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Abstract Automated generation of 2D floor plans is crucial for architectural design, requiring models
to balance precision and adaptability to user-defined specifications. Diffusion models, like Stable Diffu-
sion, excel at generating high-quality images but lack an intrinsic understanding of structured layouts
such as floor plans. Conversely, Graph Neural Networks (GNNs) are adept at encoding relational data,
representing floor plan objects as nodes and their connections as edges, but they are not generative or
capable of processing textual inputs. In this work, we fine-tune Stable Diffusion 1.5 on a custom dataset
of floor plans, leveraging structured prompt templates to constrain the model’s creativity and guide
it toward generating concise, error-tolerant outputs. This research suggests integrating the generative
capabilities of diffusion models with the representational strengths of GNNs to overcome inherent chal-
lenges in diffusion models, like their inability to explicitly encode spatial relationships. This integration
could expand the capabilities of these models, empowering them to comprehend and produce struc-
tured layouts more effectively. While computational constraints limited our exploration of this hybrid
architecture, our results demonstrate that prompt engineering and dataset preprocessing significantly
improve the output quality. This study highlights the potential for generative models in architectural
tasks and lays the groundwork for integrating logical reasoning into diffusion-based architectures.

Keywords: graph neural networks (GNNs), diffusion model, latent diffusion, floorplan representation.

1. Introduction

Human culture deeply intertwines with the history of architecture and architectural
drawings, reflecting the ability to conceptualize and design living spaces. Architectural
drawings, meticulously crafted by hand and archived on paper or as scanned raster im-
ages, continued until the second half of the 20th century. Even with the widespread
adoption of computer-aided design (CAD) software [7], most architectural drawings re-
main primarily distributed in image formats, limiting the depth of information that can
be extracted and analyzed.

The challenge of generating floor plans that meet specific user requirements has long
been a complex task for architects and designers [33]. Traditional methods rely heavily
on manual design processes, requiring extensive expertise and time-consuming iterations.
This process is inherently complex and requires meticulous attention to detail. Archi-
tects and engineers must consider a myriad of factors, including spatial relationships,
structural integrity, building codes, and client preferences. To ensure both functionality
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and compliance with regulatory standards, architects and engineers must precisely con-
figure each element, from the placement of walls, doors, and windows to the allocation
of rooms and incorporation of utilities. Moreover, the manual approach to floor plan
creation poses challenges in efficiency and productivity. Engineers must painstakingly
adjust dimensions, realign components, and ensure consistency across different sections
of the plan. This meticulous work not only prolongs project timelines but also redirects
valuable resources towards less innovative design aspects. The pressure to deliver accu-
rate and high-quality floor plans under tight deadlines further exacerbates the strain on
professionals in the industry.

In light of these challenges, there is a growing need for automated solutions [35] that
can streamline the floor plan generation process. An effective solution would reduce the
manual workload, minimize errors, and accelerate the design phase, allowing engineers
and architects to focus on creativity and innovation. Automation can also enhance the
ability to rapidly explore multiple design alternatives, providing clients with a broader
range of options and facilitating more informed decision-making.

Recent advancements in artificial intelligence and machine learning have opened new
possibilities for automated floor plan generation [2, 9, 25, 32]. Unlike traditional design
methods that rely solely on human expertise, AI-driven approaches can rapidly generate
multiple design iterations based on input parameters.

Diverse machine learning methodologies have been employed in floor plan analy-
sis. Convolutional Neural Network-based methodologies have been predominantly uti-
lized due to their applicability to many sorts of floor-plan photographs [5]. CNN-based
methodologies necessitate only fundamental image pre-processing techniques and exhibit
robustness to floor plan noise. Furthermore, they can be utilized across many drawing
styles without necessitating modification, rendering them quick and adaptable.

Nevertheless, due to the pixel-level segmentation employed by these approaches, ac-
curately capturing the precise contours of indoor features is challenging. To address
this issue, some methodologies have integrated supplementary post-processing processes
that refine the neural network’s output. However, this results in the loss of features
inherent to the original indoor elements, such as the representation of polygons as line
vectors [6, 18]. For instance, walls must possess distinct thickness and area, but, when
the shapes become indistinct during the convolution layers, the walls are ultimately
represented as line vectors by the post-processing techniques.

For certain user applications, such as representing navigable areas in IndoorGML
format [31], abstracting a floor plan layout using machine learning models may be cru-
cial. However, the inherent flexibility and deformability of vector data allows for the
adaptation of vector outputs that preserve the original floor plan’s form into various
objects based on user intent.

This research contributes to developing a novel model that generates 2D floor plans
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automatically by leveraging user-specified inputs such as the number of bedrooms, de-
sired room types, and other key architectural constraints. The proposed model aims to
address several key challenges in automated floor plan generation:

• translating abstract user requirements into precise spatial configurations,
• ensuring functional and logical room relationships,
• maintaining architectural design principles,
• providing rapid, customizable design solutions.

By utilizing stable diffusion, a generative AI technique, the research demonstrates
the potential of AI to streamline the initial stages of architectural design. The model
leverages the diffusion model’s ability to generate complex, contextually coherent images
by progressively denoising latent representations, enabling the creation of floor plans that
transform user inputs into detailed spatial layouts. Another contribution is exploring
the capabilities and limitations of diffusion models in generating reliable 2D floor plans
while proposing hybrid approaches that combine generative and graph-based methods
to further push the boundaries of the field.

The remainder of this paper is organized as follows. Section 2 reviews related work
in floor plan generation. Section 3 presents our proposed framework. Section 4 describes
the dataset design. Section 5 details the Stable Diffusion model structure. Section 6
covers the implementation details. Section 7 presents the evaluation results. Section 8
discusses the findings, and Section 9 concludes the paper.

2. Related work

The generation of 2D floor plans has advanced significantly, leveraging various genera-
tive models to address challenges in structured design and adaptability to user-defined
parameters. This section highlights key contributions that inform and contextualize this
work, focusing on diffusion models, text-conditioned generation, and data-structure-
driven approaches.

2.1. Diffusion-based models for floor plan generation

The author in [11] recommend using a diffusion-based approach to create realistic floor-
plan images that include room types, furniture specifications, and fenestration details
which were often omitted in earlier models, like HouseGAN++ [21]. This method sur-
passes current results and generates helpful floorplans. However, the direct pixel-input
method limits scalability. Two solutions, Cascade Diffusion models and Latent Diffusion
models [28], have been introduced to address this issue. Cascade diffusion models incre-
mentally improve image resolution, while Latent Diffusion models map high-dimensional
inputs into a more manageable latent space.
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The authors in [30] introduced a diffusion-based method that directly predicts a
list of polygons for each room, utilizing a transformer architecture. This approach em-
ploys a denoising process on 2D coordinates of room and door corners, integrating both
discrete and continuous denoising steps to establish geometric relationships such as par-
allelism and orthogonality. Evaluations on the RPLAN dataset [36, 37] demonstrated
significant improvements over state-of-the-art methods, with the capability to generate
non-Manhattan structures and control the exact number of corners per room.

A novel approach called HouseCrafter is proposed in [22] that transforms 2D floor-
plans into complete 3D indoor scenes. By adapting a 2D diffusion model trained on
web-scale images, the method generates consistent multi-view RGB-D images across dif-
ferent locations of the scene. These images are generated autoregressively, guided by
the floorplan, ensuring consistency and enabling high-quality 3D scene reconstruction.
Experiments on the 3D-Front dataset demonstrated the effectiveness of HouseCrafter in
generating house-scale 3D scenes.

Further on, in [10] a shear wall layout generation method based on a diffusion pro-
cess is proposed. Compared with the StructGAN method, the diffusion-based approach
demonstrates improved performance in generating realistic and efficient shear wall lay-
outs, contributing to advancements in structural design automation. According to en-
hancing diffusion models, in [26] the diffusion models in the context of computational
design are assessed, particularly on floor plans. A method for refining diffusion mod-
els via semantic encoding is suggested. The semantic encoding proposed in this paper
enhanced the validity of produced floor plans to 90%. Nevertheless, the article also
highlights deficiencies in existing diffusion models, primarily because to an absence of
semantic comprehension.

2.2. Text-Conditioned Floor Plan Generation

The research of [17] introduced a pioneering dataset called Tell2Design of over 80 000 floor
plans paired with natural language descriptions. This work explored the use of Sequence-
to-Sequence models for translating textual input into spatially coherent layouts. By
addressing architectural constraints through text-conditioned generation, the authors
opened avenues for leveraging natural language as a design interface, making floor plan
generation accessible and user-friendly. However, experimental results show that current
text-conditional picture generation methodologies fail to address the design creation
problem, highlighting the difficulty in understanding ambiguous information and the
characteristics of design diversity in the task.

The study in [39] proposed a two-phase method for text-to-floorplan generation,
leveraging large language models (LLMs) to create initial layouts from textual descrip-
tions. The approach integrates LLMs to interpret and generate spatial configurations,
enhancing the alignment between user requirements and generated designs. The collabo-
ration between LLMs and visual generative models in [8] generates LayoutGPT which is
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a method that converts a big language model into a visual planner via in-context learn-
ing and CSS style prompts. LayoutGPT can generate credible visual configurations in
both image space and three-dimensional indoor environments besides improving image
compositions by producing accurate layouts and obtaining performance in interior scene
synthesis that is comparable to supervised methods.

Another study in [14] presented a method to automatically render 2D floor plan
images from natural language descriptions. This work represents an early attempt to
synthesize floor plans directly from textual inputs, bridging the gap between language
and visual design in the architectural domain.

2.3. Data Structure-Driven Approaches

For data structure-driven approaches, in [19] a framework that focuses on numerical
attributes of floor plans is proposed, including room dimensions and intermediate rep-
resentations, to ensure adherence to constraints and enhance functional accuracy. New
datasets and evaluation metrics are introduced, providing insights into integrating data
structures for improved generative modeling of architectural layouts. The study fine-
tunes a large language model (LLM), Llama3, but finds it flawed in accurately producing
rooms with areas corresponding to computed polygons.

The technique proposed in [1] attempts to present floorplans using numerical vectors
that encode design semantics and human behavioral characteristics. The framework
comprises two components. The initial component features an automated program that
transforms floorplan photos into attributed graphs. The features consist of design se-
mantics and human behavioral characteristics produced by simulation. In the second
component, it introduced an innovative LSTM Variational Autoencoder for the pur-
poses of embedding and producing floorplans. The qualitative, quantitative, and expert
assessments indicate that this embedding system generates significant and precise vector
representations for floorplans, demonstrating its capacity for creating new floorplans.

Authors in [15] developed GenFloor, an interactive design system that generates op-
timized spatial layouts based on geometrical, topological, and performance constraints.
The system introduces novel permutation methods for existing space layout graph rep-
resentations, such as O-Tree and B*-Tree, enabling the generation of diverse floor plans
that meet specified design criteria. GenFloor facilitates designers in their generative
design workflow by providing a user-friendly interface and evaluation functionalities.

Research on extracting structured data from image floor plans has also informed gen-
erative tasks. A notable study [23] introduced techniques for creating vector and raster
representations of floor plans to improve localization accuracy in indoor positioning sys-
tems. Though not directly focused on generation, this work highlights the importance of
accurate preprocessing and representation, essential for downstream applications. The
study proposes a computer vision method for automated map annotation, which signifi-
cantly reduces the processing time from 40 minutes to 5 minutes. Despite the method’s
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Fig. 1. The stages involved in the process of fine-tuning Stable Diffusion for floor plan generation.

limitations, users can consistently achieve the map model with minimal user modifica-
tions.

Most of the previously mentioned studies collectively illustrate the evolving land-
scape of generative modeling for architectural design. From enhancing realism and accu-
racy through diffusion-based techniques to leveraging structured prompts and intermedi-
ate representations, these advancements underscore the potential for integrating diverse
methodologies.

3. The proposed framework

Our proposed framework for fine-tuning Stable Diffusion for floor plan generation consists
of several key stages, as illustrated in Figure 1.

3.1. Data acquisition and preparation

This is the initial step in gathering information to train the model. The data used in
this study consisted of a curated collection of 300 floorplan images. These images are
obtained from various publicly available architectural and design repositories to ensure
diversity in design styles and layouts. The primary goal is to create a dataset suitable
for training a Stable Diffusion model capable of understanding architectural floorplans.

Machine GRAPHICS & VISION 34(3):77–95, 2025. DOI: 10.22630/MGV.2025.34.3.4.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.3.4


Ahmed Mostafa, Omar Amir, Ali M. Mohamed, Marwa O. Al Enany 83

3.2. Data resizing

Processing the acquired data to match the required dimensions or specifications. To
ensure consistency across the dataset and compatibility with the neural network archi-
tecture, all floorplan images are resized to 256 × 256 pixels. This resolution has been
selected as it strikes a balance between computational efficiency and preserving sufficient
detail in the architectural features. The resizing process employs bicubic interpolation
to minimize distortion and preserve the original proportions of the designs.

3.3. Data cleaning

Removing noise, inconsistencies, and irrelevant data from the dataset to ensure high-
quality input. The raw floorplan images contained extraneous elements such as annota-
tions, text labels, and other metadata that were not essential for the intended application.
To address this, all images underwent a manual and automated cleaning process. This
step involves removing textual and graphical artifacts while retaining the structural in-
tegrity of the floorplans. Open-source image editing tools and Python-based libraries,
such as OpenCV and PIL, are used to streamline the cleaning process.

3.4. Prompt engineering

To enhance task-specific understanding by creating well-structured and targeted inputs.
Two steps are included:

• Prompt Template Design: Design templates for input prompts to ensure the
model understands tasks effectively.

• Template-Driven Data Generation: Use the designed templates to generate ad-
ditional synthetic data or reformat existing data to align with the task requirements.

3.5. Dataset creation

Combining processed and cleaned data to create a final dataset suitable for fine-tuning.
This might include integrating real and synthetic data. Following preprocessing, the
cleaned and resized images are organized into a structured dataset. Each image is saved
in a standardized format (e.g., PNG) to maintain quality and reduce potential issues
arising from compression artifacts. An accompanying CSV file stores metadata associ-
ated with each image, including source information and preprocessing steps, to improve
reproducibility.

3.6. Model selection

Choose the base model to fine-tune. This could involve selecting a pre-trained model
that aligns with the task domain.
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3.7. Model fine-tuning

• Fine-Tuning Approach Selection: Decide on the strategy for fine-tuning (e.g.,
full model fine-tuning, Low-Rank Adaptation (LoRA), or adapters).

• LoRA Configuration: If using LoRA, configure its parameters to efficiently fine-
tune large models with minimal resources.

• Fine-Tuning Execution: Perform the fine-tuning process using the prepared dataset
and configurations.

3.8. Evaluation

Assessing the fine-tuned model’s performance against predefined metrics or benchmarks.
The results inform whether further adjustments are needed. The process includes feed-
back loops where insights from the evaluation stage or fine-tuning process may inform
modifications in earlier stages, such as dataset creation, prompt design, or model con-
figurations.

4. Dataset designing and characteristics

The main objective is to produce realistic 2D floor plan designs that adhere to a set of
linguistic instructions detailing the basic parts of the floor plan. Each data sample con-
sists of a collection of prompts that outline the essential elements of the corresponding
floor plan design, which encompass: Semantics that defines the type of the described
rooms, Geometry which defines the size and shape of each room, and Topology that
illustrates the relationships between various rooms. It can be classified into three cat-
egories: relative location, connectedness, and inclusion. The objective is a systematic
interior arrangement that conforms to the provided linguistic directives.

• Volume: The dataset comprises 313 images, providing a moderately sized collection
for training and validation purposes.

• Diversity: The dataset encompasses a wide range of architectural styles, including
residential, commercial, and mixed-use layouts, ensuring broad applicability of the
trained model.

• Quality Control: Each image was reviewed post-preprocessing to verify that all
unnecessary elements were successfully removed and that the structural details were
preserved.

This dataset forms the foundation for the subsequent stages of model training and
evaluation, ensuring high-quality inputs and consistency throughout the study. Figure 2
shows samples from our dataset.
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Fig. 2. Samples from the designed dataset showing variety in floor plan designs.

5. Stable Diffusion model structure

Stable Diffusion v1.5 [28, 29] is an advanced text-to-image synthesis model that lever-
ages the principles of diffusion processes within a latent space to generate high-quality
images conditioned on textual input. It builds upon the foundational work in diffusion
models and latent variable models, integrating them to produce a scalable and efficient
framework for image generation tasks [27]. At its core, Stable Diffusion v1.5 is a type of
Latent Diffusion Model (LDM) that operates in a compressed, lower-dimensional latent
space rather than directly in the high-dimensional pixel space. This approach signifi-
cantly reduces computational overhead while preserving the ability to generate detailed
and coherent images [32]. The decision to utilize Stable Diffusion v1.5 rather than more
recent versions such as v2.0 or SDXL was both strategic and deliberate. Version 1.5 is
widely regarded for its balance between quality, control, and compatibility with a broad
ecosystem of tools and community-created resources. Unlike later models that intro-
duced significant architectural changes—such as a new VAE, deeper prompt sensitivity,
and more restrictive output filtering—v1.5 offers a more consistent and interpretable
output across a variety of prompts, which is essential for projects requiring reproducibil-
ity and detailed prompt engineering. Additionally, the abundance of pretrained models,
custom LoRAs, and fine-tuned checkpoints built on v1.5 significantly enhance flexibility
and creativity without the computational overhead of retraining. Using v1.5 thus en-
sures that the work remains accessible, adaptable, and efficient, with outputs that are
not only high in visual fidelity but also aligned with the project’s specific creative and
technical needs [20]. The main architecture of Stable Diffusion v1.5 model consists of
the elements described in the following Subsections 5.1, 5.2, 5.3 and 5.4.
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5.1. Text encoder

The model utilizes a pre-trained text encoder, typically derived from the CLIP (Con-
trastive Language-Image Pretraining) architecture developed by OpenAI, which aims to
align text and image embeddings in a shared latent space. The CLIP Text Encoder is
typically a variant of the Transformer architecture, processing the input text and outputs
a fixed-length embedding vector.

The text encoder transforms input textual prompts into [4] a high-dimensional vector
representation. It extracts meaningful features from the input text and transforms it
into a compact, high-dimensional vector representation, providing semantic guidance to
the diffusion model.

The encoded text vector is used as a conditioning input for the U-Net in the diffusion
model, which uses cross-attention mechanisms to ensure the generated images align with
the textual description. The encoded text vector is pretrained to generalize well across
different prompts and concepts, captures nuanced relationships between words, and can
work with multiple languages or dialects with fine-tuning.

However, the CLIP Text Encoder may struggle with highly abstract or nonsensi-
cal prompts or cultural or domain-specific nuances not covered during training. By
leveraging the robust CLIP Text Encoder, Stable Diffusion v1.5 achieves an effective
translation of textual descriptions into high-quality images, balancing semantic richness
with computational efficiency.

5.2. Latent space representation

Stable Diffusion v1.5 utilizes latent space representation, a compact, high-level mathe-
matical representation of data, to encode and manipulate data in a compressed, lower-
dimensional space. This lower-dimensional representation is used in conjunction with
a Variational Autoencoder (VAE) and a U-Net architecture to reduce computational
complexity and optimize the model’s operation. The VAE encoder compresses high-
dimensional image data into a latent space and reconstructs it back into pixel space,
while the U-Net operates on this latent tensor during the diffusion process. The model
learns to denoise latent representations in reverse diffusion steps, optimizing for a per-
ceptual loss to maintain high fidelity to the original data. At inference time, the trained
model refines a noisy latent tensor into a meaningful latent representation, which is then
reconstructed by the VAE decoder. This approach allows Stable Diffusion to work ef-
ficiently with large datasets and generate high-quality images with less computational
overhead. Overall, latent space representation is a core component of Stable Diffusion
v1.5, enabling efficient processing and high-quality image generation [24].
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5.3. Diffusion process

The diffusion model is a U-Net architecture which is neural network responsible for pre-
dicting noise at each timestep and is adapted for denoising tasks in the latent space.
The forward diffusion process involves gradually adding Gaussian noise to the latent
variables over several time steps, This process, also called the noising process, gradu-
ally adds Gaussian noise to an input image over a fixed number of steps. On the other
hands, the reverse diffusion process entails learning to denoise these latent variables to
recover the original data distribution. This process, also called the denoising process,
starts from pure noise and attempts to reconstruct the original image. This is where
the model learns to “undo” the noise added during forward diffusion. Stable Diffusion
performs this process in a latent space, rather than pixel space, using a LDM for effi-
ciency [16,38]. Latent diffusion offers several advantages, including efficiency, scalability,
and quality of generated images. By operating in the latent space, the model reduces
data dimensionality, resulting in lower computational requirements and faster training
times. The compact latent space representation also allows for high-resolution image
generation, ensuring high-fidelity, fine-detail images.

5.4. Conditioning mechanism

The model incorporates a conditioning mechanism that integrates the textual embed-
dings from the text encoder into the diffusion model at each time step. This alignment
ensures that the denoising process is guided by the semantic content of the input text,
enabling coherent text-to-image synthesis [3]. Stable Diffusion incorporates conditioning
to guide the reverse diffusion process toward generating specific outputs. Using a text
encoder, textual information is embedded into a high-dimensional space and injected into
the U-Net as cross-attention layers, or other Inputs: The process can also be conditioned
on images, masks, or other inputs, enabling tasks like inpainting or image-to-image gen-
eration.

6. Implementation

To realize the proposed solution of generating precise 2D floor plans using Stable Dif-
fusion v1.5, we implemented a fine-tuning process utilizing Hugging Face’s Low-Rank
Adaptation (LoRA) framework [12, 13]. This approach allowed us to adapt the pre-
trained diffusion model to our specific task without the need for extensive computa-
tional resources or retraining from scratch. Leveraging LoRA, we injected trainable
rank decomposition matrices into the attention layers of the Transformer architecture
within Stable Diffusion v1.5. This method effectively reduced the number of trainable
parameters, making the fine-tuning process more efficient while maintaining the model’s
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capacity to learn task-specific representations. The implementation process proceeded
as follows:

• The Hugging Face Transformers library was set up, ensuring compatibility with the
LoRA integration. The pre-trained Stable Diffusion v1.5 model was loaded as the
base model for fine-tuning. We configured the LoRA parameters to insert low-rank
adaptation matrices into the attention layers, specifying the desired rank to balance
between computational efficiency and model expressiveness.

• The fine-tuning dataset, comprising pairs of constrained prompts and corresponding
floor plan images, was prepared to align with the requirements of LoRA training. Each
prompt is structured consistently, varying only in numerical parameters, as previously
described. Although the details of data preparation are discussed elsewhere, it is
important to note that the dataset was formatted to be compatible with the Hugging
Face dataset utilities, enabling seamless integration into the training pipeline.

• During the training process, the standard optimization techniques were utilized. The
optimizer was set to AdamW with a learning rate carefully selected to ensure stable
convergence without overfitting. We adopted a learning rate scheduler to adjust the
learning rate dynamically based on the training progress.

• The loss function was configured to emphasize the reconstruction accuracy of the
floor plans. While the primary objective remained the minimization of the denoising
score matching loss inherent in diffusion models, we integrated additional components
to focus on the structural aspects of the floor plans. Specifically, edge-aware loss
functions that penalized discrepancies in the line structures between the generated
and ground truth images was incorporated. This helped the model prioritize the
preservation of architectural details crucial for floor plan accuracy.

• Training was conducted on hardware equipped with GPUs capable of handling the
computational demands of the model. The use of LoRA significantly reduced mem-
ory usage, allowing the fine-tuning process to be executed on standard GPU setups
without requiring distributed training or specialized hardware.

• The training progress was monitored by evaluating intermediate outputs and loss
convergence. Visual inspections of generated floor plans were performed to ensure that
the model was learning to produce outputs that adhered to the specified parameters
in the prompts. Any signs of the model reverting to overly creative outputs were
addressed by adjusting training hyperparameters, such as the learning rate or weight
decay.

• Upon completion of the fine-tuning, the adapted model was saved using Hugging
Face’s model saving utilities. This enabled easy deployment and sharing of the model
for inference tasks.
The final model was capable of generating precise 2D floor plans that accurately

reflected the numerical specifications in input prompts.
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7. Evaluation and Results

To validate the effectiveness of this implementation, evaluations are conducted using a
set of test prompts with varying parameters. The generated floor plans are assessed for
accuracy in room counts, spatial arrangements, and adherence to architectural conven-
tions.

The performance of the fine-tuned Stable Diffusion model in generating accurate
2D floor plans is done by employing the Structural Similarity Index Measure (SSIM)
as an evaluation metric. The initial proposal for the Structural Similarity Index was
made in [34] by Wang, Bovik et al. in 2004. The two images being compared must be
appropriately sized and aligned in order to compare them point by point. A sliding N×N
(usually 11 × 11) Gaussian weighted window is used for the computations. Luminance,
contrast, and structure are the three similarity functions that are computed on the
windowed image data. The general form of the SSIM index is then created by combining
the three mentioned similarity functions as:

SSIM(x, y) = [l(x, y)] · [c(x, y)] · [s(x, y)] (1)

where l, c, and s compare luminance, contrast and structure, respectively.
The ability of this index to mimic human subjectivity is its strongest attractive point.

Specifically, changes in the spatial arrangement of image brightness have a significant
impact on the Human Visual System (HVS) and the SSIM Index. SSIM is particularly
suited for this implementation as it assesses the structural resemblance between two
images, focusing on spatial configurations and line structures essential in architectural
designs. The evaluation involves generating floor plan images based on prompts from
a test set using both the base Stable Diffusion model and our fine-tuned model. Each
generated image was compared to its corresponding ground truth floor plan using SSIM.

For implementation and testing purposes, the Fine-tuned model was tested with two
different prompts. The first prompt was unusual or rarely spread in design as

• Prompt 1: “floor plan of house having two living rooms, one bedrooms, three bath-
room, two kitchen, one garage, three store, one entrance.”

The SSIM Scores of Diffusion model versus fine-tuned Diffusion model for the mentioned
prompt are summarized in Table 1, numbers 1 and 2, while 10 generated images from
the fine tuned Stable Diffusion model are presented in Figure 3.

The SSIM index generally ranges from −1 to 1, with 1 signifying perfect similarity,
0 denoting no similarity, and −1 representing perfect anti-correlation. Our fine-tuned
model achieved an average SSIM score of 0.3426, surpassing the base model’s aver-
age SSIM score of 0.3191. The higher SSIM score indicates that the fine-tuned model
produces floor plans that are structurally more similar to the ground truth images,
demonstrating enhanced accuracy in capturing the architectural details specified in the
prompts. The results demonstrated that this fine-tuned model successfully generated
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Tab. 1. SSIM scores for base Diffusion model and fine-tuned Diffusion model.

No. Model SSIM score
1 Base Model 0.3191
2 Fine-Tuned Model (Prompt 1) 0.3426
3 Fine-Tuned Model (Prompt 2) 0.4254

Fig. 3. Generated images from Prompt 1: “floor plan of house having two living rooms, one bedrooms,
three bathroom, two kitchen, one garage, three store, one entrance.”

floor plans that met the specified criteria, confirming the efficacy of our implementation
strategy using Hugging Face’s LoRA framework.

The second tested prompt was more popular and familiar in most home designs:
• Prompt 2: “floor plan of house having one living room, two bedrooms, one bathroom,

one kitchen, one hall, one entrance.”
The proposed model has generated 10 designs that matches the mentioned prompt and
give more varieties for the designer from this prompt. The SSIM Scores of Diffusion
model versus fine-tuned Diffusion model for the mentioned prompt are summarized in
Table 1, number 3, while 10 generated images from the fine tuned Stable Diffusion model
are presented in Figure 4.

The improvement can be attributed to this approach of constraining the input prompts
during fine-tuning. By limiting prompts to a static structure with only key numerical
parameters varying—such as the number of bedrooms or dining rooms—we guided the
model to focus on these critical elements. This constraint reduces unnecessary creativ-
ity, enabling the model to generate floor plans that more precisely reflect the specified
requirements.

Although the numerical increase in SSIM is modest, it signifies meaningful enhance-
ments in the context of architectural design, where precision is paramount. Even small
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Fig. 4. Generated images from Prompt 2: “floor plan of house having one living room, two bedrooms,
one bathroom, one kitchen, one hall, one entrance.”

improvements in SSIM correspond to better alignment of walls, rooms, and spatial re-
lationships, which are crucial for the practical usability of floor plans. The fine-tuned
model’s outputs exhibit greater fidelity to the intended layouts, suggesting that our
method effectively bridges the gap between creative image generation and the need for
exactitude in architectural applications. These results validate that constraining the
model’s input prompts and fine-tuning it on specialized data can improve its perfor-
mance in generating accurate floor plans. The fine-tuned model demonstrates a better
understanding of the correlation between the specified numerical parameters and the
spatial configurations required, making it a more reliable tool for architectural design
tasks that demand high levels of precision.

8. Discussion

To assess the performance of Stable Diffusion v1.5 in producing architectural design
outputs, two floor plan prompts were evaluated using expert judgment based on design
clarity, feature correctness, and alignment with the prompt. A panel of 3 evaluators with
experience in architecture, interior design, and AI image generation rated the outputs
using the following criteria:

• Relevance to Prompt: Correct inclusion and quantity of specified rooms and fea-
tures.

• Layout Clarity: Logical and readable floor plan arrangement.
• Design Aesthetics: Overall visual structure and neatness.
• Spatial Realism: Realistic spatial proportions and plausible connectivity between

rooms.
• Prompt Sensitivity: Ability of the model to reflect prompt changes between two

variants.
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Tab. 2. Expert Evaluation of Generated Floor Plans

Prompt Relevance Clarity Aesthetics Spatial Realism Average
Prompt 1 4 3 4 3 3.8
Prompt 2 5 4 4 4 4.4

Table 2 displays the results.

Prompt 1
The model captured most of the required rooms but struggled with accurate quantity
differentiation, especially for “three stores” and “two kitchens”, which were either com-
bined or misrepresented. The overall spatial layout lacked architectural realism (e.g.,
bathrooms sometimes placed without adjacent bedrooms or hall access), although room
labeling was reasonably intuitive.

Prompt 2
The model performed better with this simpler prompt. All rooms were represented
clearly, and the spatial layout was more plausible and visually coherent. Room position-
ing followed a logical flow, and the floor plan adhered closely to modern residential design
principles. The evaluation indicates that Stable Diffusion v1.5 is effective for generating
conceptual and visually descriptive floor plans from textual prompts, especially when the
prompts are concise and moderately complex. However, for prompts with a high number
of room types or quantities, the model’s spatial reasoning and ability to differentiate re-
peating elements (e.g., multiple stores or kitchens) become more limited. These findings
suggest the model is well-suited for early-stage ideation and visual storytelling, but not
for technical architectural planning.

9. Conclusion

This study demonstrated the effective fine-tuning of Stable Diffusion v1.5 for the gen-
eration of precise 2D floor plans. By constraining the model with structured prompts
that varied only in specific numerical parameters, we guided it to focus on accuracy
and the nuanced spatial configurations essential in architectural designs. This approach
successfully reduced unnecessary creativity inherent in diffusion models, resulting in
outputs that more closely adhered to the specified requirements. The improved per-
formance, reflected in higher SSIM scores compared to the base model, highlights the
potential of combining prompt engineering with fine-tuning to adapt generative models
for tasks demanding exactitude. Our findings indicate that diffusion models can be tai-
lored to produce functionally accurate and detailed images in domains where precision is
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paramount, expanding their applicability beyond creative image synthesis to practical,
precision-oriented applications.
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