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Abstract With the continuous advancement of digital technology, cultural and creative product design
is shifting from static presentation to dynamic immersive experience. The research aims to address the
challenges faced by traditional modeling methods in accurately restoring complex textures and cross
platform visual communication. The neural radiation field algorithm was enhanced by introducing a
multi-level cost volume fusion module and a Gaussian uniform mixture sampling strategy. Furthermore,
a collaborative visual communication framework integrating augmented reality and virtual reality was
constructed, achieving a transition from single image input to high-precision 3D reconstruction, and then
to dynamic interaction. The experiment showed that the improved algorithm achieved peak signal-to-
noise ratios of 30.63 and 30.15 on the UoM-Culture3D and Bootstrap 3D synthetic datasets, respectively,
with structural similarity indices of 0.88 and 0.89, respectively. Field deployment tests have shown that
integrating AR and VR technologies into visual communication strategies significantly improves spatial
perception consistency, prolongs user engagement time, and enhances detail recognition accuracy. This
research emphasizes the potential of combining deeply coupled 3D graphics algorithms with immersive
technology, which can help improve the digital restoration accuracy and cultural dissemination efficiency
of cultural and creative products, thereby supporting the modern inheritance of traditional culture.

Keywords: 3D graphics algorithm, visual communication technology, cultural and creative product
design, NeRF, VR, AR.

1. Introduction

With the adoption of digital technology in the industry, cultural and creative product de-
sign is facing a transition from static output to dynamic immersive experience. The pop-
ularization of Virtual Reality (VR) hardware and the advancement of real-time graphics
computing have made the digital revitalization of cultural heritage a new direction.
Through technological means, it is possible to break through the physical limitations of
physical exhibitions, allowing historical patterns and traditional techniques to gain cross
temporal and spatial dissemination power. This cultural and creative product design has
put forward new requirements and urgently needs to break through the limitations of
traditional two-dimensional expression, establish a multidimensional design system that
integrates high-precision modeling, dynamic narrative, and interactive experience [14].
Currently, the Neural Radiation Field (NeRF) technology in the field of 3D graphics
algorithms combines ray tracing and deep learning to achieve high fidelity digital re-
construction of complex cultural carriers such as cultural relics patterns and historical
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scenes [21]. However, this technology relies on dense input of hundreds of images in a
single scene and time-consuming training on a scene by scene basis, making it difficult
to adapt to the fast iterative design process of cultural and creative products [12,31].
The augmented reality (AR) and VR technologies in the field of visual communication
can create a virtual real fusion experience environment. However, most of the existing
schemes use a single mode, which has problems such as large spatial alignment error,
homogenization of interaction forms, and shallow semantic analysis of cultural sym-
bols [27,32]. To this end, a multidimensional design method for cultural and creative
products based on the Improved NeRF (INeRF) algorithm and the integration of AR
and VR is proposed. By integrating multi-level cost structures and utilizing cross-scale
feature fusion techniques, geometric reasoning capabilities are strengthened. Further-
more, the implementation of a Gaussian uniform mixture sampling strategy optimizes
the efficiency of surface detail reconstruction. Consequently, a seamless interactive expe-
rience across AR and VR platforms is attained within the visual communication layer.
The research aims to enhance the cultural connotation expression and user experience
of cultural and creative products, and promote the development of the cultural and
creative industry towards digitalization and multidimensionality. The innovation of the
research lies in introducing a multi-level geometric feature fusion mechanism and a mixed
sampling strategy into the NeRF framework. Meanwhile, through AR-VR collaborative
interactive design, the organic unity of cultural symbols in spatial, temporal, and percep-
tual dimensions is achieved, providing practical and expressive methodological support
for the digital innovation of cultural and creative products.

2. Related works

High-precision 3D reconstruction is the cornerstone of cultural heritage digitization.
NeRF technology has garnered significant attention for its ability to fuse ray tracing
with deep learning, enabling high-fidelity reconstruction of the complex textures and
structures of cultural relics. However, classical NeRF and its variants generally suffer
from significant limitations: their training process heavily relies on hundreds of dense
multi-view images from a single scene and time-consuming scene-by-scene optimization,
which severely restricts their applicability in cultural and creative product design work-
flows requiring rapid iteration. To address reconstruction challenges in specific domains,
researchers have proposed various optimization schemes. To achieve texture synthesis
optimization, Houdard et al. [9] proposed a general framework named GOTEX. By con-
straining the local feature statistical distribution and utilizing the optimal transport
semi-dual formula to control the feature distribution, high-quality texture synthesis and
restoration were achieved. To improve the accuracy and efficiency of 3D reconstruction
of ancient buildings, Ge et al. [7] introduced depth supervision into the NeRF framework,

Machine GRAPHICS & VISION 35(1):3-23, 2026. DOI: 10.22630/MGV.2026.35.1.1.


https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2026.35.1.1

F. Yuan 5

combining a truncated signed distance function and an incremental training strategy, ef-
fectively enhancing the accuracy and efficiency of 3D reconstruction of ancient buildings.
In the field of dynamic scene reconstruction, Qiu et al. [19] innovatively combined NeRF
with signed distance fields to achieve realistic reconstruction of dynamic ship models,
demonstrating its potential for dynamic modeling of specific objects. Mazzacca et al. [15]
further validated the effectiveness of NeRF in reconstructing cultural heritage datasets,
particularly in handling uniform textures or shiny surfaces, expanding the documentation
pathways for digital heritage.

Visual communication technology serves as a bridge connecting digital reconstruc-
tion outcomes with user experience. AR and VR technologies enable the creation of
immersive cultural experience environments that blend virtual and real elements. To en-
hance the visual communication effectiveness of digital animated advertisements, Fang et
al. [5] proposed a multimodal visual communication system model based on multimodal
video emotion analysis. This model dynamically adjusts digital animated advertisement
content according to user emotions, enhancing the personalization and appeal of inter-
actions, and demonstrating the potential of emotion-driven content adaptation. Liu et
al. [13] conducted an in-depth analysis of visual communication strategies for cultural
imagery in rural environments, emphasizing the importance of environmental perception
in experiencing cultural spirit through the integration of art intervention institutions,
and providing insights for cultural narratives in specific spaces. In terms of communi-
cation effectiveness evaluation, the video data analysis system by Yachnaya et al. [26]
can identify and assess paralinguistic and non-verbal components in communication,
providing tools for quantifying user experience. Yudhanto et al. [30] advocate a visual
communication design philosophy grounded in culture and communication, emphasizing
the importance of researching the target audience’s values, norms, language, beliefs, and
visual elements to enhance the cultural relevance and effectiveness of design.

As can be seen from the above, although three-dimensional graphics algorithms and
visual communication technologies have made significant progress in their respective
fields, there remains a lack of cross-platform, multi-modal integrated design methods for
the digitization of cultural heritage. Existing solutions often struggle to balance high-
precision texture restoration, real-time interactive performance, and visual consistency
across multiple devices. This research gap leads to issues such as experience discontinuity
and information loss in the actual dissemination of cultural and creative products. To
address this, the study proposes a multi-dimensional design framework for cultural and
creative products based on an improved INeRF and the deep integration of AR and
VR, providing a solution that combines precision and expressiveness for the innovative
transformation and dissemination of cultural heritage.
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Fig. 1. Schematic diagram of NeRF algorithm (icons designed by Freepik [6]).

3. Methods and materials

3.1. Design of 3D graphics algorithm based on INeRF

Three-dimensional graphics algorithms are driving the transformation of cultural and
creative products toward multi-dimensional design. NeRF technology combines deep
learning and ray tracing to achieve high-fidelity three-dimensional reconstruction of cul-
tural relics and historical scenes, effectively restoring complex textures and material
effects, and solving the challenges of traditional modeling in reproducing complex ma-
terials and intricate patterns [11,16,28]. The basic structure of NeRF technology is
shown in Fig. 1. This technology first receives a five-dimensional input parameter con-
sisting of spatial position coordinates and the angle of light incidence. This parameter
is then mapped by a multi-layer perceptron network into RGB color values and den-
sity parameters. Subsequently, the system emits rays from the viewpoint, continuously
sampling points along the path, and uses a volume rendering formula to calculate the
transmittance and color contribution of each point, thereby synthesizing a realistic light-
ing effect. Finally, the model is optimized using a pixel-level rendering loss function to
approximate the optical properties of the real-world scene. Among them, the NeRF
mapping function [10] is

F(xaywzaea(b) — (R’ GaB’O-)7 (1)

where x, y, and z represent three-dimensional spatial coordinates, 6§ and ¢ represent
the angle parameters of the incident direction of light rays, R, G, and B represent the
RGB color values of the sampling points, and ¢ represents the medium density of the
sampling point. The function predicts the optical properties of each sampling point
based on the light and scene geometry characteristics, thereby providing basic data for
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Fig. 2. The basic framework of INeRF.

volume rendering. The rendering expression is

cvw:[me~dmw»dwwdnu, (2)

n

where C(r) represents the cumulative color of light, T'(¢) indicates the transmittance of
light from the starting point to the current point, o(r(t)) represents the density of path
point 7(t), ¢(r(t),d) indicates the color of the path point r(¢) in the direction d, and
t, and ty represent the starting and ending points of the light. This formula achieves
optically realistic image synthesis by accumulating the color and transparency of each
sampling point along the light path. The expression of the rendering loss function is

Erender = E
p

)~ )| 3)

where Liender represents pixel-level rendering loss, C (p) represents the color of pixels in
the generated image, and Cy(p) represents the color of pixel p in real multi-view images.
Although NeRF technology can achieve high-precision 3D reconstruction, it relies on a
large number of input images from a single scene and time-consuming scene by scene
optimization training, which makes it difficult to meet the design requirements for rapid
iteration of cultural and creative products. Therefore, the study proposed the INeRF
algorithm, whose basic framework is shown in Figure 2.

The INeRF algorithm starts with a single RGB input and extends the model to
multi view data through multi view generation. It combines camera parameters to drive
the 3D reconstruction module to generate normal maps and depth maps. During the
process, supervised and soft supervised loss optimization is used to optimize depth and
RGB prediction, and geometric consistency is ensured through backprojection. The
rendering loss function further optimizes the lighting and material performance of the
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Fig. 3. The basic structure of the cost body (icons designed by Freepik [6]).

model, followed by high-resolution texture synthesis to enhance details, and ultimately
balances accuracy and efficiency through model simplification techniques to output high-
quality 3D models.

To address the issue of insufficient geometric information in single-view input, a multi-
level cost volume fusion module based on convolutional attention was designed, as shown
in Figure 3. Its the schematic diagram is based on multi-view solid geometry. Firstly,
feature maps are extracted from input images of different resolution levels, and the
three-dimensional geometric information of the scene is captured by constructing a multi-
scale cost volume. In the feature fusion stage, low-resolution cost bodies encode global
semantics, while high-resolution cost bodies retain details. Cross-layer feature interaction
is achieved through convolutional attention, and channel and spatial attention are used
to optimize the coordination of local and global information. Ultimately, a geometric
neural field with both spatial accuracy and semantic integrity is formed, providing multi-
level feature support for rendering. The formula for multi-level cost volume fusion is

L

Ffused = Z wy - F‘lup + Fres y (4)
=1

where Fpsed represents the fused multi-level features, F}'’ represents the features af-
ter upsampling at layer [, w; represents the feature weight calculated through attention
mechanisms, F.s represents the residual connection feature, and L indicates the total
number of feature levels. In the feature decoding and rendering optimization stage, IN-
eRF achieves efficient and accurate volume rendering by improving the sampling strategy
and loss function design. In response to the problem of insufficient density in traditional
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uniform sampling, a Gaussian uniform mixture sampling strategy is proposed. Based on
the depth prior information inferred from multi-view solid geometry, Gaussian distribu-
tion dense sampling is used in the surface area of the object, while maintaining uniform
sampling density in non critical areas. The expression for Gaussian uniform mixture
sampling distribution is [18]

P(s)=X-N(s| pag,0q) + (1= X) -U(S | Smin, Smax) » (5)

where P(s) represents the probability density function of the sampling point s, A is the
Gaussian distribution, U represents the uniform distribution, A represents mixed weight
coeflicients, g represents the depth mean, and o4 represents variance.

Meanwhile, a deep self-supervised loss function was designed to generate pseudo
depth maps using multi-view consistency constraints. The pixel information of the
source view was distorted to the target perspective through differentiable reprojec-
tion, and a self-supervised signal without the need for real depth annotation was con-
structed. Moreover, during the feature decoding stage, the algorithm spatially aligns the
three-dimensional local features generated by the geometric neural field with the two-
dimensional global features. It then incorporates the encoded information of light ray
directions, dynamically decoding the color and density values for each sampling point via
a multi-layer perceptron. Finally, it synthesizes the pixel color and depth information of
the target viewpoint using a differentiable rendering equation, thereby establishing an
end-to-end trainable framework. Through this framework, designers can quickly convert
historical images, physical photos, or 2D drawings into interactive 3D models, greatly
improving the responsiveness and flexibility of the creative production process.

The pseudocode of the INeRF algorithm is presented in the Appendix A.

3.2. Design of cultural and creative products based on visual communication
technology

After completing high-precision digital reconstruction based on 3D graphics algorithms,
visual communication technology has become the core supporting means in multi-di-
mensional expression of cultural and creative products. To achieve deep dissemination
and innovative expression of cultural values, a deep integration strategy based on AR
and VR has been studied and designed. The overall framework is shown in Figure 4.
In the data generation layer, the system relies on the INeRF algorithm to construct a
high-precision 3D model from a single image, obtaining multidimensional data including
geometry, normal maps, and depth maps, laying the foundation for subsequent visual
presentation. The visual expression layer focuses on the graphic rendering and semantic
visualization processing of 3D models, mapping digital models into recognizable and
culturally significant visual content through lighting simulation, material mapping, and
color coding, and adapting to AR and VR platforms for dynamic presentation [29].
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The interactive experience layer revolves around user perception, combining the real-
time positioning and virtual real overlay capabilities of AR, as well as the immersive
spatial construction characteristics of VR, to achieve dynamic calling and multi-modal
interaction design of cultural and creative graphic content.

The basic process of visual communication for AR-based cultural and creative prod-
ucts is shown in Figure 5. The system uses the RGB-D sensor built into the AR device
to collect data on the geometric structure, depth distribution, and lighting conditions
of the user’s surroundings. It then uses feature point matching algorithms to identify
and anchor targets, accurately locating physical objects such as display cases, cultural
and creative packaging, and interior walls, and setting attachment points for virtual ele-
ments [22]. During the graphic deployment phase, the 3D models generated by INeRF are
compressed and optimized for lightweight performance, then loaded into the augmented
reality platform. The system automatically adjusts the orientation based on the on-site
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coordinate system. Subsequently, the system performs real-time graphic rendering and
visual overlay, utilizing dynamic lighting estimation and reflection maps to ensure high
consistency between virtual images and the real-world environment. Users can interact
with virtual graphics through gesture recognition, voice input, or touch operations to
obtain multi-dimensional feedback. The system finally combines user behavior trajecto-
ries and preference patterns to achieve personalized push notifications for cultural and
creative content, further enhancing the targeting and engagement of visual communi-
cation [4]. To achieve seamless integration between virtual and real environments, the
study developed an AR-VR hybrid interaction framework. When users transition from
an AR scene to a VR scene, the system retains their operational state and interaction
history through a spatial state caching mechanism, enabling state restoration and con-
tent continuity within the virtual space. First, the system uses the RGB-D sensor and
IMU data from AR devices for real-time environmental mapping and user localization.
Second, a virtual scene mapping model is established on the VR platform to ensure
that the scene geometry aligns with the real-world spatial coordinates [3]. Finally, a
state caching and synchronization mechanism is designed to save user interaction oper-
ations and object states, enabling seamless cross-device switching. In terms of on-site
deployment, the system considers lighting matching, dynamic occlusion handling, and
device load optimization to ensure stable operation in exhibition or cultural and creative
experience spaces.

The AR-VR hybrid interaction framework is shown in Figure 6, which is the frame-
work for constructing cultural and creative spaces based on VR. It systematically outlines
the methodological path of VR technology in multidimensional cultural and creative de-
sign. Firstly, the designer relies on a 3D model database and INeRF generated results
to construct a virtual environment that covers historical block restoration, cultural fes-
tival scenes, and immersive exhibition spaces for cultural relics, forming a virtual field
with cultural depth. At the level of content structure, cultural and creative elements are

Machine GRAPHICS & VISION 35(1):3-23, 2026. DOI: 10.22630/MGV.2026.35.1.1.


https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2026.35.1.1

12 Enhancing cultural heritage digitalization through 3D graphics algorithm. . .

orderly embedded into spatial nodes, forming multiple types of information units, in-
cluding decorative shapes, interactive objects, semantic labels, and dynamic animations,
thus establishing a rich cultural narrative space. The system integrates gaze tracking
and behavior modeling modules to dynamically adjust the visual hierarchy and dynamic
parameters of virtual content based on users’ attention paths and interest preferences,
guiding users to naturally integrate into the narrative process. In terms of interaction,
the platform integrates controller control, speech recognition, motion capture, and tactile
feedback technology to provide users with multi-channel immersive interaction methods,
enhancing the degree of freedom and realism of the experience. Meanwhile, the sys-
tem continuously collects user behavior data in the virtual space in the background,
including field of view movement, dwell time, and interaction frequency, providing data
support and model basis for subsequent scene structure adjustment and visual informa-
tion optimization, thereby achieving iterative updates and precise push of the design
system.

4. Results

4.1. Performance verification of 3D graphics algorithm based on INeRF

To verify the effectiveness of multi-dimensional design of cultural and creative products
based on 3D graphics algorithms and visual communication technology, a 3D recon-
struction and visual communication system for cultural and creative products based on
INeRF algorithm and AR/VR fusion was constructed in an experimental environment
with GPU acceleration capability.

The image datasets used in the experiment included the UoM-Culture3D dataset [25]
and the Bootstrap3D synthetic dataset [23,24]. The UoM-Culture3D dataset contains
multi-perspective images of historical artifacts and cultural scenes, with a resolution of
1920 x 1080, suitable for high-quality 3D reconstruction. The Bootstrap3D synthetic
dataset contains millions of multi-view images covering creative objects such as fictional
creatures and cultural symbols.

The specific experimental environment and parameter configuration are shown in
Table 1. Based on this experimental environment, the study compared the introduction
of raw NeRF [16,28], NeRF based on multi-resolution texture pyramid (Mip-based, Mip-
NeRF) [2], Instant Neural Graphics Primitives with a multi-resolution hash encoding
(Instant-NGP) [17], and INeRF model proposed in this paper.

Firstly, using Peak Signal to Noise Ratio (PSNR) as a comparison metric, tests were
conducted on different datasets, and the results are shown in Figure 7, where the PSNR
comparison performance of four 3D reconstruction models on two datasets are displayed.
In Figure 7a, on the UoMCult3D dataset, NeRF had the weakest performance with a
PSNR of 25.82 at the 500th iteration. Mip-NeRF and Instant-NGP reached 28.19 and
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Tab. 1. Experimental environment and parameter configuration.

Type Name Version
CPU Intel Xeon Gold 6248R, 3.0 GHz, 24C
Hardware GPU NVIDIA RTX 3090, 24 GB RAM
equipment RAM 128 GB DDR4
Memory device 2TB NVMe SSD
Operating system Ubuntu 20.04 LTS
Software DL framework PyTorch 1.13
oqui V:nent Graphics rendering Unity 2022.3 (HDRP line pipe)
awp AR develop ARCore 1.35, ARKit 5.0
VR develop SteamVR 2.0, OpenXR 1.0
Learning rate 0.001
Parameter Batch size 1024
Render resolution 800 x 800 pixels
name Real-time render
> 30 FPS
target frame rate
—— NeRF —— NeRF
31 — - Mip-NeRF 31r =— - Mip-NeRF
Instant-NGP Instant-NGP
INeRF _- INeRF

16
50

100 150 200 250 300 350 400 450 500
Number of iterations

a

16
50

100 150 200 250 300 350 400 450 500
Number of iterations

b

Fig. 7. PSNR comparison of four models with different data sets: (a) UoM-Culture3D, (b) Bootstrap3D.

30.11, respectively, while INeRF performed the best, stabilizing at 30.63, with an average
improvement of 9.24% compared to the other three models. In Figure 7b, INeRF still had
a significant advantage on the Bootstrap3D dataset, with a PSNR of 30.15 at the 500th
iteration, an average increase of 8.17% compared to other models. This indicated that
INeRF had good universality and reconstruction stability in stylized data and cultural
images. On this basis, the graphic loading speed and Root Mean Square Error (RMSE)
of four models on the AR platform were tested, and the results are shown in Figure 8.
According to Figure 8a, as the number of experiments increased, the loading speed of
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Fig. 8. Comparison of parameters of four models: (a) graphic loading time, (b) RMSE.

the INeRF model remained at a relatively low level of about 1.26s, demonstrating high
stability and efficiency. In contrast, the NeRF model had the longest loading time, close
to 1.41 seconds, and it fluctuated greatly. This might have been due to its reliance on a
large number of input images and scene-by-scene optimization training, which resulted
in high computational complexity and a slow speed during the loading process. Based
on Figure 8b, INeRF had the lowest RMSE value among 200 experiments, stabilizing
at around 1.42mm, with an average reduction of 25.28% compared to other models.
Overall, the balance between speed and accuracy of INeRF validated the effectiveness of
its improved architecture, providing a reliable technical path for high-fidelity digitization
of cultural heritage.

Meanwhile, the Structural Similarity Index Measure (SSIM) of four models on dif-
ferent datasets were compared, and the results are shown in Figure 9. Figure 9a shows
the SSIM comparison of four models on the UoM-Culture3D dataset. As the number
of iterations increased, the SSIM value of INeRF gradually rose and tended to stabilize.
When the number of iterations reached 500, the SSIM value of INeRF remained stable
at around 0.88, significantly better than the other three models. Figure 9b presents the
SSIM comparison of four models for the Bootstrap3D dataset. NeRF performed better
than other models on the Bootstrap3D dataset. When the number of iterations reached
500, the SSIM value of INeRF reached 0.89. This indicates that INeRF can effectively
integrate geometric features of different scales, enhancing the model’s perception and
reconstruction ability of complex image structures.

To directly validate the accuracy of the INeRF algorithm in 3D structure reconstruc-
tion, a quantitative evaluation based on point cloud comparison was conducted on the
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Fig. 9. Comparison of SSIM of four models for different data sets: (a) UoM-Culture3D, (b) Boot-
strap3D.

Tab. 2. Comparison of 3D geometric reconstruction effects of different 3D reconstruction techniques.
Asterisks ‘*’ and ‘**’ indicate statistically significant differences compared to INeRF at p < 0.05
and p < 0.01, respectively.

Model NeRF 1\1;/2}1{} hﬁg;t' INeRF  3DGS DiffRF
Chamfer dist. [mm] 2.12%* 1.88%* 1.55% 1.42 1.60 1.50
Hausdorff dist. [mm] 6.48%* 5.92%* 5.11% 4.78 5.05 4.92

F1-score @0.05 0.42** 0.51** 0.61* 0.65 0.62 0.63
Fl-score @0.1 0.59%* 0.65%* 0.74%* 0.78 0.75 0.76
Fl-score @0.2 0.71%* 0.76** 0.83* 0.86 0.84 0.85
Normal Consistency 0.78%* 0.81%* 0.85%* 0.88 0.86 0.87
Training time [h] 12.42 9.71 4.15 5.31 6.27 6.82
Peak vVRAM [GB] 18.60 16.24 9.83 11.41 12.58 13.16

UoM-Culture3D dataset. Two emerging 3D reconstruction techniques were also intro-
duced for comparison: the 3D Gaussian Splatting (3DGS) model and the Rendering-
Guided 3D Radiance Field Diffusion Model (DiffRF). Marching Cubes algorithm was
used to extract meshes from the density fields predicted by each model, and 50 000 ver-
tices were uniformly sampled to generate point clouds for evaluation. The results are
shown in Table 2. It can be seen that the NeRF model performs the worst in various
indicators, reflecting its insufficient ability to reconstruct complex textures and details
in sparse views, as well as high resource requirements. Mip NeRF improved feature
expression through multi-resolution texture pyramids, reducing Chamfer Distance to
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1.88 mm and Hausdorff Distance to 5.92 mm. However, there were still significant differ-
ences (p < 0.05) between the improvements and INeRF. Instant NGP further optimized
the point cloud distribution under dense feature encoding, with a Chamfer Distance of
1.55 mm and a normal consistency of 0.85. Although the overall accuracy is close, the
difference with INeRF is still significant (p < 0.05). In contrast, INeRF achieved the
best performance on all indicators, with the lowest Chamfer Distance being 1.42 mm,
the Hausdorff Distance dropping to 4.78 mm, F1-scores reaching 0.78 and 0.86 at the 0.1
and 0.2 thresholds, respectively, and a normal consistency of 0.88. The INeRF main-
tains high accuracy while controlling the training time to 5.31h, with a video memory
usage of only 11.41 GB. Although slightly higher than Instant NGP, it still demonstrates
good deployability in resource constrained environments, reflecting the balance advan-
tage between accuracy and efficiency. The difference from most methods is significant
or highly significant, thanks to the collaborative optimization of multi-level cost volume
fusion and Gaussian uniform mixture sampling strategy in details and global structure.
For emerging technologies, the 3D Gaussian jet model and rendering guided radiation
field diffusion model approach Instant NGP on Chamfer Distance and F1-score, with no
significant difference compared to INeRF, but slightly lower in performance, indicating
that there are still subtle geometric errors in sparse input and complex texture scenes.

Based on various indicators and statistical analysis, INeRF exhibits excellent per-
formance in point cloud accuracy, surface normal consistency, and Fl-score at different
scales. It also shows strong advantages in computational resource utilization, verifying
its robustness and reliability in high-precision 3D reconstruction. At the same time, it
demonstrates strong adaptability to complex textures and geometric structures in the
process of cultural heritage digitization.

4.2. Visual communication effect verification

To validate the effectiveness of the proposed visual communication strategy integrating
AR and VR in actual deployment, the study conducted on-site deployment tests in
museum exhibition spaces. The deployment included: AR end: Using ARCore/ARKit
devices to scan the exhibition area, accurately anchor the location of exhibits, and overlay
virtual information. VR end: Using SteamVR devices to construct virtual exhibitions
of historical scenes, allowing users to freely interact in the virtual space. The actual
measurement data covers indicators such as spatial perception consistency, interaction
fluidity, immersion, and cultural understanding perception (out of 10 points) for 30
test subjects. The study compared the traditional 2D display, single VR, and single
AR technologies with the proposed fusion strategy, and tested the spatial perception
consistency and average dwell time of the four technologies in four cultural and creative
scenes: porcelain, murals, ancient architecture, and bronze ware. The results are shown
in Figure 10.
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Fig. 10. Comparison of visual communication effects in different cultural and creative scenes: (a) spatial
consistency ratings; (b) average dwell time.

According to Fig. 10a, the scores for integrating VR—AR technology in the four cul-
tural and creative scenes of porcelain, mural, ancient architecture, and bronze ware were
9.50 points, 9.40 points, 9.60 points, and 9.83 points, respectively. When compared
with the other three single visual communication technologies, the average scores had
increased by 32.72%, 38.35%, 32.27%, and 34.25%, respectively. This indicated that the
integration of VR-AR technology achieved better real-world mapping and spatial posi-
tioning of three-dimensional structures under the fusion of virtual and real environments.
Meanwhile, based on Fig. 10b, the average dwell time of the fusion strategy in the four
cultural and creative scenes of porcelain, mural, ancient architecture, and bronze ware
was 121.24 s, 118.16s, 115.67 s, and 130.13 s, respectively. This was an average increase
of 59.67%, 58.32%, 57.19%, and 62.25% compared to the other three technologies. By
constructing an immersive virtual space and implementing a personalized interactive
content push mechanism, users were able to form a deeper sense of participation and
cultural context immersion during the experience, which in turn extended their stay
time.

Finally, the interactive experience and cultural perception effects of visual commu-
nication technology integrating AR and VR were studied, and the results are shown in
Table 3. Visual communication technology that integrates VR and AR significantly out-
performs single 2D display, VR, or AR solutions in terms of scene detail recognition,
interaction fluidity, visual immersion, cultural compatibility, and memory retention.
Most of these differences are highly significant (p < 0.01), confirming its advantages.
Specifically, the scene detail recognition accuracy of the proposed fusion VR and AR
visual communication technology reached 92.36%, an average improvement of 23.37%
compared to the other three methods, indicating that it had higher accuracy in visual
clarity and spatial recognition. In terms of interaction fluency and visual immersion,
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Tab. 3. Comparison of interactive experience and cultural perception effect of different visual communi-
cation technologies. Asterisks ‘*’ and “**’ indicate statistically significant differences compared
to INeRF at p < 0.05 and p < 0.01, respectively.

Scene detail Interaction Visual

s . . Cultural fit Memory

Index recognition fluency immersion .
i (%] retention [%]

accuracy [%)] [points] [part]

2D display 64.37%* 5.18%* 4.92%* 61.25%* 58.63**

VR 78.45%* 7.86% 7.32%% 76.12%* 71.40%*

AR 81.78%* 7.12%* 8.47* 80.56* 74.93%*

VR-AR 92.36 9.14 9.68 90.42 86.71

the fusion strategy achieved scores of 9.14 and 9.68, respectively, with an average im-
provement of 36.07% and 39.94% compared to the other three methods. This indicated
that it had advantages in operational response and system feedback, while also pro-
viding a more immersive cultural experience. In addition, the cultural fit and memory
retention of fusion technology were 90.42% and 86.71%, respectively, with an average
improvement of 24.47% and 26.92%, indicating that it was more accurate in conveying
cultural connotations and symbol fit, and had a stronger effect on retaining cultural in-
formation. Overall, the integration of VR and AR technology had significant advantages
in enhancing user immersion, improving cultural understanding and memory retention,
which validated the scientific and practical nature of the visual communication strategies
proposed in the study.

5. Discussion

The research is dedicated to addressing the challenge of synergistically optimizing high-
precision reconstruction and cross-platform immersive communication in the digitization
of cultural heritage. While 3D reconstruction technology has made progress in multiple
fields, it still faces limitations in scene adaptability: a new real-time 3D reconstruction
framework significantly enhances maritime situational awareness by integrating temporal
2D video data. Its optimized dynamic reconstruction pipeline enables real-time compu-
tation on GPU-accelerated embedded devices. However, it lacks the ability to predict
the pose of semi-static objects, making it difficult to capture the geometric continuity of
cultural relics under micro-movement conditions [20]. Visual tracking technology based
on real-time localization and mapping serves as the core support for augmented real-
ity localization. While it can real-time obtain user pose information, it faces inherent
limitations in static scenes due to global localization drift and translation dependency,
leading to insufficient spatial anchoring stability in cultural heritage sites [1]. In the field
of medical imaging, three-dimensional reconstruction methods for brain tumors based
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on magnetic resonance imaging demonstrate efficient and precise visualization capabili-
ties. However, when faced with the multi-layered composite texture structure of cultural
relics, their topological adaptability remains weak [8]. The aforementioned technologies
are either constrained by the integrity of dynamic modeling, limited by the robustness
of static localization, or lack the generalization capability for heterogeneous structures,
and thus fail to bridge the dual demands of millimeter-level precision reconstruction and
multi-modal immersive narrative in cultural heritage digitization.

Therefore, this study aims to establish an integrated system that combines high-
precision digital reconstruction with immersive cultural communication, proposing the
INeRF algorithm and a multi-dimensional design method that integrates AR and VR
technologies. By introducing a multi-level cost-volume fusion module, it achieves collab-
orative optimization of geometric features across scales, and adopts a Gaussian-uniform
hybrid sampling strategy to enhance computational efficiency. Additionally, it combines
AR and VR technologies to construct a three-tier communication system encompassing
data generation, visual expression, and interactive experience. At the technical imple-
mentation level, the system uses multi-sensor fusion to achieve real-time positioning
and environmental perception. It also uses dynamic lighting matching, object posture
adjustment, and content stream optimization to ensure the accurate presentation of vir-
tual objects on different platforms and in different exhibition environments. Finally, the
study validated the feasibility of the integrated AR—VR strategy through field deploy-
ment. Field tests demonstrated that the system could achieve stable virtual overlay and
multimodal interaction in real exhibition spaces, and user feedback showed significant
improvements in cultural information understanding and immersive experiences.

It should be noted that there are still certain limitations in the experimental and
validation of the research. Firstly, the test object mainly focuses on the 3D reconstruction
of static scenes. However, with the continuous expansion of digital demand for cultural
heritage, dynamic cultural heritage such as dance, ceremony, and performance have
gradually become research hotspots. For scenes with temporal variability, relying solely
on static modeling cannot fully capture their temporal features and dynamic details.
Secondly, there are certain limitations to the user research conducted. The current
experiment only involves 30 participants, with a relatively limited sample size and a
relatively small group composition, which may affect the universality of the research
conclusions to some extent and not fully reflect the real experiences of users with different
backgrounds.

Future research will further expand the applicability of the INeRF framework in dy-
namic modeling, such as by introducing temporal consistency constraints and combining
optical flow or skeleton driven motion modeling methods to achieve high fidelity recon-
struction and presentation of dynamic cultural heritage. At the same time, it is necessary
to expand the sample size in user research, increase the dual participation of experts in
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cultural heritage protection and ordinary visitors, in order to obtain a more comprehen-
sive evaluation. With further validation of the system in multi-user collaboration and
dynamic exhibition scenarios, its universality and sustainability in digital protection and
cross platform dissemination of cultural heritage are expected to be greatly improved.

6. Conclusion

Compared with existing methods, the INeRF based method improves reconstruction ac-
curacy by 9%, reduces RMSE to 1.42 mm, and enhances visual immersion by nearly 40%.
AR~VR integration significantly enhances cultural detail recognition and user engage-
ment. Although research still has limitations in terms of static scene adaptability and
small user sample size, future work will explore lightweight network architectures and
broader user testing to achieve more universal applications and higher dynamic scene
adaptability.
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Pseudocode of INeRF algorithm

INeRF algorithm

Input:
IS['C
K: Camera intrinsic matrix
Output:
M: High-precision 3D mesh model (geometry + texture)
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12:
13:
14:
15:
16:

18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
¢ Lygh MSE(C, I) //RGB rendering loss (Eq. (3))
32:
33:
34:
35:
36:
37:
38:

3

—_

—_
g

: // Step 1: Multi-view generation (replaces multi-image input)

¢ Liews < MultiViewGenerator(I.) //Generate N virtual views {Iy, I, ..., In}
: Ocam < EstimateCameraPoses(Iyiews, /) //Estimate virtual view poses
://Step 2: Geometric reasoning (multi-level cost volume fusion)

: Fouei = [] //Initialize multi-scale feature list

: for each [; in Lyjews

for each scale s in [1,2,4]//Multi-resolution feature extraction
F; + CNN_Encoder(I;, scale = s) //Extract features at scale s
Frouiti[s]  Fy
end for
C; < BuildCostVolume(Fyyyiti, Ocam|i]) //Construct cost volume for view i
end for
Fiusea < MultiLevelFusion(Cyy) //Fuse cost volumes (Eq. (4), Fig. 3)
//Step 3: Neural radiance field modeling
for each pixel p in target view:
ray r < GenerateRay(p, ©cam_target)
//Gaussian-uniform hybrid sampling (Eq. (5))
samples «— GaussUniformHybridSampling(r, depth_prior=DepthMap(Frysed ),
i = depth_.mean, o = 0.2, = 0.7) //a: Gaussian sampling weight
o,c + [] //Store density and color
for each sample point  in samples
featsq < Query3DFeature(z, Frusea) //Query 3D local feature
featqi, + Encode(view_dir) //View direction encoding
(02 €z) < MLP,.(featsq, featqi;) //Predict density and color
o.append(oy); c.append(cy)
end for
//Volume rendering (Eq. (2))
ép < VolumeRendering(o, ¢, samples)
ﬁ,, < DepthMapRendering(o, samples) //Predict depth map
end for
//Step 4: Self-supervised optimization

Lgeptn < DepthConsistencyLoss(D, FusedDepth) //Depth self-supervised loss
Ltotal — )\lLrgb + )\2Ldepth //)\1 = 1-07 >\2 =05 (tunablc)

Update MLP,,. via V Lyt //Backpropagation update

//Step 5: High-res texture generation & model simplification

Mhighres < TextureSynthesis(Fiused, MLP4c) //Generate textured dense mesh
M < MeshSimplification(Mpighres, target_faces=50k) //Simplify model
return M
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