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Abstract In this paper we propose a novel approach to low-light image enhancement using a trans-
former-based Swin-Unet and a perceptually driven loss that incorporates Learned Perceptual Image
Patch Similarity (LPIPS), a deep-feature distance aligned with human visual judgements.

Specifically, our U-shaped Swin-Unet applies shifted-window self-attention across scales with skip
connections and multi-scale fusion, mapping a low-light RGB image to its enhanced version in one
pass. Training uses a compact objective — Smooth-Lq, LPIPS (AlexNet), MS-SSIM (detached), inverted
PSNR, channel-wise colour consistency, and Sobel-gradient terms — with a small LPIPS weight chosen
via ablation.

Our work addresses the limits of purely pixel-wise losses by integrating perceptual and structural
components to produce visually superior results. Experiments on LOL-v1, LOL-v2, and SID show that
while our Swin-Unet does not surpass current state-of-the-art on standard metrics, the LPIPS-based
loss significantly improves perceptual quality and visual fidelity.

These results confirm the viability of transformer-based U-Net architectures for low-light enhance-
ment, particularly in resource-constrained settings, and suggest exploring larger variants and further
tuning of loss parameters in future work.

Keywords: low-light image enhancement, U-Net, mean opinion score, LPIPS.

1. Introduction

As shown below, numerous software frameworks, models, and methodologies have been
proposed for the low-light enhancement task. Nevertheless, we extend this research by
examining three persistent gaps — architecture, efficiency, and perception. Pure trans-
former U-Nets such as Swin-Unet [3] have been scarcely explored in this context, yet their
hierarchical shifted-window attention is well suited to the joint global-local reasoning
required by complex illumination. Moreover, state-of-the-art models almost exclusively
optimise pixel-level errors, which correlate poorly with human judgement; colour shifts
and texture flattening therefore persist. A composite loss that blends classic terms with
a perceptual metric (LPIPS) [48] is needed to align optimisation with visual quality. In
addition, many high-performing pipelines rely on heavy diffusion stages or multi-branch
designs, whereas a lightweight, single-stage Swin-Unet promises a superior accuracy-
efficiency trade-off — crucial for real-time or mobile applications.

These observations motivate our investigation of a perceptually optimised Swin-Unet
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that couples the representational power of hierarchical transformers with an LPIPS-aug-
mented composite loss, aiming to reduce residual artefacts while retaining computational
frugality.

1.1. Related Works

Enhancing photographs captured in severe darkness has matured from handcrafted
tone-mappers to sophisticated learning pipelines, yet every generation still negotiates
its own trade-offs between fidelity, robustness, and speed. Early grey-level transforma-
tions and Retinex-based formulations [9, 10, 13,14, 17,27, 44] adjust global brightness
through fixed, analytical rules that remain attractive for real-time use but inevitably
falter when illumination varies across a scene, leaving local noise and colour bias un-
resolved. Retinex theory itself — explicitly separating reflectance from illumination —
continues to underpin most modern networks: Retinex-Net [37] dissects, corrects, and
re-merges the two layers in three consecutive modules, achieving joint denoising and
brightening, although its separate branches occasionally amplify artefacts if any mod-
ule under-fits. Diff-Retinex [43] replaces convolutions with Transformer Decomposition
Networks (TDN) and diffusion-style adjusters that offer smoother global illumination at
the cost of substantial inference latency introduced by the diffusion iterations. Alterna-
tive encoder—decoder designs regress a coarse illumination map and refine it in a single
pass; their simplicity improves throughput but risks oversmoothing high-frequency de-
tail. Two-stream recurrent models mitigate this blur by letting a secondary branch track
salient textures, yet the recurrent roll-out lengthens both memory use and training time.

To preserve the fine structure of the image, in the subsequent work the multi-scale
processing and attention was introduced. Unrolled optimisation with residual blocks and
parallel multi-resolution streams [19,45] retains context over very large receptive fields,
but the extra resolution hierarchy enlarges GPU memory consumption. CDAN [31]
adds dense connectivity and channel-attention to a U-Net skeleton, improving colour
consistency and perceptual sharpness while inflating parameter count. SNR-aware at-
tention [40] and residual dense attention units [50] explicitly weight features by esti-
mated noise statistics, reducing information loss on consumer cameras, yet the reliance
on a reliable SNR estimate can degrade accuracy when sensor characteristics change.
Laplacian-pyramid diffusion in PyDiff [52] progressively samples higher resolutions so as
to suppress global RGB shifts with fewer parameters than classic diffusion; nevertheless,
its iterative denoiser remains too heavy for battery-powered hardware.

The field is therefore witnessing a parallel push toward lightweight yet perceptu-
ally solid designs. LYT-Net [1] splits the Y and UV channels into separate paths with a
Channel-Wise Denoiser and a ViT-based fusion block, reaching mobile-class throughput;
its dependence on an explicit YUV conversion, however, complicates end-to-end RAW
processing pipelines. Self-DACE [38] alternates Adaptive Adjustment Curves with a
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CNN-based denoiser in a two-stage loop and learns solely from unpaired data, gener-
alising across cameras while effectively doubling runtime. Other lightweight attempts
compress feature maps aggressively but tend to underperform on real photographs where
noise, colour cast, and motion blur co-occur.

Collectively, these developments yield a toolbox that can brighten images, suppress
grain, and restore colour, yet three persistent challenges remain. First, colour distortion
survives in regions where statistical priors deviate from the true illumination spectrum.
Second, texture fidelity still drops whenever a network relies exclusively on pixel-wise
losses such as L; or MSE, encouraging overly smooth outputs. Third, computational
overhead — either from deep cascades, recurrent loops, or diffusion steps — prevents many
state-of-the-art models from running interactively on edge devices.

Transformers equipped with windowed self-attention offer a plausible route toward
closing these gaps. The Swin Transformer family [21] combines convolution-like locality
with long-range context in a hierarchical fashion that scales linearly with image size,
and thus promises a more favourable accuracy—efficiency balance than global-attention
ViTs. Embedding Swin blocks in an encoder—decoder topology inherits the strong re-
construction ability of U-Nets while eliminating the multi-branch overhead common in
Retinex cascades or the multi-step burden of diffusion. Such a design can devote its full
capacity to suppressing colour shifts and preserving texture within a single pass, poten-
tially delivering competitive perceptual quality at a fraction of the compute budget. The
present work therefore positions a Swin-based U-Net at the centre of the low-light en-
hancement landscape, evaluating it against both heavyweight perceptual optimisers and
recent lightweight specialists, and highlighting where transformer attention can bridge
the longstanding trade-off between fidelity, robustness, and real-time performance.

2. Experimental setup

2.1. Datasets

To comprehensively evaluate our proposed method for low-light image enhancement,
we utilized two prominent benchmark datasets specifically designed for addressing chal-
lenges associated with underexposed photography: the LOL and SID datasets. These
datasets provide paired low-light and normal-light images, enabling supervised learning
and detailed performance assessments. Additionally, to determine the most effective ap-
proach to data integration, we explored various dataset combinations, consistently using
LOL for training, while systematically varying the inclusion and selection strategy of
SID images (single darkest, three darkest, random selection, or none).

2.1.1. LOL Dataset

The LOL dataset [37] consists of pairs of images captured under low-light and normal-
light conditions, primarily designed to support research focused on image enhancement
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techniques. It includes 500 image pairs, of which 485 are used for training and 15
for testing. Most images in this dataset depict indoor scenes and maintain a uniform
resolution of 400 x 600 pixels. Additionally, we employed an expanded version, known
as LOL-v2, which provides 689 training and 100 testing image pairs. LOL-v2 notably
enhances dataset variability by incorporating both synthetic and real-world low-light
scenarios, allowing for more robust evaluations of algorithmic performance under diverse
conditions.

2.1.2. SID Dataset

The See-in-the-Dark (SID) dataset [4] is a comprehensive collection of raw, short-ex-
posure images accompanied by corresponding long-exposure reference images, tailored
specifically for low-light enhancement studies. It comprises 5094 image pairs captured
under various illumination conditions using two different professional-grade camera sys-
tems. This dataset uniquely offers multiple exposure levels per scene, providing valuable
insights into the effectiveness of enhancement methods across varying degrees of dark-
ness. In our experiments, we specifically evaluated multiple strategies for incorporating
SID data into the training process. These strategies included selecting only the darkest
exposure per scene, the three darkest exposures, random exposure selection, and exclud-
ing SID data entirely. This allowed us to rigorously investigate the impact of different
dataset configurations on model performance and generalizability.

2.2. Proposed method

The goal of this work is to investigate whether a carefully tuned and loss-optimised
lightweight architecture based on Swin-Unet [3] can achieve performance competitive
with current state-of-the-art models for low-light image enhancement. In contrast to
many recent approaches that incorporate multiple complex modules or multi-stage de-
signs [1,31,52], we focus on a streamlined and efficient model that leverages the global
context modelling capabilities of Vision Transformers while maintaining the desirable
properties of U-Net’s encoder-decoder structure.

We hypothesize that, with the right combination of architectural design and a com-
posite loss function tailored to perceptual and structural fidelity, a pure transformer-
based model can deliver good results on both synthetic and real-world low-light datasets.

2.2.1. Model Architecture

Our proposed model builds upon Swin-Unet [3], a pure Transformer architecture origi-
nally developed for medical image segmentation. The architecture follows a symmetric
U-shaped design composed entirely of Swin Transformer blocks [21], organized into an
encoder, bottleneck, and decoder, interconnected through skip connections.

The encoder consists of a patch embedding layer followed by four hierarchical stages
of Swin Transformer blocks and patch merging layers, progressively reducing spatial
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resolution while increasing feature dimensionality. The bottleneck module operates at
the lowest resolution, capturing deep contextual features.

The decoder mirrors the encoder structure, utilizing patch expanding layers and Swin
Transformer blocks to restore spatial resolution and refine the feature representations.
Skip connections are introduced at each level to recover fine-grained spatial information
lost during downsampling.

Unlike traditional CNN-based U-Nets, Swin-Unet replaces convolutional layers with
self-attention mechanisms using shifted windows. This allows the model to efficiently
capture both local details and long-range dependencies without excessive computational
overhead. A final upsampling module brings the output back to the original image
resolution, followed by a 1x1 convolution to produce the enhanced image.

2.2.2. Loss function

The most commonly used loss functions in low-light image enhancement tasks are the
Mean Absolute Error (MAE), often referred to as L;-loss, and the Mean Squared Error
(MSE), also known as Lo-loss. These functions have been widely adopted due to their
simplicity and effectiveness in pixel-wise intensity comparison.

Recent top-tier works, such as [52] and [2], prominently utilize the L;-loss, highlight-
ing its continued relevance in state-of-the-art models. The formula for Li-loss is given
by:

|
Ly = N;lgi_yi|a (1)

where ¢; denotes the predicted pixel value, y; is the corresponding ground-truth value,
and N is the total number of pixels. For comparison, the Ls loss (mean squared error,
MSE) is defined as:

N
1 "
Luse = N Z (9 —vi)” - (2)
i=1

While Lo-loss penalizes large deviations more heavily, leading to smoother outputs,
L1-loss is less sensitive to outliers and often results in sharper reconstructions. This dis-
tinction makes Li-loss preferable in tasks requiring better preservation of image details.

In addition to pixel-wise losses, perceptual losses have gained popularity for improving
the visual quality of enhanced images. In [31], the authors utilize a combination of
MSE and perceptual loss based on a pre-trained VGG19 network. The perceptual loss
compares feature maps from different layers of the VGG19 network for both generated
and reference images, ensuring better high-level feature alignment. The perceptual loss
is formulated as:

N
1 .
Lvec =+ > IVGG(L) = VGG(L)|3 3)

=1
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where I; and I; represent the predicted and ground truth images, respectively, and VGG
denotes the feature extraction function using the VGG19 network.
The composite loss function used in this work combines MSE and perceptual loss as
follows:
Lcomposite = LMSE + /\LVGG ) (4)

where A is a hyperparameter balancing the contributions of the two components. Ac-
cording to the authors, A = 0.25 yields optimal results.

Similarly, [8] proposes a loss function designed for low-light image enhancement in
both HVI and sRGB colour spaces; we will refer to it as FN-loss in the remainder of this
paper to simplify the nomenclature. The total loss L is defined as:

L =X - U(Tvr, Tvi) + (1, 1), (5)

where Iyvr and Iyt are the predicted and ground truth images in the HVI colour space,
I and I are the predicted and ground truth images in the sSRGB colour space, and A, is
a weight balancing the two losses.

The loss function [ for each colour space consists of multiple components:

X, X) =ML (X, X) + A Lo (X, X) + MLy (X, X)), (6)

where: L7 loss denotes the pixel-wise Ly loss, L. is the edge loss encouraging edge
preservation in the enhanced image, and L, is the perceptual loss, ensuring perceptual
similarity by comparing features extracted by a pre-trained network (e.g., VGG19).
A1, Ae, and A, are weights controlling the contributions of the respective loss components.

The proposed approaches demonstrate the efficacy of combining multiple loss compo-
nents, including pixel-wise, edge, and perceptual losses, to achieve enhanced brightness,
colour accuracy, and edge sharpness in low-light image enhancement tasks.

A notable example of an advanced loss function design is presented in [1]. The
authors of LYT-Net used a hybrid loss function that combines multiple components to
jointly optimise image brightness, perceptual quality, structural similarity, and colour
fidelity. Their loss function can be expressed as:

Liotal = Ls + a1 Lpere + a2 Liist + a3 Lpsnr + 04 Lcolour + @5 Lais-ssIM (7)

where: Lg denotes the Smooth L loss, applying a linear or quadratic penalty depending
on the error magnitude to handle outliers effectively, Lpey. is the perceptual loss enforcing
high-level feature consistency via VGG feature maps, Lyist is the histogram loss aligning
intensity distributions of prediction and ground truth, Lpgngr is the PSNR-based loss
penalizing deviations in peak signal-to-noise terms, Lcolour iS the colour fidelity loss
minimizing channel-wise mean differences, and Lys.ssiv is the multiscale structural
similarity loss preserving structure across scales.
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Each component in this hybrid loss function addresses a specific aspect of the en-
hancement problem, ensuring a balanced optimization process. This approach demon-
strates how combining multiple loss terms can lead to excellent results in low-light image
enhancement.

Both methods, [1] and [20], achieve excellent performance, particularly on synthetic
datasets like LOLv2. However, models trained with simpler loss functions, such as the
L;-loss used in [52], tend to perform better on real-world datasets. This suggests that
while advanced hybrid loss functions can improve performance on controlled datasets,
simpler losses might generalize better in real-world scenarios. The superior real-world
performance of [52] is likely influenced by the entire network architecture and training
optimization strategy, including the choice of loss function.

In [20], the authors employ a vector quantization-based method for low-light image
enhancement and define separate loss functions across three stages:

Stage I Loss: The goal is to train a normal-light encoder, decoder, and codebook using

a combination of:

LStage 1= Lrecon + /Bqu 5 (8)

where Liecon is the Lo-loss (Mean Squared Error) ensuring pixel-wise reconstruction
accuracy, and Lyq is the vector quantization loss, which penalizes differences between
the encoded and quantized features.

Stage II Loss: To bridge the gap between low-light and normal-light feature spaces,
a distillation loss is introduced, alongside a query loss that optimises the matching
process:

LStage 11 = Laistin + Lquery ’ (9)

Here, Laistin minimizes the feature-level discrepancy using Li-loss, while Lqyery €n-
sures accurate codebook item selection by aligning distance maps between features
and codebook/query items.

Stage IIT Loss: In the final stage, a fusion branch combines features from different
scales, and a brightness-aware attention module is employed to refine the enhanced
image. The total loss in this stage is an Lq-loss defined as:

LStage 111 = ||Irec - IN”I (10)

where I,. is the reconstructed image, and Iy is the ground truth normal-light im-
age. Influence when parameters change: Eq. (10) has no explicit hyperparameters;
if weighted by A3 in the total loss, increasing Az scales the gradient OL/0Iiec =
Az sign(Iyec — Iv) and enforces pixel fidelity (typically higher PSNR/SSIM, smoother
textures), while decreasing A3 lets perceptual/structural terms dominate (often sharp-
er appearance with slight PSNR/SSIM trade-off). Replacing || - ||; with || - |3 would
penalize large residuals more (more denoising/smoothness, potential edge blurring);
keeping L, preserves edges and is outlier-robust. Stronger brightness-aware attention
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concentrates updates in dark regions (better shadow recovery, risk of halos if ex-

cessive); weaker attention spreads updates (fewer artifacts, possible residual shadow

noise). We use plain L; (A3 = 1 unless stated) and control the overall balance

via Eq. (11).

To better align the network output with human visual perception, we augment classic
pixel-wise objectives with a deep-feature component based on LPIPS [48]. The total
training signal is defined as:

Liotal = asLg + apLipips + anLuvs-ssivm + an Lpsnr + ac Loolour + @G LGraa, (11)

where Lg is the Smooth-L; loss, Lys.ssiv is the multi-scale structural similarity loss
(computed with detached gradients), Lpsng is the inverted PSNR loss, Lcoour penalizes
differences in channel-wise mean values, and Lg,.q enforces edge consistency using Sobel-
based gradients. The perceptual term Liprps uses the metric introduced by Zhang et
al. [48], based on a frozen AlexNet backbone [16]. During training, both prediction and
ground-truth images are forwarded through the LPIPS network in no_grad mode, after
being rescaled from [0,1] to [—1,1], as required by the implementation. The choice of
the LPIPS loss weight ap was also subject to ablation, as we evaluated different values
to balance perceptual quality and training stability. A comprehensive comparison of
alternative loss functions and weight configurations is presented later in the paper.

2.2.3. Training setup

The complete pipeline is implemented in PyTorch 2.3 [28] with native AMP (Auto-
matic Mixed Precision), uDNN (CUDA Deep Neural Network library) [26], bench-
marking enabled, weight-initialization utilities from timm [25], and tensor rearrange-
ments from einops [29,30]. The Swin-Unet backbone is realised as a pure-attention
U-Net: a patch-embedding stem feeds four encoder stages that alternate shifted-window
multi-head self-attention, MLPs and residual connections, each stage halving the spatial
resolution through patch merging; a bottleneck attends at the coarsest scale; four sym-
metric decoder stages then perform patch expansion while concatenating the correspond-
ing encoder activations; an expand-by-four layer followed by a 1x1 projection produces
the RGB output. Three capacities are explored by crossing initial widths 256, 384,512
with depth patterns 2-4-6-2, 2-4-8-2 and 2-6-12-4, giving nine architectural variants.

Training uses the LOL-v1 split, both LOL-v2 subsets and the SID corpus; for SID
only the darkest exposure of every scene is paired with its long-exposure reference and
the official Part-1 / Part-2 division is kept for training and validation. All images are con-
verted to linear [0, 1], randomly flipped and rotated by multiples of 90°, then partitioned
into non-overlapping 256 x 256 crops that serve as individual samples; evaluation runs on
a single uncropped patch without test-time augmentation. Four supervision regimes are
tested: the hybrid LYT objective, the six-term LPIPS-augmented loss of Eq. (11) with
ap € 0.1,0.2,0.5, pure MSE and the colour-space FN-loss of Feng et al [8]. In every
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case AdamW starts at 1x10™%, warms up linearly for five epochs, decays cosinely to
1x1075, applies weight-decay of 10~%, clips the gradient norm to 1.0 and accumulates
two mixed-precision micro-batches, yielding an effective batch of sixteen patches. Each
run spans one hundred epochs and the checkpoint with the lowest mean validation loss
over LOL-v1, LOL-v2-real and LOL-v2-synthetic is retained.

All experiments were run on a single NVIDIA RTX 4090. Mini-batch size was ad-
justed per model to saturate GPU memory; for the 512-channel backbone this meant
a batch size of 1, which noticeably slowed iterative testing. Given the tight hardware
and time budget — and the wish to cover nine capacities and four loss functions — some
hyper-parameters (e.g. the LPIPS multiplier) were fixed to representative values instead
of being exhaustively tuned. Access to stronger hardware would allow a broader sweep
over embed width, window size and loss weights, leading to a more thoroughly optimised
model.

3. Experimental results

In this section, we present extensive experimental validation of our proposed Swin-Unet-
based method for low-light image enhancement. We systematically evaluated the perfor-
mance impact of key architectural choices, different strategies for incorporating supple-
mentary datasets, and various loss functions. To directly address the reviewer’s concern
and isolate sources of improvement, we conducted two complementary ablations: (i)
with the architecture and data held fixed, we varied only the loss (MSE, FN-loss, LYT,
and LPIPS-weighted variants); and (ii) with the loss and data held fixed, we varied only
the architecture (embedding dimensions and transformer depths). The baseline for all
comparisons was the original Swin-Unet model configuration with embedding dimension
512 and hierarchical depths of 2-4-8-2, which previously demonstrated promising results
in similar vision tasks. The LOL-v1 and LOL-v2 datasets (both synthetic and real sub-
sets) were utilized as primary benchmarks. We specifically investigated the impact of
embedding dimensions and transformer depths, dataset integration strategies (particu-
larly regarding the SID dataset), and diverse loss function formulations, including Mean
Squared Error (MSE), FN-loss, LYT loss, and our proposed LPIPS-based perceptual
loss function. The evaluation metrics used were Structural Similarity Index (SSIM) and
Peak Signal-to-Noise Ratio (PSNR), commonly adopted standards for image enhance-
ment assessment.

3.1. Comparative analysis

Initially, we focused on the effective use of the SID dataset within the training pipeline.
Four distinct approaches were tested using the optimal Swin-Unet architecture (embed-
ding dimension 512, depths 2-4-8-6) and LYT loss: (1) selecting the single darkest image
per scene from SID, (2) selecting the three darkest images, (3) randomly choosing SID
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Tab. 1. Comparison of SID dataset integration strategies using LYT loss.

SID Strategy SSIM LOL-vl PSNR LOL-vl SSIM LOL-v2-real PSNR LOL-v2-real SSIM LOL-v2-synth PSNR LOL-v2-synth

Single darkest 0.829 21.43 0.834 22.55 0.897 22.46
Three darkest 0.799 23.16 0.825 22.63 0.897 22.40
Random 0.772 22.53 0.810 22.58 0.904 23.30
No SID 0.780 22.13 0.826 23.67 0.902 22.61

Tab. 2. Effect of embedding dimensions and depths (LYT loss, single darkest SID).

Embed dim / depths SSIM LOL-vl PSNR LOL-vl SSIM LOL-v2-real PSNR LOL-v2-real SSIM LOL-v2-synth PSNR LOL-v2-synth

512 / 2-4-8-2 0.829 21.43 0.834 22.55 0.897 22.46
512 / 2-4-6-2 0.762 20.00 0.803 21.56 0.883 20.84
384 / 2-4-6-2 0.759 20.91 0.792 21.10 0.872 20.52
384 / 2-6-12-4 0.784 21.47 0.806 21.74 0.895 22.52

images, and (4) completely excluding SID. Table 1 summarizes these experiments, clearly
indicating that leveraging the single darkest SID image achieved consistently superior
results. This strategy yielded an SSIM = 0.829 and PSNR = 21.43 for LOL-v1, and
SSIM = 0.834 and PSNR = 22.55 for LOL-v2-real, significantly outperforming alterna-
tive approaches.

The observed differences between SID usage strategies highlight that carefully se-
lecting SID images based on luminance intensity notably improves performance and
training stability. Because the loss and architecture were held fixed here, these gains
are attributable to the data integration strategy rather than the perceptual loss choice.
Random SID selection, although performing well on synthetic datasets, showed reduced
consistency across real-world benchmarks.

We then explored varying model configurations by adjusting the embedding dimen-
sions and transformer depths, again utilizing the optimal SID selection (single darkest
image). We compared embedding dimensions of 384 and 512, and various depth config-
urations, specifically 2-4-6-2 and 2-6-12-4. As Table 2 demonstrates, significantly lower
embedding dimensions (384) substantially decreased SSIM and PSNR values, indicat-
ing insufficient representational capacity. Thus, such configurations were excluded from
further experiments.

Under a fixed loss (LYT) and data strategy, increasing architectural capacity from
depths 2-4-6-2 to 2-4-8-2 at embed = 512 improved SSIM/PSNR by +0.067/+1.43 (LOL-
vl), 4+0.031/+0.99 (LOL-v2-real), and +0.014/+1.62 (LOL-v2-synth). These deltas are
larger than those observed when swapping perceptual losses under a fixed architecture
(see below), indicating that most SSIM/PSNR gains stem from the architecture.

Next, we assessed several loss functions to determine their efficacy. Specifically, we
compared MSE, FN-loss, LYT loss, and our perceptual LPIPS-based loss with varying
LPIPS multipliers (0.1, 0.5, and 1.0). Results summarized in Table 3 illustrate that
simpler loss functions such as MSE and FN-loss underperformed notably, with MSE
consistently lowest due to its exclusive pixel-level error penalization, which leads to
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Tab. 3. Performance comparison of different loss functions.

Loss Function SSIM LOL-vl PSNR LOL-vl SSIM LOL-v2-real PSNR LOL-v2-real SSIM LOL-v2-synth PSNR LOL-v2-synth

LYT 0.829 21.43 0.834 22.55 0.897 22.46
LPIPS (0.1) 0.827 21.77 0.826 22.60 0.897 22.42
LPIPS (0.5) 0.789 21.13 0.827 22.32 0.895 22.58
LPIPS (1.0) 0.789 21.05 0.799 20.46 0.871 21.72
FN-loss 0.798 21.41 0.809 21.09 0.882 22.11
MSE 0.675 19.27 0.722 18.12 0.832 19.00

Tab. 4. NIQE and BRISQUE scores for the four loss functions (lower is better).

Loss Dataset NIQE BRISQUE
MSE LOL-v1 5.20 19.26
MSE LOL-v2-real 5.46 20.90
MSE LOL-v2-synth  5.02 15.84
FN-Loss LOL-v1 7.14 22.56
FN-Loss  LOL-v2-real 7.36 25.78
FN-Loss LOL-v2-synth  6.30 17.36
LYT LOL-v1 5.79 15.36
LYT LOL-v2-real 6.16 18.00
LYT LOL-v2-synth ~ 5.85 16.42
LPIPS LOL-v1 5.55 17.18
LPIPS LOL-v2-real 5.97 19.23
LPIPS LOL-v2-synth ~ 5.58 16.08

overly smooth and detail-deficient images. Conversely, LYT and LPIPS-based losses
yielded the highest results, largely attributed to their composite nature — incorporating
pixel-wise accuracy, perceptual quality, structural similarity, and colour fidelity, thus
better aligning with human visual preferences.

With the architecture held constant (embed = 512, depths 2-4-8-2) and the same
data strategy, LPIPS at a small weight (0.1) slightly increased PSNR relative to LYT
while keeping SSIM essentially unchanged: +0.34 dB / —0.002 (LOL-v1) and +0.05 dB
/ —0.008 (LOL-v2-real); results on LOL-v2-synth were virtually tied (—0.04 dB / 0.000).
Heavier LPIPS weights (0.5-1.0) reduced effectiveness, emphasizing the importance of
balancing perceptual and pixel-level constraints. These comparisons show that while
architectural capacity dominates fidelity (SSIM/PSNR), a lightly weighted LPIPS term
can nudge optimization toward slightly better PSNR without sacrificing SSIM.

The four representative checkpoints were re-evaluated with the no-reference percep-
tual metrics NIQE [23] and BRISQUE [22] (Tab. 4). NIQE measures the deviation of an
image’s natural-scene statistics from a model learned on pristine photographs, whereas
BRISQUE regresses locally normalized luminance and contrast statistics to subjective
quality scores. Lower values in both cases correspond to higher perceptual quality.
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Across the entire evaluation spectrum, LYT and LPIPS deliver noticeably better
NIQE and BRISQUE scores than the multi-component FN-Loss of Feng et al., combining
L1, edge, and perceptual terms in both sSRGB and HVI colour spaces. LPIPS attains
the lowest NIQE values among the perceptual objectives, whereas LYT secures the best
BRISQUE on LOL-vl and LOL-v2-real, with LPIPS edging ahead on the synthetic
subset. Because the architecture was fixed in these comparisons, these perceptual gains
can be attributed primarily to the loss design.

Surprisingly, the plain MSE loss performs very competitively — particularly on LOL-
v2-synth, where it records the overall best NIQE of 5.02. This suggests that strict pixel
fidelity can suppress subtle non-linear artefacts sometimes introduced by perceptual
losses; such artefacts are often imperceptible to the human eye yet penalised by statistical
quality metrics. In summary, perceptually driven losses (LYT and LPIPS) still provide
clear gains over FN-Loss, but a well-tuned MSE baseline remains a strong contender
when judged solely by no-reference measures.

Detailed training convergence (Fig. 1) shows that, under the same architecture, the
LYT loss and LPIPS with weight 0.1 both stabilize training and maintain superior
PSNR/SSIM across epochs, with LPIPS slightly stronger in later epochs. Increasing the
LPIPS weight reduces effectiveness, underscoring the need to balance perceptual and
pixel-level terms. FN-Loss converges more gradually but remains competitive, whereas
MSE lags throughout. Convergence plateaus appear around epoch 90.

Taken together, the ablations make the source of possible improvements explicit:
most SSIM/PSNR gains come from scaling the Swin-Unet architecture (e.g., up to +1.62
dB PSNR when increasing depth at embed = 512), while perceptual gains (NIQE) are
predominantly induced by the LPIPS-based loss when the architecture is fixed. The best

Training progress comparison (SSIM and PSNR)

SSIM vs Epoch PSNR vs Epoch

—— LT Loss —— YT Loss
—— LPIPS-based Loss 22 { = LPIPS-based Loss

—— MSE Loss —— MSE Loss
09 —— FNLoss — FNLoss

Average SSIM
S S
Average PSNR [dB]
5 8

Fig. 1. Validation PSNR and SSIM versus training epochs. Legend: LYT Loss (blue), LPIPS-based loss
with weight 0.1 (green), FN-Loss (purple), and MSE Loss (red). Curves are smoothed; metrics
are computed after each epoch on the full validation set comprising SID (darkest exposure),
LOL-v1, and the real and synthetic subsets of LOL-v2.
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results arise from their combination — adequate model capacity paired with a modest
LPIPS weight — yielding images that are both faithful and perceptually convincing.

These comprehensive results underscore the importance of model capacity, appro-
priate dataset integration, and carefully chosen composite loss functions in achieving
high-quality, perceptually convincing low-light image enhancement; a visual comparison
of our model’s outputs with the reference images is provided in Figure 2.

On a per-dataset basis, holding the loss fixed (LYT) and increasing capacity from
depths 2-4-6-2 to 2-4-8-2 at embed = 512 yields APSNR/ASSIM of +1.43/ + 0.067
(LOL-v1), 4+0.99/+0.031 (LOL-v2-real), and +1.62/+0.014 (LOL-v2-synth). With the
architecture fixed, LPIPS(0.1) improves NIQE vs. LYT by 0.24 (5.55 vs. 5.79, LOL-v1),
0.19 (5.97 vs. 6.16, LOL-v2-real), and 0.27 (5.58 vs. 5.85, LOL-v2-synth); BRISQUE
favors LYT on real images (15.36 vs. 17.18; 18.00 vs. 19.23), while LPIPS is slightly
better on synthetic (16.08 vs. 16.42). Although MSE attains a strong NIQE on LOL-
v2-synth (5.02), it lags markedly in SSIM/PSNR across datasets. For data integration,
selecting the single darkest SID exposure per scene is the most consistent strategy on
real benchmarks; random selection can score higher on synthetic data but is less stable
overall.

In practice, a compact recipe emerges: embed = 512 with depths 2-4-8-2, training on
SID (single darkest) and a light LPIPS weight (0.1). Heavier LPIPS weights (0.5-1.0)
reduce fidelity and stability, and convergence plateaus around epoch 90, after which
early stopping is beneficial. Qualitatively (Fig. 2), this setting mitigates colour shifts
and preserves edges, with only minor brightness deviations relative to ground truth.

3.2. Comparison with other algorithms

The quantitative comparison of our best-performing model — Swin-Unet trained with
the proposed LPIPS-based loss function — is presented in Table 5. Although the model
employing the LYT loss achieved similar performance, we prioritize the LPIPS-based
approach as it introduces a novel perceptual component specifically tailored to low-light
image enhancement. Furthermore, since the LPIPS-based loss was explicitly designed
and proposed within this work, it more clearly represents our contributions.

From the results, it is evident that our Swin-Unet architecture achieves competitive
but somewhat lower quantitative performance compared to state-of-the-art methods on
all considered LOL datasets. Specifically, our best model achieved PSNR and SSIM
of 21.77 dB and 0.827 on LOL-v1, 22.60 dB and 0.826 on LOL-v2-real, and 22.42 dB
and 0.897 on LOL-v2-synthetic. In contrast, leading architectures such as CIDNet-
oP [8], RetinexFormer [2], and LYT-Net [1] consistently surpass these metrics across all
benchmarks, reaching PSNR values around 28 dB and SSIM over 0.88 in many cases.

These observed discrepancies may suggest that the Swin-Unet architecture — origi-
nally proposed for medical image segmentation — might not be optimal in capturing the
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Fig. 2. Qualitative comparison layout and data sources. Columns: left — low-light inputs; centre —
outputs from the model trained with an LPIPS-weighted loss; right — corresponding well-exposed
ground-truth images. Rows: 1-2 from LOL-v1; 3-4 from LOL-v2-real; 5-6 from LOL-v2-synth.
Images are randomly selected examples from the LOL family.
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Tab. 5. Quantitative results on LOL datasets.

Methods PSNR (LOL-vl) SSIM (LOL-vl) PSNR (LOL-v2-real) SSIM (LOL-v2-real) PSNR (LOL-v2-syn) SSIM (LOL-v2-syn)
SID [4] 14.35 0.436 13.24 0.442 15.04 0.610
3DLUT [17] 2135 0585 20.19 0.745 22.17 0.851
Zero-DCE [11] 14.86 0.540 13.65 0.246 21.46 0.848
EnlightenGAN [15] 17.48 0.650 18.23 0.617 — —
KinD [51] 20.87 0.800 20.40 0.652 16.26 0.591
KinD+ 1 [19] 21.30 0.820 20.15 0.678 1044 0.830
Bread [12] 22.96 0.840 22.54 0.762 19.28 0.831
TAT [6] 23.38 0.810 21.43 0.638 19.18 0.813
HWMNet [7] 24.24 0.850 22.40 0.622 18.79 0.817
TLFlow [39] 21.99 0.020 21.60 0.613 10.15 0.360
DeepUPE [33] 14.38 0.446 13.27 0.452 15.08 0.623
DeepLPF [24] 15.28 0.473 14.10 0.480 16.02 0.587
UFormer [36 16.36 0.771 18.82 0.771 19.66 0.871
RetinexNet [37] 1802 0427 1832 0.447 19.00 0.771
Sparse [12] 17.20 0.640 20.06 0316 22.05 0.905
EnGAN [15] 20.00 0.691 18.23 0.617 16.57 0.734
FIDE [39 18.27 0.665 16.85 0.678 15.20 0.612
Restormer [46] 26.68 0.853 26.12 0.853 25.43 0.859
TEDNet [53] 2547 0.816 2781 0.870 2737 0928
SNR-Aware [10] 26.72 0.851 27.21 0.871 27.79 0.941
LLFormer [34] 25.76 0.823 26.20 0.819 28.01 0.927
RetinexFormer [2] 27.14 0.850 27.69 0.856 28.99 0.939
CIDNet-wP [5] 2772 0.876 28.13 0.892 20.37 0.950
CIDNet-oP [3] 28.14 0.859 27.76 0.381 29.57 0.950
A3DLUT [32] 14.77 0.458 18.19 0.745 18.92 0.838
IPT [5] 16.27 0.504 19.80 0.813 18.30 0.811
Band [11] 20.13 0.830 20.20 0.831 23.22 0.927
LPNet [18] 21.46 0.802 17.80 0.792 19.51 0.846
SNR [10] 24.61 0.842 21.48 0.849 24.14 0.928
LLIE [20] 0.855 25.94 0.854 27.79 0.941
PyDifl [52] 0.930 24,01 0.376 19.60 0378
MIRNet [15] 0.356 2707 0.365 0.808
LYT-Net [1] 0.853 27.80 0.873 0.940
Ours Swin-Unet (LPIPS-based) 0.827 22.60 0.826 0.897

specific features necessary for low-light image enhancement. However, despite somewhat
lower quantitative results, the Swin-Unet architecture presents certain distinct advan-
tages. Its pure transformer-based design effectively leverages global context modelling
through self-attention mechanisms, enabling a strong representation of both local details
and long-range dependencies simultaneously. Moreover, the architecture is relatively
straightforward, highly modular, and significantly easier to train and fine-tune com-
pared to more complex multi-stage architectures, such as those incorporating diffusion
models or hybrid convolution-transformer networks.

Another key advantage of our model is computational efficiency and flexibility. While
it is plausible that utilizing a larger-scale Swin-Unet network (e.g., deeper or wider vari-
ants) could potentially yield better quantitative performance, our experimental investi-
gation was limited by available computational resources and time constraints. Therefore,
an extensive exploration of larger models was beyond the scope of this work.

Nonetheless, the performance achieved demonstrates the viability and potential of
the Swin-Unet approach — especially when paired with novel perceptual losses such as
our LPIPS-based formulation. Given its favorable balance between complexity, compu-
tational efficiency, and respectable image enhancement quality, Swin-Unet remains an
attractive candidate for further exploration, potentially yielding improved performance
if scaled appropriately.
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4. Conclusions and contributions

This study set out to verify whether a compact, single-stage Swin-Unet can remain
competitive in extremely low-light conditions once supervision is shifted from purely
pixel-based criteria to a perceptually oriented objective. The network we employed — an
off-the-shelf Swin-Unet restricted to an embedding width of 512 and an encoder—decoder
depth pattern of 2-4-8-2 — was purposefully kept small: with batch size one it already sat-
urates the memory of a single RTX 4090, and shortening turnaround times was essential
for running the nine-by-four grid of capacity-and-loss experiments reported throughout
the paper. Within these resource limits several contributions emerge.

First, the composite loss that blends LPIPS, Smooth-L;, MS-SSIM, inverted PSNR,
colour mean and gradient consistency proves almost as effective as the far more elaborate
LYT objective when both are applied to the same Swin-Unet backbone; on LOL-v1 and
LOL-v2-real the two formulations reach virtually identical SSIM, while the LPIPS variant
shows a slight PSNR advantage on two of the three benchmark splits. This confirms
that loss design can close much of the perceptual gap even when architectural capacity
is modest.

Second, the paper offers what is, to our knowledge, the first transformer-only baseline
that covers LOL-v1, LOL-v2-real, LOL-v2-synthetic and SID under a single, fully doc-
umented training protocol; future work can therefore compare new transformer variants
against numbers that are not confounded by convolutional extras or multi-branch tricks.

Third, the SID ablation confirms that keeping only the darkest exposure of each scene
yields more dependable generalisation than either random or multi-exposure sampling —
an observation that simplifies dataset preparation and, to our knowledge, had not been
quantified before. The study also clarifies the limitations of our approach. Even the
strongest configuration trails recent diffusion or multi-branch systems by roughly 5-6
dB in PSNR and a few hundredths in SSIM; visual inspection further reveals occasional
smoothing of fine texture, most notably in areas dominated by read-noise. These deficits
likely stem from choices that remained arbitrary because of limited time and compute
— for example, the fixed LPIPS weight, the 7 x 7 shifted-window size, and the cap on
embedding width. A wider sweep over those hyper-parameters, combined with experi-
ments on deeper or broader Swin backbones, appears the most direct route to closing
the remaining performance gap.

In short, although the model remains below the current state of the art, the study
shows that a judiciously balanced perceptual loss can bring a compact Swin-Unet within
striking distance of results obtained with far more elaborate objectives, establishes a
clean transformer-only benchmark for future scaling studies, and uncovers a simple
luminance-based strategy for sampling SID that reliably improves generalisation — in-
sights that will help subsequent research allocate computational resources where they
matter most.
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