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Abstract Detecting plant diseases is essential for precision agriculture, as it enhances crop production
and ensures the security of the food supply. We adopted two methods for this research: a method
based on deep learning, through Convolutional Neural Networks (CNN), and a hybrid model using
classical machine learning. The dataset comprised images of plant leaves from Kirtan village in Hisar,
Haryana, which were annotated by plant pathologists. The CNN model, which autonomously extracts
hierarchical spatial features, achieved an accuracy of 97.57%, making it ideal for large datasets. Con-
versely, the Hybrid model utilizing handcrafted GLCM and LBP features and SVM classifiers achieved
91.73% accuracy while providing interpretability and computational efficiency in resource limited se-
tups. The performance of the models was measured in terms of accuracy, precision, recall and F1-score.
Applications range from on-line monitoring with drones to diagnostic equipment for the farmer.

Keywords: plant disease detection, hybrid model, machine learning, deep learning, GLCM, LBP,
CNNs, SVMs, feature extraction, data augmentation, classification models, evaluation metrics, precision
agriculture.

1. Introduction

Detecting plant diseases is essential in contemporary agriculture, with considerable im-
plications for global food security, crop management, and environmental sustainability.
Early and accurate recognition of plant diseases empowers farmers with the means to
make respective treatments. Traditional detection methods reliant on manual inspec-
tion and expert knowledge are characterized by high labor intensity, significant time
consumption, and susceptibility to human error.

Recent developments in machine learning and computer vision have helped to de-
velop automated systems to diagnose plant diseases. Early methodologies utilized clas-
sical machine learning techniques that incorporated hand-crafted features, including the
Grey-Level Co-occurrence Matrix (GLCM) and Local Binary Patterns (LBP), in con-
junction with classifiers such as Support Vector Machines (SVM). These models exhibit
interpretability and demonstrate strong performance on small datasets; however, they
are constrained by their reliance on manual feature engineering and exhibit limited scal-
ability.

The advent of deep learning, in particular Convolutional Neural Networks (CNNs),
has transformed the area with the ability to learn features directly from the image data.
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This leads to enhanced accuracy and scalability. CNNs require significant computational
resources and extensive labeled datasets, rendering them less appropriate for low-resource
agricultural settings.

This research compares between CNN and hybrid-based machine learning models for
plant disease classification, which fills the gap between these two approaches in plant
disease detection. We measure the performance of each model on a locally acquired and
annotated dataset by applying accuracy, precision, recall, and F1-score, and assessing
their respective applicability in on-site agricultural practices. The results are intended
to aid in the design of practical and scalable disease detection solutions in precision
agriculture. To contextualize these contributions, the following literature review exam-
ines prior studies on machine learning and deep learning approaches, highlighting their
strengths, limitations, and areas where this research advances the field.

The remaining parts of this paper are as follows. After the literature review in
Section 2, the proposed methodology for plant disease detection will be presented in
Section 3. The results of classifications will be shown in Section 4. The comparison be-
tween the CNN and the hybrid-based machine learning models will be made in Section 5.
Finally, the paper will be concluded in Section 6.

2. Literature Review

Machine learning-based (ML) techniques for plant disease classification have been ex-
plored in several studies. Iniyan et al. [8] used Support Vector Machines (SVM) and
Artificial Neural Networks (ANN) for detecting plant diseases, showing the benefits of
classical ML algorithms. Similarly, Saleem et al. [14] notably found that ML models
lagged behind the deep learning-based classifiers in this regard, since it was a compar-
ative analysis. Dixit et al. [5] presented an ML-based model for wheat crop disease
detection, resulting in more efficient monitoring of agriculture.

One promising solution for plant disease detection is deep tissue learning. Bakr et
al. [1] used transfer learning with DenseNet to classify tomato diseases and concluded
with a high accuracy in tomato disease classification. Balafas et al. [2] presented a de-
tailed comparison between ML and DL models; it was shown to achieve better results in
CNN when applied to tasks in detecting plant diseases. Khalid and Karan [11] discussed
the effectiveness of deep learning and proposed an end-to-end automatic disease classifi-
cation model. Sharma and Guleria [16] explored and compared numerous deep learning
models for image classification, indicating that CNNs performed remarkably well with
regard to generalization across datasets. Yu [20] conducted a review of deep learning
methods used for image-based classification tasks and confirmed their effectiveness.

To achieve higher classification accuracy, hybrid and attention-based models were
explored. Shao et al. [15] developed a hybrid ViT-CNN model by combining Vision
Transformers (ViT) and CNN to achieve fine-grained classification. Kalim et al. [10]
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developed a hybrid CNN-RF model that combines the initial feature extraction and
machine learning classifiers for the detection of diseases in citrus leaves. Bera et al. [3]
introduced an attention-based deep network, where n features selection is optimized for
plant disease classification. Gao et al. [7] propose a two-branch channel attention-based
model, which improved the crop disease identification accuracy.

Comparative analyses of different classification models have been performed in some
studies. Wang et al. [19] conducted a systematic comparison between conventional ML
and DL methods in the context of image classification, thus further confirming the
superiority of deep learning. Lorente et al. [12] referenced several classical and modern
deep learning methods for classification of plant diseases. Deep learning methods for
image classification have been extensively reviewed, with Wu et al. [13] providing a
detailed summary of key advancements in CNN, ViT, and Hybrid models.

However, despite all this progress, there are still problems when it comes to real-
world use. Shoaib et al. [17] provided an overview of recent advances in deep learning-
based approaches for plant disease detection and underscored the need for better model
generalization and larger datasets. To enhance the robustness of the model, data aug-
mentation techniques are essential, as highlighted by Furqan et al. [6]. Kabir et al. [9]
explored differences in Gray-Level Co-occurrence Matrix (GLCMs) and advised GLCM
optimization to enhance feature extraction for deep learning models. Chen et al. [4]
addressed the problems of real-world occlusions and illuminations while showing robust-
ness via detection techniques. A survey on smart agriculture applications by combining
ML and DL techniques for crop disease prediction was provided by Subbarayudu and
Kubendiran [18].

A review of the literature (Table 1) shows a clear trajectory of moving from traditional
machine learning approaches to recently used deep learning-based methods for detecting
plant diseases. Although CNN is a popular architecture, hybrid and attention-based
models have led to greater accuracy. Future research should focus on overcoming dataset
limitations, improving model interpretability, and deploying AI-driven solutions in real-
world agricultural situations should gain more attention.

Tab. 1. Comparative analysis of different studies.

Reference Methodology used Limitations

Iniyan et al. [8] SVM, ANN for plant disease
detection.

Limited dataset, potential
overfitting

Saleem et al. [14] Comparison of ML vs DL
models

DL models require high com-
putational power

Dixit et al. [5] Machine Learning for wheat
crop disease

ML models lack scalability for
large datasets

to be continued in the next page
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Tab. 1. Comparative analysis of different studies (continued).

Reference Methodology used Limitations

Bakr et al. [1] DenseNet with Transfer
Learning.

Transfer learning effectiveness
depends on pre-trained model

Balafas et al. [2] Comparison of ML and DL
models

ML models underperform
compared to DL

Khalid & Karan [11] Deep Learning-based model
for classification

End-to-end DL model needs
large labeled datasets

Sharma & Guleria [16] Comparison of CNN-based
image classification models

CNNs require large amounts
of training data

Yu [20] Evaluation of deep learning
architectures

Performance varies across ar-
chitectures

Shao et al. [15] Hybrid ViT-CNN for fine-
grained classification

Hybrid model complexity may
hinder real-time deployment

Kalim et al. [10] Hybrid CNN-RF model for
citrus leaf disease

CNN-RF may struggle with
unseen datasets

Bera et al. [3] Attention-based deep learning
network

Attention-based models in-
crease inference time

Gao et al. [7] Dual-branch channel atten-
tion model

Attention mechanism in-
creases computational cost

Wang et al. [19] Comparative analysis of ML
and DL approaches

Deep learning models need ex-
tensive training

Lorente et al. [12] Comparison of classical and
deep learning techniques

Classic methods less accurate
than DL

Wu et al. [13] Comprehensive review of DL
for image classification

Review lacks implementation
details

Shoaib et al. [17] Review of advanced deep
learning models

Advanced DL models require
extensive resources

Furqan et al. [6] Deep learning for plant disease
classification

Limited generalization on di-
verse plant datasets

Kabir et al. [9] GLCM feature extraction
analysis

GLCM feature extraction is
computationally expensive

Chen et al. [4] Handling occlusion and illumi-
nation in fruit detection

Occlusion handling reduces
detection speed

Subbarayudu
& Kubendiran [18]

Survey on ML, DL techniques
for smart agriculture

Survey lacks experimental val-
idation
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Fig. 1. Proposed system model demonstrating the CNN model pathway and the Hybrid model pathway.

3. Methodology

The methodology for plant disease detection (Figure 1) highlights two separate ap-
proaches: a CNN-based model and a hybrid traditional machine learning model. The
process begins with data loading, where the dataset is prepared and structured for analy-
sis, followed by preprocessing, which includes resizing, normalization, and augmentation
to ensure consistency and diversity in the data.

To address class imbalances, class balancing with oversampling was employed to
ensure the equal representation of all classes in the dataset. The workflow then branched
into two distinct pathways.
CNN Model Pathway: The balanced dataset was directly input into a CNN model,

which automatically extracted hierarchical spatial features and performed end-to-end
classification.

Hybrid model pathway: The balanced dataset undergoes feature extraction using
GLCM and LBP to capture texture-based information. These features are then used
to train traditional classifiers such as SVMs and ensemble models.
The two pipelines meet at the evaluation phase where they are evaluated indepen-

dently using performance metrics like accuracy, precision, recall, and F-1 score. This
approach allowed a comparison of the two approaches and highlighted the advantages
and application cases of both the scenarios.

3.1. Data collection and preprocessing

The dataset images were obtained directly from agricultural fields in the nearby village
of Kirtan, Hisar, Haryana (India). The acquired images mimic the field environment
and are therefore practical. An expert plant pathologist labelled multiple images of a
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Class Shuffled sample 1 Shuffled sample 2

Healthy

Diseased

Fig. 2. Randomly shuffled samples from the dataset.

particular plant disease to create high-quality annotated data suitable for the effective
training and evaluation of models.

3.2. Data loading

The dataset, which contained labeled images of plant leaves, was organized into struc-
tured directories. Using TensorFlow, the data were loaded and automatically split into
training, validation, and testing sets. This ensured a clean separation for model training
and performance evaluation.

Representative samples from the dataset (Figure 2) illustrate various plant leaf con-
ditions utilized for training and evaluation purposes. This encompasses healthy and
diseased leaves across various classifications. Healthy leaf samples demonstrate uniform
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Fig. 3. Exploratory Data Analysis of the data spread before and after oversampling.

color and texture, while diseased samples show distinct symptoms, including spots, dis-
coloration, or fungal patches. The images were obtained under natural field conditions,
ensuring that the dataset accurately reflects real-world agricultural environments.

3.2.1. Image resizing and normalisation
All images were resized to 224×224 pixels to ensure the image size was compatible with
the deep learning architectures. The pixel values were normalized between 0 and 1.

Inorm(x, y) = I(x, y)
255 . (1)

3.2.2. Class balancing with oversampling
In order to rectify the imbalance in classes, oversampling techniques were used. Figure 3
shows how oversampling affects the distribution of the dataset, showing better balance
among plant disease classes. This guarantees equal contributions from each class during
training, which is essential for avoiding biased predictions and enhancing model gener-
alization in practical situations.

3.2.3. Dataset augmentation
Training used to be performed on data with augmented examples for improved general-
ization. The augmentation techniques included the following:
• rotation (±20 degrees),
• horizontal and vertical flipping,
• scaling (±10%).

This process artificially increases the dataset diversity, reduces overfitting, and improves
the robustness to real-world variations.
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3.3. Hybrid model

The Hybrid model combines traditional feature extraction techniques with machine-
learning classifiers.

3.3.1. Feature extraction

Grey-level co-occurrence matrix (GLCM): Textural features, such as contrast,
energy, homogeneity, and correlation, were derived. The formulas for contrast and energy
are as follows:

Contrast =
∑
k,l

Z(k, l) · (k − l)2 , (2)

Energy =
∑
k,l

Z(k, l)2 . (3)

Local Binary Patterns (LBP): Local texture patterns were encoded as binary values
by comparing each pixel with its neighbors:

LBP(ka, la) =
c−1∑
c=0

2c · S(Ic − Ik) . (4)

The GLCM was chosen for its robust capability in characterizing texture by sum-
marizing the spatial relationships of pixel intensities, which is vital for differentiating
plant diseases. We employed Local Binary Patterns (LBP), which are robust against
illumination variations with sufficient precision, to analyze plant images collected in a
natural field environment. Both methods were selected for their previous successes in
similar agricultural studies.

3.3.2. Classifier models

Traditional classifiers
The features were then used to train classical classifiers like support vector machines or
gradient boosting classifiers.

SVM with RBF kernel
We adopt the SVM model with RBF kernel, in which the kernel function is given as:

K(k, m) = exp
(
−γ∥k − m∥2)

, (5)

where γ is a parameter that balances the contribution of a single training example.
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Ensemble classifiers
Stacking Multiple classifier outputs like SVM with RBF kernel, K-nearest Neighbors
(KNN), Random Forest (RF) and Gradient Boosting (GB) were combined to form a
stacked ensemble. The output of ensemble classifier can be expressed as:

ŷfinal =
n∑

i=1
wi · ŷi , (6)

where ŷi is the predicted output from the i-th classifier, and wi are the corresponding
weights of each classifier.

3.4. CNN-based deep learning model

The CNN model was developed as a standalone solution for plant disease classification.

3.4.1. Convolutional layers
These layers extracted spatial features from the images using filters. The feature maps
produced represent patterns such as edges and textures. The convolution operation is
defined as:

f(m, n) = (I ∗ K)(m, n) =
∑
i,j

I(m + i, n + j) · K(i, j) , (7)

where K denotes the convolutional kernel.

3.4.2. Pooling layers
By contrast, max-pooling stacked down the spatial dimension of feature maps by reject-
ing unimportant features.

P (m, n) = max {f(o, q)}(o,q)∈window . (8)

3.4.3. Dropout Layers
These layers randomly deactivate neurons during training to prevent overfitting.

3.4.4. Fully connected layers
The last fully connected layers transform the retrieved characteristics to the class prob-
ability with the softmax function. where the softmax is given by:

ŷi = exp(zi)∑
j exp(zj) , (9)

where zi represents the input to the i-th output unit.
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Fig. 4. Distribution of GLCM properties across classes.

3.4.5. Training process
The model was trained with Adam optimizer and categorical cross-entropy loss. We used
the following loss function:

L = −
∑

i

yi log(ŷi) . (10)

We use early stopping to stop training as soon as the validation performance did not
improve by more than a threshold used to control resource usage.

The algorithms applied in the Hybrid and the CNN models are shown as Algorithm 1,
page 67, and Algorithm 2, page 68, respectively.

4. Results

Visualizations in Figure 4 illustrate the distribution of various GLCM properties—con-
trast, dissimilarity, homogeneity, energy, and correlation—across different classes within
the dataset.
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Algorithm 1 Plant disease detection using the Hybrid model
Input: Dataset of plant images D resized to 224 × 224 pixels.
Output: Class predictions for test images.
Data Loading and Preprocessing:
Load dataset D and split into Dtrain, Dval, and Dtest.
Normalize the pixel values and apply Gaussian blurring for noise reduction.
Feature Extraction:
Compute GLCM features: contrast, energy, homogeneity, correlation.
Compute LBP features:

LBP(ka, la) =
c−1∑
c=0

2c · S(Ic − Ik) .

Model Construction:
Train individual classifiers on the extracted features.
SVM with RBF kernel:

K(k, m) = exp
(
−γ∥k − m∥2)

.

Train Random Forest and Gradient Boosting classifiers.
Ensemble Model:
Combine predictions from classifiers using stacking:

ŷfinal =
n∑

i=1
wi · ŷi .

Model Evaluation:
Evaluate the ensemble model on Dtest.
Compute evaluation metrics: accuracy, precision, recall, and F1-score.
Class Prediction:
For an input test image, predict the disease class using the ensemble model.

1. Contrast and Dissimilarity exhibited a roughly symmetrical distribution, indicat-
ing that the texture variation in pixel intensity across classes follows a predictable
pattern, which aids in distinguishing fine-grained details among diseases.

2. Homogeneity showed a skewed distribution toward lower values, suggesting that
most images have less uniform textures, which are characteristic of diseased plant
surfaces.

3. Energy has a highly skewed distribution, where most images exhibit low energy
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Algorithm 2 Plant disease detection using CNN-based deep learning
Input: Dataset of plant images D, resized to 224 × 224 pixels.
Output: Class predictions for test images.
Data Loading and Preprocessing:
Load the dataset D and split it into training Dtrain, validation Dval, and test Dtest
sets.
Normalize pixel values:

Inorm(x, y) = I(x, y)
255 .

Apply data augmentation (rotation, flipping, and scaling).
Model Construction:
Define the CNN architecture:
Convolutional layers for feature extraction:

f(x, y) = (I ∗ K)(x, y) .

Pooling layers for dimensionality reduction:

P (x, y) = max{f(i, j)}(i,j)∈window .

Fully connected layers for classification.
Model Training:
Compile the model using categorical cross-entropy loss:

L = −
∑

i

yi log(ŷi) .

Use the Adam optimizer and train the model on Dtrain with validation on Dval.
Model Evaluation:
Test the trained model on Dtest.
Compute evaluation metrics: accuracy, precision, recall, and F1-score.
Class Prediction:
For an input test image, predict the disease class using the trained CNN.

values, reflecting lower uniformity or regularity in pixel patterns across most diseased
samples.

4. Correlation demonstrates a bell-shaped curve, highlighting consistent relationships
between neighboring pixel intensities, which can be leveraged to identify patterns
specific to certain diseases.
Overall, these distributions emphasise the importance of GLCM features in capturing
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Fig. 5. Confusion matrix of Hybrid model. Fig. 6. Confusion matrix of CNN model.

critical textural details across various plant disease classes, making them essential inputs
for traditional machine-learning classifiers.

The two confusion matrices provide a comparative evaluation of the Hybrid model
(Figure 5) and the CNN model (Figure 6) for plant disease detection across multiple
classes. The diagonal entries indicate the correct classifications, whereas the off-diagonal
entries represent misclassifications.
1. The Hybrid model achieved strong accuracy across most classes (Figure 5). Anthrac-

nose was classified almost perfectly (57/58 correct), while Boll Rot Disease (54/59)
and Myrothecium Leaf Spot (53/59) also showed high reliability. Bacterial Leaf Blight
had 53/58 correct, with minor confusion spread across Anthracnose, Myrothecium,
and Cotton Leaf Curl Virus Disease. Healthy Plants were identified accurately in
56/59 cases, with a few errors toward Cotton Leaf Curl Virus Disease. The most
challenging category was Cotton Leaf Curl Virus Disease, with 50/59 correct and
misclassifications distributed into multiple related classes, including Sooty Mould Dis-
ease and Boll Rot Disease. Sooty Mould Disease itself was well distinguished (54/59),
though again some overlap occurred with Cotton Leaf Curl Virus Disease. Overall,
the Hybrid model performed robustly, though diseases with similar visual symptoms
remained a source of confusion.

2. The CNN model demonstrated excellent performance (Figure 6), with near-perfect
alignment between predicted and true labels. Anthracnose, Healthy Plants, and My-
rothecium Leaf Spot were classified with 100% accuracy, while Boll Rot Disease and
Sooty Mould Disease also achieved very high recognition rates (59/59 correct). Minor
misclassifications appeared in Bacterial Leaf Blight (53/58 correct) and Cotton Leaf
Curl Virus Disease (54/59 correct), though these errors were few and distributed
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Fig. 7. ROC curves for the Hybrid model. Fig. 8. ROC curves for the CNN model.

across related categories. Overall, the CNN model outperformed the Hybrid ap-
proach, achieving higher accuracy across all classes and showing stronger reliability
in distinguishing visually similar diseases.
The ROC curves in Figures 7 and 8 illustrate the classification performance of the

Hybrid and CNN models, respectively, across multiple plant disease categories. In both
cases, the curves lie close to the top-left corner, indicating a very high true positive
rate with minimal false positives. The Hybrid model (Figure 7) achieves near-perfect
discrimination, with AUC values ranging from 0.97 to 1.00 across all seven classes,
suggesting consistent reliability even in multi-class settings. Similarly, the CNN model
(Figure 8) demonstrates excellent performance, with most classes such as Anthracnose,
Healthy Plants, and Sooty mould disease achieving an AUC of 1.000, while a few, like
Bacterial leaf blight (AUC = 0.979), are marginally lower but still highly accurate.
Overall, both models show outstanding classification ability, though the Hybrid model
provides more uniform performance across classes, whereas the CNN excels in certain
categories with perfect separation.

The cutoff parameter used in the construction of the ROC curves was the decision
threshold on the predicted probability P (y = k | x), varied over the full interval [0, 1].

In summary, the CNN model outperforms the Hybrid model by achieving near-perfect
classification in most categories, highlighting its effectiveness in handling complex pat-
terns and large datasets, whereas the Hybrid model exhibits moderate misclassifications,
particularly in challenging classes like “Cotton Leaf Curl Virus Disease.” Building on
these findings, the next section provides a direct comparison of both models across key
evaluation metrics, offering a deeper understanding of their relative strengths, weak-
nesses, and suitability for practical deployment.

The scores achieved by the two methods are compared in the Table 2.
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Tab. 2. Scores of the Hybrid model and CNN model

Hybrid model CNN
Class

precision recall F1-score precision recall F1-score

Anthracnose 1.00 0.98 0.99 1.00 1.00 1.00
Bacterial leaf blight 0.89 0.91 0.90 1.00 0.91 0.95
Boll rot disease 0.96 0.92 0.94 0.98 1.00 0.99
Cotton leaf curl virus disease 0.79 0.85 0.82 0.95 0.92 0.93
Healthy Plants 1.00 0.95 0.97 0.98 1.00 0.99
Myrothecium leaf spot 0.91 0.90 0.91 0.97 1.00 0.98
Sooty mould disease 0.89 0.92 0.90 0.95 1.00 .98

Accuracy 0.9173 0.9757

Macro Average 0.92 0.92 0.92 0.98 0.98 0.98

Weighted Average 0.92 0.92 0.92 0.98 0.98 0.98

Computational time [s] 27.14 64.66

5. Comparison

The comparative performance of the Hybrid and CNN models (Figure 9) is shown on
major evaluation measures: accuracy, precision, recall, and F1-score. CNN model per-
formed consistently better than the Hybrid model with the accuracy of 97.57%, precision
of 98%, recall 98%, F1-score 97%, which shows the excellent ability to deal with complex
data and generalize appropriately. By contrast, our Hybrid model performed at 91.73%
in all metrics. Despite slightly worse performance of the Hybrid model, it does qualify as
a strong competitor in situations where computational efficiency and interpretability is
crucial, especially when resources are limited. This comparison highlights that the CNN

Fig. 9. Comparison charts of Hybrid and CNN models of the system pathway.
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Tab. 3. Comparative analysis of Hybrid model and CNN model

Aspect CNN-based model Hybrid model

Accuracy High, particularly on large and di-
verse datasets.

Moderate, depends on the quality
of handcrafted features.

Scalability Highly scalable to large datasets. Limited scalability due to reliance
on manual feature engineering.

Interpretability Low, functions as a “black-box”
model.

High, with explicit and inter-
pretable features from GLCM and
LBP.

Computational
Efficiency

Computationally intensive; re-
quires GPUs.

Efficient, suitable for environ-
ments with limited computational
resources.

Generalization Strong generalization on unseen
data.

Moderate, struggles with variabil-
ity in new datasets.

Suitability for
Small Datasets

Limited; prone to overfitting
without sufficient data.

High; performs well on small,
structured datasets.

Ease of Imple-
mentation

Relatively straightforward with
end-to-end learning.

Requires domain expertise for fea-
ture extraction.

Real-World Ap-
plications

Best for large-scale, automated
systems.

Ideal for resource-constrained
or interpretable decision-making
scenarios.

model is well suited for large and diverse datasets, yet, the Hybrid model offers a power-
ful and interpretable alternative for simple or small scale applications. The comparison
of the models in several aspects is shown in Table 3.

Our dataset suffers from potential bias as we have limited the dataset, based on a
specific geographical location (Kirtan village, Hisar, India) and the diseases we select
and can introduce a challenge to generalize the results to other types of diseases. Models
primarily trained on local data might not generalize to other agricultural environments.
In order to mitigate these biases and improve the robustness of the model, future studies
should incorporate data from different regions and crop species.

6. Conclusion

Early diagnosis of plant disease is imperative for advanced Precision Agriculture and
sustainable food production. In this paper, a comparison between a deep learning model
using CNNs and a Hybrid model that integrates standard feature extraction methods and
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machine learning classifiers is conducted. Evaluation of both the models was performed
using a custom dataset of plant leaf pictures collected locally with evaluation metrics
with accuracy, precision, recall, and F1-score.

CNN model showed improved classification accuracy and scalability, so that it is fit
for large-scale, unmanned agricultural applications. Unfortunately, it is computationally
intensive and it is not applicable in a low-resource environment. They also demonstrated
that the Hybrid (which was only slightly less accurate) was highly interpretable and com-
putationally expedient. These features increase their real-world applicability (especially
in pampered planet circumstance or when transparency of decision-making is critical).
Finally, class imbalance was addressed by the use of data augmentation and oversam-
pling methods to guarantee fair representation during training of the model. By visual
and statistical analyses, we demonstrated the effectiveness of GLCM and LBP texture
information for disease classification.

Notwithstanding these strengths, the study presents limitations. The dataset was
collected solely from Kirtan village in Hisar, Haryana (India), potentially limiting the
generalizability of the models to other agricultural contexts characterized by different en-
vironmental conditions and crop varieties. Future research should prioritize the curation
of diverse datasets from various regions, the development of lightweight deep learning
architectures suitable for on-field deployment, and the standardization of feature extrac-
tion techniques for Hybrid models.

In summary, both CNN and Hybrid models demonstrate considerable potential for
facilitating intelligent, real-time detection of plant diseases. Their incorporation into
agricultural systems, including drone surveillance and mobile diagnostic tools, provides
farmers with actionable insights, enhances crop yield, and promotes sustainable farming
practices globally.
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