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Abstract Classifying brain tumors in magnetic resonance images (MRI) is a critical endeavor in medical
image processing, given the challenging nature of automated tumor recognition. The variability and
complexity in the location, size, shape, and texture of these lesions, coupled with the intensity similarities
between brain lesions and normal tissues, pose significant hurdles. This study focuses on the importance
of brain tumor detection and its challenges within the context of medical image processing. Presently,
researchers have devised various interventions aimed at developing models for brain tumor classification
to mitigate human involvement. However, there are limitations on time and cost for this task, as well as
some other challenges that can identify tumor tissues. This study reviews many publications that classify
brain tumors. Mostly employed supervised machine learning algorithms like support vector machine
(SVM), random forest (RF), Gaussian Naive Bayes (GNB), k-Nearest Neighbors (K-NN), and k-means
and some researchers employed convolutional neural network methods, transfer learning, deep learning,
and ensemble learning. Every classification algorithm aims to provide an accurate and effective system,
allowing for the fastest and most precise tumor detection possible. Usually, a pre-processing approach is
employed to assess the system’s accuracy; other techniques, such as the Gabor discrete wavelet transform
(DWT), Local Binary Pattern (LBP), Gray Level Co-occurrence Matrix (GLCM), Principal Component
Analysis (PCA), Scale-Invariant Feature Transform (SIFT) and the descriptor histogram of oriented
gradients (HOG). In this study, we examine prior research on feature extraction techniques, discussing
various classification methods and highlighting their respective advantages, providing statistical analysis
on their performance.

Keywords: brain tumor, feature extraction, machine learning, deep learning.

1. Introduction

In today’s society, health issues are more common than ever, and people’s lifestyles are
also getting more and more unhealthy [18]. In the human body, brain is the most complex
organ; it is composed of nerve cells and tissues that regulate the most fundamental bodily
functions, such as muscle movement, breathing, and the senses. Brain tumors are one
of the most feared diseases in medical science because they are a type of tumor that
affects the central nervous system [37]. According to 2016 cancer statistics provided by
the World Health Organization (WHO), brain tumors are treated as the leading cause of
cancer. The challenge of manually classifying brain tumor MR images with comparable
structures or appearances is demanding and complicated. Classification of brain tumor
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MR images with similar structures or appearances is a difficult and challenging task, to
solve this issue, automated classification might be used to categorize MR images of brain
tumors with the least amount of radiologists’ involvement.

In recent years, medical image processing has emerged as a crucial tool for the early
detection of brain cancer, attracting significant attention from researchers worldwide [54].
Efforts are focused on developing models to assist specialists in accurately predicting the
presence of tumors [19]. Despite the challenges faced by developers, such as variations
in image composition, dimensions, and pixel quality, artificial intelligence—particularly
computer vision—plays a pivotal role in advancing the digitalization of medical diag-
nostics and enhancing active research in this field [41]. Deep learning (DL), a subset
of machine learning, enables computers to discover data representations, anticipate fu-
ture outcomes, and draw conclusions based on factual information. These techniques
are considered among the most significant computational intelligence strategies and are
widely applied in medical image classification [30]. However, without a pre-processing
phase and effective feature extraction methods, many of these strategies fail to deliver
their expected benefits [7]. Recently, machine learning (ML) and DL algorithms have
gained prominence as powerful tools for medical image classification, with transformers
and auto-encoders playing a critical role in addressing various challenges in the field.

Convolutional neural networks (CNNs) and vision transformers (ViTs), in capturing
complex patterns and semantic details from medical images, thereby improving clas-
sification performance [3]. Autoencoders, commonly utilized in unsupervised learning,
are instrumental in deriving meaningful representations from raw image data, aiding
in feature identification and dimensionality reduction [2]. Moreover, Generative Adver-
sarial Networks (GANs) offer the distinct ability to produce synthetic medical images,
enhancing data augmentation and increasing the diversity of training datasets, which
contributes to the creation of more robust classification models for medical imaging
applications.

The accuracy of brain tumor data classification is influenced by various factors, in-
cluding the type and complexity of the data, such as image composition, dimensions, and
pixel quality. It also depends on the methods employed, the techniques used for feature
extraction, and the parameters of the algorithms implemented in the approach [45].

The structure of this article is as follows. In Section 2 the search strategy is out-
lined. In Section 3 the existing literature is analysed in detail. Finally, in Section 4 the
conclusions of the study and the proposed directions for future research are presented.

2. Search strategy

In our study numerous significant manuscripts employing various methods and tech-
niques for brain tumor classification were studied. These articles were sourced from
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Fig. 1. The percentage of articles reviewed in this study.

platforms such as Google Scholar [58] and ScienceDirect [59]. Medical image classifi-
cation approaches often leverage diverse machine learning algorithms and convolutional
neural network architectures, including VGG, ResNet, AlexNet, and others. These meth-
ods incorporate distinct feature extraction techniques, such as descriptors, filters, and
Gabor transforms. Additionally, advanced techniques like vision transformers and auto-
encoders have gained prominence, offering the ability to extract meaningful representa-
tions from image data and significantly improving image analysis and classification [52].
These approaches are complemented by standard preprocessing techniques, including
resizing, normalization, data augmentation, and center cropping, which are commonly
applied in the initial stages of image analysis workflows.

In this review, the referenced studies were systematically categorized according to the
primary methodology employed: traditional Machine Learning, Deep Learning, Capsule
Networks, and Vision Transformers. Approximately 33% of the cited articles focused
on classical ML approaches, leveraging algorithms such as Support Vector Machines,
Random Forests, and k-Nearest Neighbors. These methods often relied on handcrafted
feature extraction techniques including Local Binary Patterns (LBP), Discrete Wavelet
Transform (DWT), and Gray Level Co-occurrence Matrix (GLCM). Deep Learning-
based studies accounted for around 27% of the references, with CNNs being the domi-
nant architecture. These approaches demonstrated improved performance through auto-
matic feature extraction and were frequently trained and evaluated on publicly available
datasets such as BraTS [56], ISLES [55], and Figshare [57]. In addition to the individual
contributions of Machine Learning (33%) and Deep Learning (27%) approaches, a no-
table 11% of the cited studies employed a hybrid ML & DL classification methodology,
combining handcrafted features with deep feature representations to enhance classifi-
cation accuracy. Capsule Networks were examined in roughly 18% of the cited work,
offering robust spatial feature representation and enhanced interpretability, particularly
in scenarios involving affine transformations. Vision Transformers, representing about
11% of the corpus, are an emerging trend, providing state-of-the-art performance by
modeling global image context through self-attention mechanisms. Figure 1 illustrates
the percentage of articles reviewed in this study.
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Fig. 2. Overview of the essential modules in a conventional ML-based brain tumor classification.

3. Analysis of the literature

The classification and segmentation of brain tumors remain an active area of research.
Many researchers are exploring this topic, utilizing various techniques mentioned earlier
to develop approaches with improved performance. The tables 1, 3, 4, 5, 6 below summa-
rize the methods used in this field, including classification techniques, feature extraction
methods, and the datasets employed.

3.1. Machine learning methods

Machine learning algorithms are among the most widely used methods for brain tumor
classification, renowned for their effective detection capabilities. A key objective in many
studies is to improve classification performance, which can be achieved through various
methods and techniques applied at different stages. Enhancements may occur during
dataset preprocessing, where traditional image processing techniques are implemented,
or during the feature extraction phase, leveraging descriptors and neural network archi-
tectures. Furthermore, optimization during the classification phase, such as fine-tuning
the algorithm’s parameters, plays a crucial role in achieving superior results. Together,
these efforts contribute significantly to improving the accuracy of classification outcomes.
Figure 2 presents an overview of the essential modules in a conventional ML-based brain
tumor classification.

Table 1 presents a comparison of studies that utilize different machine learning mod-
els, various feature extraction techniques, and diverse datasets to predict the classifica-
tion accuracy of brain tumors.

Based on the findings presented in Tab. 1, it is evident that multiple factors play
a role in enhancing the efficacy of brain tumor classification. Each approach employs
specific methods and techniques tailored to its primary objective, encompassing various
phases to achieve optimal results:

The standard data pre-processing stage is deemed crucial in the machine learning
workflow, as it ensures that the data is appropriately configured for the application of
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Tab. 1. Comparison of Machine Learning Models, Feature Extraction Methods, and Datasets for Brain
Tumor Classification Accuracy.

Ref Classification
Method

Feature Extraction Dataset Accuracy

[27] Machine Learning
Methods Classifier

Crop, Resize, Augmentation,
Transfer Learning

253 MRI,
3000 MRI,
3064 MRI

90%,
97%,
90%

[23] LSTM LBP, CNN 154 MRI 98%
[28] Machine Learning LBP 3064 MRI 95%
[33] SVM, KNN, SRC,

NSC, and the k-
means

Wavelet, Statistical features BraTS 2017 96%

[1] Random Forest Gray Level, LBP, HOG BraTS 2013 93%
[12] Random Forest Clas-

sifier
RGB to Gray, Resize, LBP, HOG,
SFTA, GWF

BraTS 2012,
BraTS 2014,
BraTS 2015,
BraTS 2017

90%,
89%,
94%,
91%

[38] SVM Classifier, AC-
CLS Segmentation

RGB to Graylevel Histogram
Equalization, KMFCM

41 MRI 99%

[29] LSTM CNN, DWT 3064 MRI 98%
[14] Support Vector Ma-

chine, K Nearest
Neighbors, Neural
Network, ELM

Resize, Watershed segmentation,
morphological process, Wavelet

16 MRI 96%

[21] Decision Tree, Multi-
Layer Perceptron

Sigma Filter, Adaptive threshold,
Region Detection, Binary Object
Feature

174 MRI 95%,
91%

[11] Machine Learning
Methods Classifier

Weiner filter, Potential Field
clustering, threshold, morpholog-
ical dilation, LBP, GWT

86 MRI,
BraTS 2013,
BraTS 2015

93%,
93%,
97%

[42] MLP Näıve bayes RGB to Grey (Binarization), Me-
dian Filter (Noise Remove), edge
detection, watershed, GLCM

212 MRI 98%,
91%

[51] Machine Learning,
Ensemble Learning

Crop, Resize, Augmentation,
DWT, HOG

253 MRI 92%

[43] Support vector ma-
chine

DTI analysis, Perfusion analysis,
segmentation, normalization

141 MRI 97%

[39] Support vector ma-
chine

Contrast Stretching, Augmenta-
tion, Transfer learning AlexNet,
GoogLeNet, VggNet

3064 MRI 98%
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Fig. 3. The classification accuracy reported in each brain tumor study, based on machine learning
algorithms and their respective datasets. Labels given in the row “Reference” are related to
literature references according to Tab. 2, p. 37.

learning algorithms, thereby enhancing the quality, convergence, and performance of re-
sultant models. This phase encompasses techniques such as data cleaning, normalization,
scaling, and augmentation, all of which are recommended for thorough examination.

The feature extraction phase plays a pivotal role in enhancing data representation
and reducing dimensionality for improved interpretability and comprehension. Various
techniques, including CNN layers, LBP, DWT, HOG, GLCM, dilation, and filters, are
commonly employed in this phase, each serving a specific purpose. Making the right
choice of technique can significantly enhance classification accuracy. In the final phase,
known as the classification or decision-making phase, the selection of parameters for the
classification algorithm significantly impacts the effectiveness of the approach.

Figure 3 illustrates the highest accuracy rates achieved for brain tumor classification
across different datasets. These accuracies were obtained through the application of
various machine learning methods, highlighting the effectiveness of the employed classi-
fication techniques. Notably, the preprocessing and feature extraction methods played a
crucial role in enhancing the model performance. By refining the input data, reducing
noise, and selecting the most relevant features, these techniques contributed significantly
to the high accuracy observed in the figure. This evaluation underscores the importance
of carefully designing preprocessing pipelines and feature extraction strategies to opti-
mize classification performance in brain tumor diagnosis.

Traditional machine learning algorithms, while effective in numerous classification
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Tab. 2. Relations of labels given in Figs. 3, 5, 6, 8, 10 in the row ‘References’ to the literature references
denoted here as ‘Ref.’.

Label Ref. Label Ref. Label Ref. Label Ref. Label Ref.l1 [1] l4 [4] l5 [5] l6 [6] l7 [7]l8 [8] l9 [9] l10 [10] l11 [11] l12 [12]l13 [13] l14 [14] l15 [15] l16 [16] l17 [17]l20 [20] l21 [21] l23 [23] l24 [24] l25 [25]l26 [26] l27 [27] l28 [28] l29 [29] l31 [31]l32 [32] l33 [33] l34 [34] l36 [36] l38 [38]l39 [39] l40 [40] l42 [42] l43 [43] l44 [44]l46 [46] l47 [47] l48 [18] l49 [48] l50 [49]l52 [50] l54 [51] l56 [53]

tasks, exhibit several limitations when applied to complex medical imaging scenarios.
One of the primary challenges lies in their reliance on handcrafted feature extraction,
which often demands significant domain expertise and may fail to capture the full in-
tricacies of high-dimensional medical data such as MRI scans. This manual process can
lead to suboptimal performance, particularly in cases where subtle spatial patterns are
critical for accurate tumor classification or segmentation. Furthermore, traditional ML
models typically struggle with generalization when applied to diverse datasets or varying
imaging conditions. To address these shortcomings, deep learning techniques—especially
convolutional neural networks—have emerged as a powerful alternative. These models
are capable of automatically learning hierarchical features directly from raw data, re-
ducing the dependency on manual intervention and enhancing model robustness. By
capturing both low-level and high-level features through stacked layers, deep learning
architectures offer improved performance and scalability, making them more suitable for
complex brain tumor analysis tasks. As a result, the shift from traditional ML to DL
represents a significant advancement in the development of more accurate and automated
diagnostic tools.

3.2. Deep learning methods

Convolutional Neural Networks are a type of multi-layer feedforward artificial neural
network, initially inspired by the visual cortex [22]. CNNs play a pivotal role in deep
learning and have emerged as one of the most commonly used architectures in recent
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Fig. 4. Illustration showing the fundamental layers of a Convolutional Neural Network.

years, particularly for image recognition tasks. They excel in performing complex op-
erations through convolution filters, which enable effective feature extraction. The con-
volutional layers in CNNs progressively learn intricate visual patterns from raw input
data by applying filters to detect features such as edges, textures, and patterns in im-
ages. This hierarchical representation of data not only facilitates a deeper understanding
of the inherent structures within the data but also significantly enhances classification
performance. The initial layer in a Convolutional Neural Network serves to introduce
the input image into the model, initiating the processing sequence through subsequent
layers. As the data progresses, convolutional operations, pooling layers, and activation
functions work collaboratively to extract meaningful and abstract features from the in-
put. These features are then passed to one or more fully connected layers, which play a
crucial role in tasks such as classification, segmentation, or detection of objects within
the image. Ultimately, the final output is produced by the output layer, which delivers
the network’s prediction or decision. A typical CNN structure is depicted in Figure 4.

Table 3 presents a comparison of studies that utilize different deep learning architec-
tures, various feature extraction techniques, and diverse datasets to predict the classifi-
cation accuracy of brain tumors.

The findings in the table underscore critical factors contributing to the optimization
of brain tumor classification methods, with each approach utilizing specific methods and
techniques across various phases:

• Data Preprocessing: This phase is vital for preparing data for learning algorithms,
which enhances model quality, convergence, and overall performance. Techniques
such as data cleaning, normalization, scaling, and augmentation play an essential role
in ensuring the data is well-suited for analysis.

• Feature Extraction: A key step in improving data representation and reducing dimen-
sionality, feature extraction enhances interpretability and contributes significantly to
classification accuracy. Methods like CNNs layers, local binary patterns (LBP), dis-
crete wavelet transforms (DWT), histograms of oriented gradients (HOG), gray-level
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Tab. 3. Comparison of Deep Learning Architectures, Feature Extraction Methods, and Datasets for
Brain Tumor Classification Accuracy.

Ref. Classification
Method

Feature Extraction Dataset Accuracy

[31] CNN Classifier RGB to Grayscale, Edge de-
tection, Morphological oper-
tion, watersheld

500 MRI 72%

[40] CNN Classifier histogram equalization tech-
nique, Gaussian filter

3064 MRI 93%

[46] CNN Classifier Resize, Augmentation,
Grayscale, regularization
techniques

3064 MRI,
516 MRI

96%,
98%

[32] DNN Fuzzy C-means, DWT, PCA 66 MRI 97%
[16] CNN Classifier Resize, Augmentation 3064 MRI 97%
[44] CNN Classifier MidResBlock 3064 MRI 96%
[10] DNN Classifier Resize, Crop Lesion, Un-

cropped Lesion, segment Le-
sion

3064 MRI 98%

[47] CNN Classifier MidResBlock 3064 MRI 94%
[13] DNN Resize, CNN, Segmentation BraTS 2012,

BraTS 2013,
BraTS 2014,
BraTS 2015,
ISLES 2016,
ISLES 2017

98%,
99%,
100%,
93%,
95%,
98%

[48] Ensemble of ViTs optimization of transformer
parameters

3064 MRI 98.7%

[9] Hybrid transformer
enhanced convolu-
tional neural network
(TECNN)

CNN, Attention mechanism BraTS 2018,
Figshare
datasets

96.75%,
99.1%

co-occurrence matrices (GLCM), dilation, and various filters provide specialized ben-
efits in this regard.

• Classification: The selection of parameters in this phase has a profound impact on the
effectiveness of the approach. Careful and informed parameter choices are essential
to maximize performance and achieve optimal results.
Figure 5 presents a graphical representation of the highest accuracy rates achieved

for brain tumor classification across different datasets using deep learning methods, par-
ticularly Convolutional Neural Networks. The remarkable performance observed can
be attributed to the effectiveness of CNNs in automatically extracting relevant features
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Fig. 5. The classification performance achieved in various brain tumor studies utilizing deep learning
techniques across different datasets. Labels given in the row “Reference” are related to literature
references according to Tab. 2, p. 37.

from medical images. Furthermore, preprocessing techniques such as image normal-
ization, augmentation, and noise reduction have played a key role in enhancing the
quality of input data, ultimately improving model accuracy. The combination of well-
structured preprocessing pipelines and robust feature extraction capabilities of CNNs has
significantly contributed to achieving high classification performance, demonstrating the
potential of deep learning in brain tumor diagnosis.

Despite the considerable advancements brought by deep learning in medical image
analysis, several limitations continue to hinder its full potential in clinical applications.
Deep learning models, especially convolutional neural networks, demand extensive com-
putational power and access to large, well-annotated datasets to achieve high perfor-
mance. In practice, such datasets are often scarce, particularly in specialized medical
domains like brain tumor diagnosis. Furthermore, these models are prone to overfitting,
especially when trained on limited data, and their ”black-box” nature makes their deci-
sion processes difficult to interpret. Additionally, deep learning algorithms may struggle
to generalize effectively when applied across different clinical settings or imaging devices.
To address these issues, recent research has explored hybrid approaches that integrate
the strengths of both traditional machine learning and deep learning techniques. These
combined frameworks often use deep learning for automated feature extraction, followed
by classical ML algorithms—such as SVM or Random Forest—for final classification.
This strategy not only reduces dependency on large labeled datasets but also enhances
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model interpretability and robustness. By leveraging the complementary advantages
of both paradigms, these integrated systems aim to improve diagnostic accuracy and
reliability in complex imaging tasks.

3.3. ML and CNN

Recently, numerous approaches have employed convolutional neural networks in com-
bination with machine learning algorithms to enhance classification performance. This
research focuses on integrating CNN techniques with various machine learning algorithms
to optimize performance in image classification tasks. By harnessing the feature extrac-
tion capabilities of CNNs alongside the adaptability of machine learning algorithms for
classification, these approaches aim to achieve significant improvements in classification
accuracy. This integration contributes to advancements in computer vision and pattern
recognition, paving the way for more effective solutions in the field. Table 4 presents a
comparison of studies that utilize different machine learning models and deep learning
architectures, various feature extraction techniques, and diverse datasets to predict the
classification accuracy of brain tumors.

Based on the results presented in Tab. 4, we observe the significant advancements in
CNN techniques and machine learning algorithms for extracting intricate features from
complex datasets, particularly in the field of image classification. By harnessing the

Tab. 4. Comparison of machine learning models and deep learning architectures, Feature Extraction
Methods, and Datasets for Brain Tumor Classification Accuracy.

Ref. Classification Method Feature Extraction Dataset Accuracy

[35] SVM, DNN Fuzzy C-Means (FCM), CNN BraTS
2015

97%

[20] SVM, KNN, transfer
learned, deep network

GoogLeNet, CNN 3064 MRI 97%,
98%,
92%

[34] artificial neural net-
work, Parzen window,
k-Nearest Neighbors

Wavelets, PCA 166 MRI 98%,
99%,
99%

[53] Machine Learning
Methods Classifier,
VGG16

Resize, Augmentation, Crop,
Transfer Lerning

253 MRI 88%,
98%

[17] SVM, Decision Tree,
Random Forest, CNN,
ResNet 50, AlexNet,
Google Lenet, hybrid
DCNN-LUNET

Resize, Laplace Gaussian
(LOG) filtering and contrast-
limited adaptive histogram
smoothing, VGG-16, ROI
Segmentation, FCM-GMM

260 MRI 97%,
96%,
97%,
98.82%
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Fig. 6. The classification outcomes reported in several brain tumor studies that employed Machine and
Deep Learning approaches on diverse datasets. Labels given in the row “Reference” are related
to literature references according to Tab. 2, p. 37.

hierarchical feature extraction capabilities of CNNs alongside the discriminative power
of machine learning algorithms, these approaches strive to substantially enhance classifi-
cation performance. This integration aims to achieve higher accuracy and robustness in
classifying diverse image datasets, thereby contributing to progress in computer vision
and pattern recognition research.

Figure 6 illustrates the highest accuracy rates achieved for brain tumor classification
across various datasets using both traditional machine learning techniques and Convo-
lutional Neural Networks. The superior performance is largely influenced by the effec-
tiveness of feature extraction methods, which play a crucial role in distinguishing tumor
types. Preprocessing steps, including contrast enhancement, noise reduction, and data
augmentation, further refine the input images, ensuring better model generalization.
The combination of handcrafted feature extraction in machine learning and automatic
feature learning in CNNs has led to significant improvements in classification accuracy,
highlighting the importance of data quality and of the preprocessing steps in achieving
optimal results.

Traditional machine learning techniques face notable limitations, particularly in the
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context of complex medical imaging tasks such as brain tumor classification. These meth-
ods often depend on handcrafted feature extraction, which requires substantial domain
knowledge and may overlook critical spatial or contextual information embedded in the
images. Although deep learning has emerged as a powerful alternative—capable of learn-
ing hierarchical features directly from raw data—it also presents significant challenges.
These include the necessity for large annotated datasets, high computational require-
ments, risk of overfitting, limited transparency in decision-making, and reduced adapt-
ability across heterogeneous clinical settings. In light of these issues, Capsule Networks
have been proposed as a promising new approach. Unlike conventional CNNs, Capsule
Networks are designed to preserve spatial hierarchies and relationships between features,
making them more robust to affine transformations and better suited for modeling com-
plex structures in medical images. Moreover, their architecture allows for enhanced
interpretability and potentially better generalization from smaller datasets, offering a
compelling direction for overcoming some of the critical shortcomings observed in both
traditional ML and standard deep learning models.

3.4. Capsule network architectures

While convolutional neural networks have been extensively utilized for feature extrac-
tion in image processing tasks, they exhibit limitations in capturing spatial relationships
among features. Capsule Networks address this limitation by preserving the spatial hi-
erarchy of features more effectively. CapsNets introduce the concept of capsules, which
encapsulate spatial information more efficiently than traditional CNNs. Furthermore,
CapsNets offer significant advantages, including improved generalization, robustness to
affine transformations, and enhanced interpretability. These qualities make them a com-
pelling alternative for tasks requiring accurate spatial feature extraction and classifi-
cation in medical imaging. The table below provides a detailed overview of various
methodologies that employ capsule networks for brain tumor classification. Figure 7
illustrates the standard pipeline employed in brain tumor segmentation approaches uti-
lizing Capsule Networks (CapsNet).

Table 5 presents a comparison of studies that utilize capsules networks architectures,
various feature extraction techniques, and diverse datasets to predict the classification
accuracy of brain tumors.

Currently, much research in classification highlights the limitations of traditional
CNNs in effectively extracting spatial features, largely due to their reliance on pool-
ing operations, which can result in the loss of critical spatial information. To over-
come these challenges, recent studies have explored the use of capsule networks as a
promising alternative. Capsule networks are specifically designed to capture hierarchical
spatial relationships within images more effectively than CNNs, potentially improving
feature extraction and classification accuracy. Additionally, capsule networks provide
several advantages, including better handling of spatial hierarchies, increased robustness
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Fig. 7. Illustration of a typical segmentation workflow leveraging Capsule Networks.

Tab. 5. Comparison of capsules networks architectures, Feature Extraction Methods, and Datasets for
Brain Tumor Classification Accuracy.

Ref. Feature Extraction Dataset Accuracy

[6] Hyperparameter optimization 3064 MRI 90%
[7] T-distributed Stochastic Neighbor Embedding (TSNE) 3064 MRI 86%
[8] Boosting approach 3064 MRI 92%
[49] Rotation and patch extraction 3064 MRI 94%
[4] activation function 3264 MRI 96.7%
[5] CapsNet, dilation convolution 3064 MRI 95.54%
[15] SegCaps–Capsule network, brain tumor segmentation BraTS 2020 87.96%

to affine transformations, and enhanced interpretability of learned features. This innova-
tive approach addresses the shortcomings of CNNs in spatial feature extraction, offering
significant advancements in image classification for medical applications.

The strong performance of these models can be attributed to their ability to capture
spatial hierarchies and maintain spatial relationships between features, unlike traditional
CNNs. The effectiveness of the model is further enhanced by preprocessing techniques
such as normalization, noise reduction, and data augmentation, which improve the qual-
ity of input data. Additionally, robust feature extraction methods contribute to the
model’s capacity to distinguish complex patterns within brain tumor images, ultimately
leading to superior classification accuracy. The chart in Fig. 8 illustrates the classifica-
tion outcomes reported in several brain tumor studies that employed Capsule Network
approaches on diverse datasets.

While Capsule Networks have demonstrated significant potential in preserving spa-
tial hierarchies and improving robustness to affine transformations, they still face several
practical limitations that hinder their widespread adoption in medical imaging tasks.
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Fig. 8. The classification performance achieved in various brain tumor studies utilizing capsule networks
techniques across different datasets. Labels given in the row “Reference” are related to literature
references according to Tab. 2, p. 37.

One of the main challenges lies in their computational inefficiency; the dynamic rout-
ing mechanism, which is central to Capsule Networks, is resource-intensive and leads to
slower training and inference times. Additionally, these networks are relatively sensitive
to hyperparameter tuning and lack standardized architectures, making their implemen-
tation and optimization more complex compared to traditional deep learning models.
In response to these shortcomings, Vision Transformers have emerged as a compelling
alternative. Unlike Capsule Networks, ViTs leverage self-attention mechanisms to model
global dependencies within an image, allowing for more efficient capture of contextual
information across the entire visual field. Moreover, Vision Transformers demonstrate
greater scalability and adaptability, showing strong performance even when trained on
relatively limited data through techniques such as transfer learning and data augmen-
tation. As research in this area progresses, ViTs are increasingly being considered as a
powerful tool for medical image classification and segmentation, potentially overcoming
the architectural and computational limitations associated with Capsule Networks.

3.5. Vision Transformers

Recent advances in image classification have drawn attention to the inherent limitations
of conventional Convolutional Neural Networks, particularly in capturing long-range de-
pendencies and global contextual information within medical images. These limitations
stem mainly from the localized nature of convolution operations and the use of pooling
layers, which can lead to the loss of important spatial relationships. To address these
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Fig. 9. Overview of the Vision Transformers model.

issues, researchers have increasingly explored Vision Transformers as a powerful alter-
native. Unlike CNNs, Vision Transformers leverage self-attention mechanisms to model
global interactions across the entire image, allowing for more comprehensive and context-
aware feature representation. This enables ViTs to retain critical spatial and semantic
details, enhancing classification performance. Furthermore, ViTs offer advantages such
as scalability, better generalization in complex datasets, and improved interpretability
due to their attention maps, which highlight key regions influencing decision-making.
This modern architecture represents a promising direction for improving image classifi-
cation in brain tumor analysis and other medical imaging tasks.

The high performance of these models can be credited to their ability to analyze im-
ages holistically, maintaining spatial coherence while focusing on the most informative
regions through self-attention. Unlike CNNs, which process image patches locally, ViTs
treat the entire image as a sequence of patches, enabling the network to recognize com-
plex global patterns that are essential in medical image analysis. This performance is
further strengthened by preprocessing strategies such as image normalization, denoising,
and data augmentation, which enhance input consistency and variability. Additionally,
the integration of advanced feature extraction pipelines allows the model to effectively
distinguish between subtle differences in tumor structures, leading to highly accurate
and reliable classification outcomes. These capabilities make Vision Transformers a
compelling choice for future developments in AI-assisted medical diagnostics. Figure 9
illustrates the standard pipeline employed in brain tumor segmentation approaches uti-
lizing vision transformers.
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Table 6 presents a comparison of studies that utilize vision transformers architectures,
various feature extraction techniques, and diverse datasets to predict the classification
accuracy of brain tumors.

Based on the analysis shown in Tab. 6, it becomes clear that various components con-
tribute significantly to improving the performance of brain tumor classification systems.
Each method integrates specific techniques aligned with its core objective, progressing
through several essential stages to achieve optimal accuracy. The data preprocessing
phase remains fundamental in Vision Transformer-based workflows, as it prepares the
input for optimal attention-based modeling. Techniques such as normalization, image
denoising, patch embedding, resizing, and data augmentation are critical in ensuring
consistency, reducing artifacts, and enhancing generalization. These operations help the
model interpret input images more effectively during training and inference.

The feature representation and encoding stage is particularly crucial in Vision Trans-
formers. Instead of relying on handcrafted features or convolutional layers, ViTs divide
images into fixed-size patches and transform them into sequences of embeddings, which
are processed through self-attention layers. This enables the model to capture both local
and global dependencies across the entire image, significantly enriching the representa-
tion of complex patterns in brain tumor regions. Additionally, position embeddings are
integrated to retain spatial information, further improving interpretability.

Finally, during the classification stage, the transformer encoder’s output is used to
make predictions through fully connected layers. The effectiveness of this stage is influ-
enced by the architecture’s depth, the number of attention heads, and the choice of loss
functions and optimization strategies. The Figure 10 highlights the top classification ac-
curacies achieved across multiple datasets using Vision Transformer-based models. These
impressive results are largely attributed to the robust preprocessing procedures and the
ViTs’ superior ability to model long-range spatial relationships. The evaluation reaffirms
the importance of designing effective preprocessing workflows and utilizing advanced at-
tention mechanisms to optimize classification performance in brain tumor diagnostics.

Tab. 6. Comparison of Vision Transformers model, Feature Extraction Methods, and Datasets for Brain
Tumor Classification Accuracy.

Reference Feature Extraction Dataset Accuracy

[50] Transformers and 3D CNN BraTS 2019, BraTS 2020 90.09%
[24] Swin transformers and CNN BraTS 2021 93.3%
[25] Transformers and CNN MSD dataset 78.9%
[26] Transformers and 3D CNN BraTS 2021 90.8%
[36] Transformers and 3D CNN “U-Net

shaped encoder-decoder”
BraTS 2021 91.2%
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Fig. 10. The classification accuracy of each study on brain tumors, based on vision transformers and
the corresponding datasets used. Labels given in the row “Reference” are related to literature
references according to Tab. 2, p. 37.

The figure below presents the classification results obtained from multiple brain tumor
studies that adopted Vision Transformer-based methods across various datasets.

Although Vision Transformers have gained traction for their ability to model long-
range dependencies and capture global image context more effectively than traditional
convolutional approaches, they are not without limitations. One of the primary chal-
lenges associated with ViTs is their need for extensive training data to perform opti-
mally, which can be a significant constraint in the medical imaging field where labeled
datasets are often limited. Additionally, their architecture tends to be computationally
demanding, both in terms of memory usage and training time, which can limit their ac-
cessibility in resource-constrained clinical environments. ViTs also exhibit sensitivity to
hyperparameter selection and are often less interpretable compared to some traditional
machine learning models. These constraints have sparked a wave of innovation among
researchers who are actively exploring novel hybrid models, architectural optimizations,
and lightweight transformer variants tailored to medical contexts. The current trend
involves designing more efficient classification algorithms that combine the strengths of
ViTs with other paradigms, such as convolutional modules or attention-enhanced ML
models, to achieve better accuracy, generalizability, and scalability. This competitive re-
search environment is fostering the development of next-generation models that aim to
balance performance, efficiency, and interpretability for robust brain tumor classification
and other critical diagnostic tasks.
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3.6. Discussion

In conclusion, the classification of brain tumors using Machine Learning, Deep Learning,
Capsule Network architectures, and Vision Transformers model has demonstrated signif-
icant advancements in accuracy and robustness. DL approaches, particularly Convolu-
tional Neural Networks, have surpassed ML techniques by automatically learning hierar-
chical features, improving generalization. More recently, Capsule Networks have further
enhanced classification performance by preserving spatial relationships between features,
addressing limitations of CNNs in detecting complex structures. The effectiveness of
these models is strongly influenced by preprocessing techniques such as normalization,
noise reduction, and data augmentation, which enhance input quality. Additionally, fea-
ture extraction methods play a crucial role in identifying relevant tumor characteristics,
leading to improved classification accuracy. The integration of advanced architectures
with optimized preprocessing and feature extraction strategies paves the way for more
reliable and precise brain tumor diagnosis, contributing to enhanced decision-making in
medical imaging.

A critical challenge in deploying ML, DL, Capsnet and Vit models for brain tumor
analysis lies in their limited ability to generalize across diverse clinical settings. Varia-
tions in MRI acquisition protocols, scanner types, and patient populations often lead to
distributional shifts that can significantly impact model performance. Models trained
on a specific dataset may not perform reliably when applied to external data due to
differences in resolution, contrast, noise levels, and anatomical variability. Addressing
this issue requires the integration of domain adaptation techniques, robust data aug-
mentation, and cross-institutional validation to ensure that AI models remain accurate,
consistent, and clinically applicable across a wide range of imaging environments.

4. Conclusion and future scope

In this review, we provided an in-depth examination of recent advances in brain tumor
classification and segmentation, focusing on notable research studies that implement a
variety of machine learning, deep learning, Capsule Networks, and Vision Transformers
techniques. These studies have contributed significantly to the improvement of classifi-
cation performance through enhanced feature extraction, preprocessing, and the careful
selection of classification algorithms. The analysis underscores the importance of each
stage in the diagnostic pipeline—from data preparation through normalization and aug-
mentation, to robust feature extraction using methods like CNNs, Gabor filters, DWT,
LBP, and GLCM, and finally to accurate classification through optimized models.

While the reviewed models demonstrate impressive performance, this study also ac-
knowledges key limitations that remain a challenge in clinical applications. For instance,
traditional ML approaches rely heavily on handcrafted features, which often limit their
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performance in complex imaging contexts. DL models, although more effective in learn-
ing features automatically, face challenges such as high computational demands, the need
for large annotated datasets, interpretability issues, and limited generalizability across
diverse clinical environments.

To address these challenges, emerging research is exploring hybrid models that com-
bine ML and DL to leverage the strengths of both paradigms. Additionally, recent
developments in Capsule Networks and Vision Transformers present promising alterna-
tives by offering improved spatial awareness and better feature representation. However,
these models also face issues such as high training complexity, stability concerns, and a
lack of standardized benchmarks.

This area is in the urgent need for models that generalize well across different MRI
acquisition protocols and scanner types, as well as the development of computationally
efficient architectures suitable for real-time clinical deployment. Furthermore, advancing
techniques such as transfer learning, semi-supervised learning, and explainable AI are
critical to overcoming current limitations.

Finally, while our review primarily focuses on brain tumor classification, the discussed
techniques have broader applications, including the diagnosis of other neurological dis-
eases such as Alzheimer’s and Parkinson’s. As the field evolves, our future research aims
to develop versatile, interpretable, and clinically adaptable AI tools to support early and
accurate diagnosis across a wide range of brain pathologies.
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