the encoded features and focus on them. Details of each spatial attention block
are explained as follows:

e Squeeze Operation: First, feature maps are made smaller through a 1x1 convolu-
tion. This step aims to reduce the dimensionality of the space and the computational
cost incurred by modulating units to learn their interaction.

e Excitation Operation: The method spins a spatial attention map to identify vital
skin detection areas. It is achieved by applying another 1x1 convolution operation
and performing a sigmoid activation function. The resultant map assigns different
values between 0 and 1 for each part of an image, where a value of zero means least
significant and a value of one corresponds to the most significant pixels, thereby
highlighting those regions necessary for segmentation through information obtained
from prior layers.

e Element-wise Multiplication: The last part includes element-wise multiplication
of the initial feature maps with the produced spatial attention map. By doing this,
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characteristics identified as important by our attention mechanism are emphasized,
thus enabling the model to concentrate on particular parts during its segmenting
duties. Its intensified focus strengthens the model’s ability to distinguish between
unhealthy cells and their surrounding healthy tissues.

Further elaborating on the workings of the Spatial Attention Block, the first Conv2D
layer squeezes the feature maps by decreasing the channels or properties in this module.
For example, if the entry feature maps have 512 channels, the squeezing layer might
bring this down to a smaller amount, like 64 channels. Then, using the sigmoid activa-
tion function, the second Conv2D generates attention weights representing a probability
distribution that shows the importance of different spatial locations within the given
feature maps. After that, these produced attention weights are multiplied with origi-
nal features so that some features can be amplified or suppressed selectively based on
their importance towards achieving the segmentation goal. Thus, resulting scaled fea-
ture maps will center around crucial areas, helping the model capture fine details and
semantics necessary for accurate segmentation.

Decoder layers (segmentation mask reconstruction)

The decoder part takes the encoded feature maps obtained from the encoder along with
the spatial attention. It has a symmetric structure relative to the encoder and progres-
sively increases the resolution of feature maps through transpose convolution operations.
Convolution layers are attached after these upsampling operations to refine features and
learn spatial relationships between pixels. Unlike its counterpart, which extracts them,
this one aims to recover spatial information while predicting probabilities for individual
pixels to be part of skin lesions. For example, (background versus lesion) background
versus lesion class probability maps may be obtained by applying the softmax activation
function to the final output layer on a class basis. These layers receive processed fea-
tures, including effects caused by spatial attention blocks within the encoder, and then
gradually reconstruct an image that focuses on the segmentation task. They function
oppositely from encoders, i.e., starting with a high-level understanding of the picture
and adding more detailed spatial information stepwise downwards towards the lowest
level segmentation features being dealt with at every decoder block stage. Each block
typically consists of :

e Upsampling 2D: It Increases feature maps’ spatial resolution by this layer. Unlike
the traditional Conv layer, this layer learns upsampled filters that expand the feature
maps while introducing new spatial information. It allows the model to recover spatial
details lost during pooling in the encoder.

e Convolutional layers: After Upsampling layers, Conv layers are applied to refine
the features and learn the relationships between pixels similar to the encoder. They
help to combine upsampled information with high-level features from the encoder.
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e Batch Normalization layers (Batch Norm): These are used for normalizing
activations after upsampling, similar to the encoder, for better training stability.

Output layer

The final decoder output is fed to a softmax classifier layer to produce the class proba-
bilities. The softmax function produces a probability map for every pixel in the image.
This map shows how likely each pixel is to belong to a specific class (e.g., background or
skin lesion). The class with the highest probability for each pixel becomes the predicted
segmentation label.

Spatial attention mechanisms are incorporated into models designed for skin lesion
segmentation, improving the overall performance and reliability of the proposed model.
This technique combines pre-trained features, spatial attention mechanisms, and Seg-
Net’s decoder architecture to achieve accurate skin lesion segmentation. Pre-trained
VGG16 weights extract essential image features more effectively, reducing training time
and enhancing its generalization ability over new data. Considering different skin lesion
sizes and appearances, introducing a spatial attention block narrows down the essential
parts of an image, thus leading to precise skin lesion segmentation.

3.3. Evaluation metrics

To assess the performance of our proposed skin lesion segmentation method, we employed
a variety of evaluation metrics that provide a comprehensive analysis of segmentation
accuracy and quality. The metrics used in this study include the Dice Coefficient and
Binary Accuracy.

TP and FP refer to lesion pixels extracted as lesion pixels and non-lesion pixels
extracted as lesion pixels, respectively. At the same time, FN and TN represent lesion
pixels extracted as non-lesion pixels and non-lesion pixels extracted as non-lesion pixels,
respectively.

Dice Coefficient

The Dice Coefficient is an essential metric for evaluating segmentation quality. It is
calculated as the ratio of twice the area of overlap between the predicted and ground
truth masks to the sum of the areas of both masks. The Dice Coefficient ranges from
0 to 1, with a value closer to 1 indicating better segmentation accuracy. This metric is
beneficial for handling class imbalance, as it emphasizes the correct prediction of positive
samples. The dice similarity coefficient is a spatial overlap index and a reproducibility
validation metric, and it computes the similarity index between the given images.

2TP
Dice Coefficient = . 1
ice Coeflicien (FP+TP) + (TP + FN) (1)
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Accuracy

Accuracy refers to the proportion of correctly predicted pixels (lesion and non-lesion)
out of the total number of pixels. It is calculated as follows:

TP + TN

. 2
TP + TN+ FN +FP @)

Accuracy =

Precision

Precision refers to the proportion of true positive predictions among all the pixels pre-
dicted as lesions. It indicates the model’s accuracy in identifying the lesion pixels out of
all the pixels it labeled as lesions. Precision is calculated as follows:

TP

TP +FP ®)

Precision =

Sensitivity

Sensitivity, also called Recall, measures the proportion of actual positives (lesions) the
model correctly identifies. It indicates the model’s ability to detect the lesion pixels

TP

—_—. 4
TP +FN )

Sensitivity =
Specificity

Specificity measures the proportion of actual negatives (non-lesions) the model correctly
identifies. It indicates the model’s ability to avoid false positives.

TN

TN+ FP’ 5)

Specificity =

F1 Score

Fy Score is the harmonic mean of Precision and Recall (Sensitivity). It is a balanced
measure that considers both false positives and false negatives.

2(Precision x Recall)
P = .
! Precision + Recall (6)

10U
IOU is used to measure the overlap between two images.

TP

I =
ou TP + FP + FN

(7)
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4. Experimental results

An open-source machine learning framework, TensorFlow, implements the methodology.
It is a user-friendly interface for working with deep neural networks, designed for ease
of use rather than machine-level interactions. It is a library mainly used for developing
real-time computer vision applications.

¢ CPU Resources:

— Environment 1: 256MB memory limit on device /device:CPU:0.

—Environment 2: XLA CPU with 16GB memory limit on device /device:XLA_CPU:O0.

¢ GPU Resources:

—Tesla T4 GPUs: Two GPUs with 14.8GB memory each, identified as /device:GPU:0
and /device:GPU:1, with PCI Bus IDs 0000:00:04.0 and 0000:00:05.0, respec-
tively. Both GPUs have Compute Capability 7.5.

— XLA GPUs: Two GPUs with 16GB memory each, denoted as /device:XLA_GPU:0
and /device:XLA_GPU:1.

This combination of hardware configurations provided the computational capacity
necessary for efficient training and testing of deep learning models, enabling the handling
of large-scale data processing and complex model architectures.

4.1. Hyperparameters

To achieve a skin lesion segmentation model, hyperparameters shown in Table 1 are
chosen to optimize performance and manage computational resources effectively. A
learning rate of 5 x 1079 is important as it allows for small steps to be taken by the
optimizer while minimizing the loss function. It ensures the model converges slowly and
steadily without overshooting the minimum loss function. Batch size 8 strikes a balance
between memory efficiency and accurate gradient estimation.

To validate our skin lesion segmentation method, we carried out a 5-fold cross-
validation. The steps involved partitioning a dataset into five equal sets, training on
four, and validating against the fifth set. The results are shown in Table 2. The mean
of the five-fold validation results is given in the last row of the table. The results show

Tab. 1. Hyperparameters for the proposed model.

Parameter Name Parameter Value

Learning Rate 5x 1076

Batch Size 8

Input Size 256, 256, 3
Optimizer Adam Optimizer
Epoch 60
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Tab. 2. Results of the proposed model with 5-fold cross validation (STD: standard deviation).

Folds IoU Dice Coefficient Precision Sensitivity Specificity Accuracy

1 0.8026 0.8980 0.8969 0.9086 0.9718 0.9657
2 0.8240 0.9242 0.9163 0.8969 0.9744 0.9616
3 0.8026 0.9051 0.9272 0.8890 0.9820 0.9611
4 0.8240 0.9022 0.9086 0.8725 0.9718 0.9631
5 0.8026 0.8965 0.9310 0.8619 0.9820 0.9611
Mean 0.8111 0.9052 0.9160 0.8857 0.9764 0.96252
STD 0.0092 0.0045 0.0155 0.0172 0.0053 0.0026

a high value of the Dice coefficient (0.9052) and segmentation accuracy (96%). The
sensitivity of the proposed model is 0.8857.

Table 3 compares the results of our proposed model against state-of-the-art published
results using the ISIC 2018 dataset. Our proposed model of skin lesion segmentation,
tested on the ISIC 2018 dataset, shows significant improvements in segmentation. The
primary comparison tools used to judge the outcomes are the Dice Coefficient and Binary
Accuracy. The high value of the Dice Coefficient shows more similarity of the predicted
results with the ground truth mask.

Adding spatial attention to the SegNet architecture achieves better skin lesion seg-
mentation results. Spatial attention assigns weights to each pixel, highlighting the areas
of interest and allowing the model to distinguish between lesion and non-lesion regions.
This improves the segmentation accuracy as the model can focus on the spatial locations
with features relevant to skin lesions, such as irregular shapes and varying pigmentation
over background noise.

The SegNet with spatial attention model quantitatively improved the Dice similarity
coefficient, ToU, and accuracy scores. These improvements are significant compared
to the other segmentation models (Table 3). Figure 4 shows skin lesion segmentation
results. The segmentation output looks better in the Figure 4, and lesion boundaries are
more precise and consistent.

Tab. 3. Comparative analysis with state-of-the-art techniques.

Model Dataset Split Parameters [10°] Accuracy Dice Coefficient
TMU Net [5] 70% training, 10% validation, and 20% testing - 0.9603 0.905

UNeXt [33] 80% training, 20% testing 1.47 0.9586 0.8873

FAT-Net [34] 70% training, 10% validation, and 20% testing 30 0.9578 0.8903

CPFNET [10] 5-fold cross-validation 43 0.9496 0.8769

DAGAN [18] 2296 images for training, 300 images for testing. 54 0.9324 0.87707

CKDNet [15] - 51 0.9492 0.8779
REDAUNet [20] 70% training, 10% validation, and 20% testing 47.77 0.9444 0.902

SA SegNet (Ours) Five-Folds Cross-Validation. 29.6 0.9625 0.9052
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a b c

Fig. 4. Some of the segmented images. Vertically: five cases. Horizontally: (a) original image;
(b) predicted mask, Dice = 0.85; (c) overlay image.
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4.2. Impact of batch size and learning rate

In this experiment, we analyzed the influence of hyperparameters on the model perfor-
mance. This analysis aims to understand the effect of batch size and learning rate on
the Dice Coefficient and the Accuracy metrics. In these experiments, the whole dataset
is divided in the ratio of 0.7:0.1:0.2 for training, validation, and testing, respectively.

The Table 4 presents results for the model at various initial learning rates and their
effect on the Dice Coefficient and Accuracy. The learning rate of 1 x 1076 is too low for
the model to learn efficiently, as it yields the lowest performance, with a Dice coefficient
of 0.8611 and an accuracy of 0.9395. A learning rate of 1 x 10~° performs the best with
the highest value of the Dice coefficient of 0.9053, an accuracy of 0.9626. Thus, it infers
that this is the ideal rate of learning and generalization. If the learning rate is increased
to 1 x 1074, the performance decreases slightly, as the Dice coefficient goes to 0.8794,
and an accuracy of 0.9527 is achieved. This shows that although the model performs
well, the learning rate is too large for optimal training. As the learning rate is increased
to 1 x 1073, the model training is the worst, with a Dice coefficient of 0.8761 and an
accuracy of 0.9436 on the testing dataset. It may indicate that the model is converging
too fast and missing some finer details in the data. The learning rate of 1 x 1072 is the
most effective, being the best in segmentation and classification tasks, while increasing
or decreasing the learning rate worsens the performance.

Batch size determines the number of samples in the training dataset to update the
parameters. Increasing the batch size means fewer weight updates in an epoch. Hence,
memory and computational requirements are lower for smaller batch sizes due to the
smaller number of samples per update. However, for smaller batch sizes, the effect
of noise and variance of the loss gradient will be more on the weight updates of the
model. The Table 5 compares the model’s performance across different batch sizes in

Tab. 4. Comparison of Dice Coefficient and Accuracy for different initial learning rates

Initial Learning Rate Dice Coefficient Accuracy

1x 106 0.8611 0.9395
1 x 10~% (Ours) 0.9053 0.9626
1x10°% 0.8794 0.9527
1x10°3 0.8761 0.9436

Tab. 5. Comparison of model performance for different batch sizes.

Batch Size Test Dice Coefficient Test Accuracy

4 0.9005 0.9578
8 (Ours) 0.9053 0.9626
12 0.8967 0.9570
16 0.8733 0.9509
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Tab. 6. Comparison of models based on model’s variations.

Model Test Dice Coefficient Test Accuracy
SegNet only 0.8977 0.9581
Partial Removal of Spatial Attention 0.8986 0.9561
Removal of Batch Normalization 0.8827 0.9505
Spatial Attention SegNet (Ours) 0.9052 0.9625

terms of Dice Coeflicient and Accuracy. Comparing the dice coefficient and accuracy for
various batch sizes, a batch size of eight is optimal. The model performs best with a
Dice coefficient of 0.9053 and an accuracy of 0.9626. The performance degrades as the
batch size increases from eight, and the dice coefficient and accuracy decrease. Finally,
with the batch size of 16, the performance significantly drops (Dice coefficient of 0.8733
and accuracy of 0.9509), which implies that the bigger batch sizes may preclude the
model’s ability to converge effectively and even generalize well. The overall results,
however, indicate that batch size eight is more likely to bring equilibrium to the model’s
computing efficiency and practical utility. Therefore, it is the most suitable option for
this experiment.

4.3. Ablation experiments

In this section, we perform an ablation study on the proposed model. We have studied
the effect of the spatial attention layer and batch normalization layer.

The Table 6 showcases the comparison of the performances of the different versions of
the models. The core of the system is the SegNet architecture, and performance can be
greatly enhanced by the introduction of some components, like batch normalization and
spatial attention. The spatial attention technique is a method for improving segmen-
tation accuracy, which allows the model to focus on relevant areas of the input.In our
model we have included another highly significant layer, which is called batch normal-
ization (BN). By doing BN the input to each layer, the result is the stabilization of the
process of learning and reduction of internal co-variate shifts. An ablation study shows
that when batch normalization is taken away, both the Dice coefficient and the accuracy
fall drastically. The removal of batch normalization from the model greatly decreases the
model’s accuracy, thus proving its importance in ensuring a successful learning period.

Our model, proposed in this paper, combines spatial attention and batch normaliza-
tion layers. Both layers in the model provides best Dice coefficient of 0.9052 and the
highest accuracy of 0.9625. Hence, it is clear that spatial attention helps the model pick
the salient parts of the image, while batch normalization ensures the model’s training
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runs smoothly and can generalize well, thereby enhancing both segmentation and clas-
sification performance. The implementing these layers is essential for the robustness,
accuracy, and capacity to deal with the complexity of the patterns in the data.

5. Conclusion and future work

This paper provides a detailed framework for the proposed skin lesion Segmentation
model. Our proposed approach uses SegNet architecture combined with spatial atten-
tion layers. Encoder layers are taken from the pre-trained model of VGG16. Our model
showed better segmentation accuracy and improved lesion boundary delineation pre-
cision. It is evident from Table 3 that the proposed model performed better on the
ISIC 2018 dataset than other published state-of-the-art models. We have achieved a
dice coefficient of 0.9052 and a segmentation accuracy of 0.9625.

An important aspect of future work is the incorporation of multimodal data. Com-
bining dermoscopic images with clinical information provides a more holistic approach
to analyzing skin lesions; thus, this approach may increase diagnostic performance by
improving segmentation accuracy. This kind of approach uses different data strengths
to give a more precise and reliable diagnosis. It is also essential to build real-time seg-
mentation systems for clinical purposes. These systems need to work efficiently on edge
devices or mobile platforms to be accessible for use in different clinical environments.

References

[1] N. Ahmed, X. Tan, and L. Ma. A new method proposed to melanoma-skin cancer lesion detection
and segmentation based on hybrid convolutional neural network. Multimedia Tools and Applications
82(8):11873-11896, 2023. doi:10.1007/s11042-022-13618-0.

[2] Z. Apalla, A. Lallas, E. Sotiriou, E. Lazaridou, and D. Ioannides. Epidemiological trends in skin
cancer. Dermatology Practical € Conceptual 7(2):1, 2017. doi:10.5826/dpc.0702a01.

[3] R. L. Aratjo, F. H. D. de Aratjo, and R. R. V. e. Silva. Automatic segmentation of melanoma
skin cancer using transfer learning and fine-tuning. Multimedia Systems 28(4):1239-1250, 2022.
doi:10.1007/s00530-021-00840-3.

[4] M. Attia, M. Hossny, H. Zhou, S. Nahavandi, H. Asadi, et al. Digital hair segmentation using
hybrid convolutional and recurrent neural networks architecture. Computer methods and programs
in biomedicine 177:17-30, 2019. doi:10.1016/j.cmpb.2019.05.010.

[5] R. Azad, M. Heidari, Y. Wu, and D. Merhof. Contextual Attention Network: Transformer meets
U-Net. In: International Workshop on Machine Learning in Medical Imaging (MLMI 2022), vol.
13583 of Lecture Notes in Computer Science, pp. 377-386. Springer, 2022. doi:10.1007/978-3-031-
21014-3_39.

[6] Canadian Skin Cance Foundation. Skin cancer early detection. In: Skin Cancer, 2024. https:
//vvv.canadianskincancerfoundation.com/early-detection/. [Accessed: 2024-11-05].

[7] N. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. Dusza, et al. Skin lesion analysis toward

Machine GRAPHICS & VISION 34(4):3-22, 2025. DOI: 10.22630/MGV.2025.34.4.1.


https://doi.org/10.1007/s11042-022-13618-0
https://doi.org/10.5826/dpc.0702a01
https://doi.org/10.1007/s00530-021-00840-3
https://doi.org/10.1016/j.cmpb.2019.05.010
https://doi.org/10.1007/978-3-031-21014-3_39
https://doi.org/10.1007/978-3-031-21014-3_39
https://www.canadianskincancerfoundation.com/early-detection/
https://www.canadianskincancerfoundation.com/early-detection/
https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.4.1

M. Arif, A. Abbasi, M. Arif, M. Rashid 21

melanoma detection 2018: A challenge hosted by the International Skin Imaging Collaboration
(ISIC). arXiv, arXiv:1902.03368, 2019. doi:10.48550/arXiv.1902.03368.

[8] J. Dinnes, J. J. Deeks, M. J. Grainge, N. Chuchu, L. Ferrante di Ruffano, et al. Visual inspection
for diagnosing cutaneous melanoma in adults. Cochrane Database of Systematic Reviews 2018(12),
1996. doi:10.1002/14651858.CD013194.

[9]H. C. Engasser and E. M. Warshaw. Dermatoscopy use by US dermatologists: A cross-
sectional survey.  Journal of the American Academy of Dermatology 63(3):412-419, 2010.
doi:10.1016/j.jaad.2009.09.050.

[10] S. Feng, H. Zhao, F. Shi, X. Cheng, M. Wang, et al. CPFNet: Context pyramid fusion network
for medical image segmentation. IEEE Transactions on Medical Imaging 39(10):3008-3018, 2020.
doi:10.1109/TMI.2020.2983721.

[11] Z. Ge, S. Demyanov, R. Chakravorty, A. Bowling, and R. Garnavi. Skin disease recognition using
deep saliency features and multimodal learning of dermoscopy and clinical images. In: Proc. 20th
Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI 2017), vol.
10435 part III of Lecture Notes in Computer Science, pp. 250-258. Springer, 2017. doi:10.1007/978-
3-319-66179-7__29.

[12] K. Hauser, A. Kurz, S. Haggenmiiller, R. C. Maron, C. von Kalle, et al. Explainable artificial
intelligence in skin cancer recognition: A systematic review. FEuropean Journal of Cancer 167:54—
69, 2022. doi:10.1016/j.ejca.2022.02.025.

[13] W. Hu, L. Fang, R. Ni, H. Zhang, and G. Pan. Changing trends in the disease burden of non-
melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. BMC' cancer
22(1):836, 2022. doi:10.1186/s12885-022-09940-3.

[14] IARC. Skin cancer. In: International Agency for Research on Cancer (IARC), WHO, 2024. https:
//wwu.iarc.who.int/cancer-type/skin-cancer/. [Accessed: 05-11-2024].

[15] Q. Jin, H. Cui, C. Sun, Z. Meng, and R. Su. Cascade knowledge diffusion network for skin lesion diag-
nosis and segmentation. Applied Soft Computing 99:106881, 2021. doi:10.1016/j.as0c.2020.106881.

[16] M. A. Khan, M. Sharif, T. Akram, R. Damasevi¢ius, and R. Maskeliunas. Skin lesion segmentation
and multiclass classification using deep learning features and improved moth flame optimization.
Diagnostics 11(5):811, 2021. doi:10.3390/diagnostics11050811.

[17] N. Lama, R. Kasmi, J. R. Hagerty, R. J. Stanley, R. Young, et al. ChimeraNet: U-Net for hair
detection in dermoscopic skin lesion images. Journal of Digital Imaging 36(2):526-535, 2023.
doi:10.1007/s10278-022-00740-6.

[18] B. Lei, Z. Xia, F. Jiang, X. Jiang, Z. Ge, et al. Skin lesion segmentation via genera-
tive adversarial networks with dual discriminators. Medical Image Analysis 64:101716, 2020.
doi:10.1016/j.media.2020.101716.

[19] W. Li, A. N. J. Raj, T. Tjahjadi, and Z. Zhuang. Digital hair removal by deep learning for skin
lesion segmentation. Pattern Recognition 117:107994, 2021. doi:10.1016/j.patcog.2021.107994.

[20] L. Liu, X. Zhang, Y. Li, and Z. Xu. An improved multi-scale feature fusion for skin lesion segmen-
tation. Applied Sciences 13(14), 2023. do0i:10.3390/app13148512.

[21] P. A. Lyakhov, U. A. Lyakhova, and D. I. Kalita. Multimodal analysis of unbalanced
dermatological data for skin cancer recognition. IEEE Access 11:131487-131507, 2023.
doi:10.1109/ACCESS.2023.3336289.

[22] R. Maurya, N. N. Pandey, M. K. Dutta, and M. Karnati. FCCS-Net: Breast cancer classification us-
ing Multi-Level fully Convolutional-Channel and spatial attention-based transfer learning approach.
Biomedical Signal Processing and Control 94:106258, 2024. doi:10.1016/j.bspc.2024.106258.

Machine GRAPHICS & VISION 34(4):3-22, 2025. DOI: 10.22630/MGV.2025.34.4.1.


https://doi.org/10.48550/arXiv.1902.03368
https://doi.org/10.1002/14651858.CD013194
https://doi.org/10.1016/j.jaad.2009.09.050
https://doi.org/10.1109/TMI.2020.2983721
https://doi.org/10.1007/978-3-319-66179-7_29
https://doi.org/10.1007/978-3-319-66179-7_29
https://doi.org/10.1016/j.ejca.2022.02.025
https://doi.org/10.1186/s12885-022-09940-3
https://www.iarc.who.int/cancer-type/skin-cancer/
https://www.iarc.who.int/cancer-type/skin-cancer/
https://doi.org/10.1016/j.asoc.2020.106881
https://doi.org/10.3390/diagnostics11050811
https://doi.org/10.1007/s10278-022-00740-6
https://doi.org/10.1016/j.media.2020.101716
https://doi.org/10.1016/j.patcog.2021.107994
https://doi.org/10.3390/app13148512
https://doi.org/10.1109/ACCESS.2023.3336289
https://doi.org/10.1016/j.bspc.2024.106258
https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.4.1

22 Skin lesion segmentation using SegNet. . .

[23] A. Naveed, S. S. Naqvi, S. Igbal, I. Razzak, H. A. Khan, et al. RA-Net: Region-Aware attention Net-
work for skin lesion segmentation. Cognitive Computation 16:2279-2296, 2024. doi:10.1007/s12559-
024-10304-1.

[24] S. Rajpar and J. Marsden. ABC of Skin Cancer. John Wiley & Sons, 2009.

[25] G. Ramella. Hair removal combining saliency, shape and color. Applied Sciences 11(1):447, 2021.
doi:10.3390/app11010447.

[26] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature
hierarchies with applications to object recognition. In: 2007 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1-8. IEEE, 2007. doi:10.1109/CVPR.2007.383157.

[27] M. Rehman, M. Ali, M. Obayya, J. Asghar, L. Hussain, et al. Machine learning based skin lesion
segmentation method with novel borders and hair removal techniques. Plos one 17(11):e0275781,
2022. doi:10.1371/journal.pone.0275781.

[28] M. A. Richard, C. Paul, T. Nijsten, P. Gisondi, C. Salavastru, et al. Prevalence of most common skin
diseases in Europe: a population-based study. Journal of the FEuropean Academy of Dermatology
and Venereology 36(7):1088-1096, 2022. doi:10.1111/jdv.18050.

[29] M. Sharafudeen and S. S. V. Chandra. Detecting skin lesions fusing handcrafted features in image
network ensembles. Multimedia Tools and Applications 82:3155-3175, 2022. doi:0.1007/s11042-
022-13046-0.

[30] S. Tehsin, I. M. Nasir, R. Damasevicius, and R. Maskelitinas. DaSAM: Disease and spatial attention
module-based explainable model for brain tumor detection. Big Data and Cognitive Computing
8(9), 2024. doi:10.3390/bdcc8090097.

[31] The American Cancer Society medical and editorial content team. Key Statistics for Melanoma
Skin Cancer. In: Melanoma Skin Cancer, 2025. https://www.cancer.net/cancer-types/melanoma/
statistics. [Accessed: 2024-11-05].

[32] The International Skin Imaging Collaboration. ISIC CHALLENGE, 2018-2024. https://
challenge.isic-archive.com/data/.

[33] J. M. J. Valanarasu and V. M. Patel. UNeXt: MLP-based rapid medical image segmentation
network. In: Medical Image Computing and Computer Assisted Intervention (MICCAI 2022),
vol. 13435 of Lecture Notes in Computer Science, pp. 23-33. Springer Nature Switzerland, 2022.
doi:10.1007/978-3-031-16443-9__3.

[34] H. Wu, S. Chen, G. Chen, W. Wang, B. Lei, et al. FAT-Net: Feature adaptive trans-
formers for automated skin lesion segmentation. Medical Image Analysis 76:102327, 2022.
doi:https://doi.org/10.1016/j.media.2021.102327.

[35] Z. Yu, L. Yu, W. Zheng, and S. Wang. EIU-Net: Enhanced feature extraction and improved skip
connections in U-Net for skin lesion segmentation. Computers in Biology and Medicine 162:107081,
2023. doi:10.1016/j.compbiomed.2023.107081.

[36] Y. Zhong, Z. Shi, Y. Zhang, Y. Zhang, and H. Li. CSAN-UNet: Channel spatial atten-
tion nested UNet for infrared small target detection. Remote Sensing 16(11):1894, 2024.
doi:10.3390/rs16111894.

Machine GRAPHICS & VISION 34(4):3-22, 2025. DOI: 10.22630/MGV.2025.34.4.1.


https://doi.org/10.1007/s12559-024-10304-1
https://doi.org/10.1007/s12559-024-10304-1
https://doi.org/10.3390/app11010447
https://doi.org/10.1109/CVPR.2007.383157
https://doi.org/10.1371/journal.pone.0275781
https://doi.org/10.1111/jdv.18050
https://doi.org/0.1007/s11042-022-13046-0
https://doi.org/0.1007/s11042-022-13046-0
https://doi.org/10.3390/bdcc8090097
https://www.cancer.net/cancer-types/melanoma/statistics
https://www.cancer.net/cancer-types/melanoma/statistics
https://challenge.isic-archive.com/data/
https://challenge.isic-archive.com/data/
https://doi.org/10.1007/978-3-031-16443-9_3
https://doi.org/https://doi.org/10.1016/j.media.2021.102327
https://doi.org/10.1016/j.compbiomed.2023.107081
https://doi.org/10.3390/rs16111894
https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.4.1

	Skin Lesion Segmentation using SegNet with Spatial Attention
	Introduction
	Background and related works
	Background on skin lesion segmentation techniques
	Related work on skin lesion segmentation techniques

	Materials and methods
	Data acquisition
	Proposed model
	Evaluation metrics

	Experimental results
	Hyperparameters
	Impact of batch size and learning rate
	Ablation experiments

	Conclusion and future work


