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Abstract. In the context of multiple view geometry, images of static scenes are modeled as linear

projections from a projective space P3 to a projective plane P2 and, similarly, videos or images of suitable

dynamic or segmented scenes can be modeled as linear projections from Pk to Ph, with k > h ≥ 2.

In those settings, the projective reconstruction of a scene consists in recovering the position of the

projected objects and the projections themselves from their images, after identifying many enough

correspondences between the images. A critical locus for the reconstruction problem is a configuration

of points and of centers of projections, in the ambient space, where the reconstruction of a scene fails.

Critical loci turn out to be suitable algebraic varieties. In this paper we investigate those critical loci

which are hypersurfaces in high dimension complex projective spaces, and we determine their equations.

Moreover, to give evidence of some practical implications of the existence of these critical loci, we

perform a simulated experiment to test the instability phenomena for the reconstruction of a scene, near

a critical hypersurface.

Key words: critical loci, projective reconstruction, computer vision, multiview geometry.

1. Introduction

As linear projections from P3 to P2 are the natural geometric model for images of static
three-dimensional scenes captured with pinhole cameras, also linear projections from Pk

to Ph, with k > h ≥ 3, can be useful in modelling images of particular dynamic and
segmented scenes [10, 14, 17, 19, 25, 26, 27]. The classical problem of the reconstruction
of a static scene – given multiple images of an unknown scene taken from unknown
cameras, reconstruct the positions of cameras and of scene points – can be generalized
as well in the setting of high dimensional projective spaces. These kinds of problems can
be nicely reinterpreted with tools of projective algebraic geometry, which guarantee that
sufficiently many images and sufficiently many sets of image correspondences allow for
a successful projective reconstruction. The reader is referred to [15] for a wide overview
of the role of projective geometry in Computer Vision.
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4 Critical hypersurfaces and instability for reconstruction of scenes. . .

Nevertheless, even in the classical set up of two projections from P3 to P2 there are
sets of critical points, i.e., points for which the projective reconstruction fails, in the
sense that for each critical configuration of scene points there exist a non projectively
equivalent sets of points and cameras that give the same images in the view planes.

The study of critical loci has been the object of interest for several authors, as shown
in literature: in the case of a single view of a static scene, where the objective is only the
reconstruction of the position of the camera and of the projection matrix (calibration),
Buchanan, [8], showed that all the critical configurations lay on a twisted cubic curve.
If the scene is static, it is well known that the minimum number of images necessary for
a full reconstruction is two. For two views, quadric surfaces were shown to be critical
hypersurfaces in [21, 22]. In the case of three or more views, contributions are found
in [16,20,23]. A comprehensive, detailed analysis both in the case of two and in the case
of multiple views was conducted in [13].

The analysis of dynamic or segmented scenes has led to the study of projections
from higher dimensional space Pk to the projective plane P2, as considered by Wolf and
Shashua in [27], where the additional dimensions of Pk, with respect to the ambient
space, are used to encode information on the evolution of the scene. In this extended
space the scene can be treated as static, providing a more manageable representation of
dynamic or segmented scenes of the usual space. In this context, critical loci in the case
of one view were theoretically described in [6]. The more involved analysis of the critical
loci for projective reconstruction from multiple views in higher dimensions is approached
in [7] and [2] where the general theoretical framework necessary to describe such critical
loci is introduced. This framework showed that critical loci are special algebraic varieties,
namely determinantal varieties, and in [3] the authors give a description of the critical
loci as zero-sets of suitable ideals. More precisely, revisiting the previous framework
in a fully projective context, in [3] critical loci for projective reconstruction in Pk from
n views to P2 turn out to be either hypersurfaces of degree k+1

2 = n, if the ambient
space is odd dimensional, or special determinantal varieties of codimension 2 and degree
(k+4)(k+2)

8 if the ambient space is even dimensional, when n is the minimum number of
views necessary to allow the reconstruction.

Finally, the notion of criticality can naturally be extended to projections from Pk

to image spaces of higher dimension, Ph, h ≥ 3, and the resulting critical loci turn out
to be still determinantal varieties whose codimension in Pk depends on k, h and on the
number n of projections.

In this paper the critical locus for n projections from Pk to Ph, h ≥ 3 is studied under
the hypothesis that n is the minimal number of projections which allow the reconstruc-
tion of the scene, and the dimensions of the ambient space, k, and of the image space,
h, are linked by the relation: k ≡ h − 1 mod h. The interest for this case comes from
the fact that, as shown in Section 3, under this numerical hypothesis the critical locus
turns out to be a hypersurface in Pk.
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This case can be also considered as a generalization of the situation studied in [3]
when k is odd. Indeed, in [3] projections are always performed on a projective plane P2,
hence only static images can be modeled. While in this paper we consider projections on
spaces of higher dimension Ph with h ≥ 3. This generalization allows us to model videos
of moving scenes, producing moving images in an image plane which can be treated as
a static scene in a projective space of dimension h ≥ 3.

Even if in our hypothesis the critical locus is a hypersurface hence it has the higher
dimension allowed in the ambient space, from a practical point of view, it is almost
unlikely that all points and all the cameras constitute a critical configuration. Neverthe-
less, for configuration close to critical ones, the attained reconstructions exhibit a certain
degree of instability, in the sense that small perturbations of the image points change
the reconstructed solution drastically. In order to validate this assertion, following the
setup conceived in [7], a simulated experiment for projections P5 → P3 is performed.

The paper is organized as follows: in Section 2 notations are fixed, some basic def-
initions from projective algebraic geometry are recalled and a brief introduction to the
general computer vision setting is offered for the convenience of the reader. In Section 3
the general theoretical framework for critical configurations and critical loci is described.
Section 4 is dedicated to the study of the critical hypersurface: in particular its equation
is determined and its singularities are investigated. In Section 5 the instability phe-
nomena are shown in a particular case, i.e. for projections P5 → P3, with the help of
Matlab [24].

2. General results and preliminaries

In this section we fix notation and terminology, we recall some definitions from projective
algebraic geometry which will be useful in the sequel and we give a short overview of
classical facts in computer vision related to the problem of projective reconstruction of
scenes and cameras from multiple view.

2.1. Notation and basic definitions from Algebraic Geometry

Given a matrix A = [aij ] with real or complex entries, AT denotes its transpose. The
j-th row of A is denoted by aj . Moreover, DRi1,...,in(A) denotes the matrix obtained
from A by deleting rows ai1 , . . . ,ain .

If A is the set of the first k integers {1, 2, 3, . . . , k}, we denote by A×n the cartesian
product ofA with itself n-times, i.e.A×n = A×· · ·×A = {1, 2, . . . , k}×· · ·×{1, 2, . . . , k}.

Now we give some basic definitions in Algebraic Geometry which are useful to un-
derstand the following sections. We shall limit ourselves to the case in which the ground
field is the field of complex numbers, C. However, for definitions and basic properties
concerning projective algebraic varieties, we suggest, for example, [12] or [18].
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6 Critical hypersurfaces and instability for reconstruction of scenes. . .

Following standard notation, Pk denotes the k-dimensional real (or complex) pro-
jective space and (x1, x1, ..., xk+1) the homogeneous coordinates of its points. Once
a projective frame is chosen for Pk, coordinate vectors X of points in Pk are written
as columns, thus XT = (X1, X2, ..., Xk+1). In this context, whenever multiplication by
a non-zero scalar is utilized, the scalar will be real or complex, accordingly. A linear
projective subspace Λ ⊆ Pk spanned by m+1 linearly independent points will be called
m-space or subspace of dimension m. By convention the empty set is considered as
a (−1)-space.

A projective algebraic variety in the projective space Pn is substantially a subset of
points of Pn defined by the common zeros of a family of homogeneous polynomials.

We need some notions which are basic to study algebraic varieties. Their definitions
need a certain amount of technical apparatus, hence we try to give here an informal
approach, following [12].

Given a homogenous ideal I ⊂ C[X1, . . . , Xk+1], V (I) denotes the projective alge-
braic variety defined as V (I) = {X ∈ Pk : f(X) = 0 for all f ∈ I}. Details on this
standard correspondence between ideals and varieties can be found for example in [9].

An algebraic variety is said to be irreducible, if it cannot be expressed as the union
of two non-empty proper sub-varieties. Every variety can be expressed as a finite union
X = X1∪X2∪...∪Xr of irreducible subsets (subvarieties) of X which are called irreducible
components of X .

The projective varieties contained in Pn are the closed sets of a topology called the
Zariski topology of Pn. The same name will be given to the topology induced by the
Zariski topology on the subsets of Pn.

In the Zariski topology, the non empty open sets are very big (they are dense), since
the closed sets are the common zeros of some polynomials. This notion is necessary
to introduce the notion of general (or, sometimes, generic). Indeed when a family
{Xp}p∈Σ of objects (points, linear spaces, varieties,...) is parameterized by the points of
an irreducible projective algebraic variety Σ, the expression “the general object of {Xp}
has the property P” means that “the subset of points p ∈ Σ such that the corresponding
object Xp has the property P , contains a Zariski open dense subset of Σ” (see for
example [12, p. 53]). For example in the family of all the conics in P2, the general conic
is irreducible, since the requirement to be degenerate corresponds to a closed condition
in the Zariski topology of the family of conics.

The dimension, dim(X ), of an irreducible projective variety X in Pn is the integer k
such that the general n− k-plane of Pn intersects X in a finite set of points.

If the variety is reducible, its dimension is the maximum of the dimensions of its
irreducible components.

A projective variety defined by a single homogeneous polynomial is called an hyper-
surface of Pn and it has dimension n − 1. A hypersurface X is the zero locus V (I) if I
is a principal ideal, i.e., an ideal generated by only one element.
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The degree of a k-dimensional projective variety X in Pn is the number (with mul-
tiplicity) of points of intersection of X with a general (n − k)-plane of Pn (from the
definition of dimension, this set of points is finite).

For instance a projective curve is a projective variety of dimension one. The degree
of a projective curve in P3 is the number of intersection points of the curve with a generic
2-plane of P3.

A point X of an irreducible projective variety X defined by a family of homogenous
polynomial Fi is said to be singular if the Jacobian matrix [∂Fi

∂xj
] has rank lower than

maximum in X. Otherwise the point is a smooth point. The variety X is smooth if it
has no singular points. Notice that in a family of varieties the condition to be singular
is a closed condition in the Zariski topology.

When the variety X is a hypersurface, a point X ∈ X is singular if and only if each
line passing through X intersects X with multiplicity bigger than 1.

2.2. General setting: scenes, cameras, views

For the convenience of the reader, in this subsections we succinctly recall the concepts of
pinhole cameras, centers of projection, views, reconstruction, and critical configurations.
For more details we refer the reader to [15] for the classical case of scenes in P3, and
to [2] for the general case of scenes in Pk.

Given a scene, i.e., a set of points in the ambient 3D−space, the action of taking
a picture can be modelled by maps that are linear projections from the space of the
scene to the plane of the image, the so-called view. It is therefore very convenient and
natural to assume that the ambient space is embedded in projective 3−space P3 and,
from the algebraic geometric point of view, it is more convenient to choose a complex
ambient space, instead of the real one. Therefore, from now on, all projective spaces are
assumed to be complex unless specifically mentioned.

A (pinhole) camera can be represented as a central projection P of points in P3,
from a point C, the center of the camera, onto the view plane P2. With respect to the
homogeneous coordinates X ≡ (X1, X2, X3, X4)

T and x ≡ (x1, x2, x3)
T in P3 and P2

respectively, the projection mapping P : P3 \ {C} → P2 can be described by µx = PX,
where µ is a non-zero constant and the 3 × 4-matrix P has maximal rank. The center
of projection C is the right annihilator of P. As customary, the projection map and one
of its matrix representations in a chosen frame are identified. The set of points in P3

having the same image under projection P is a line which is called a ray.

When several images of the same scene {Xj} are taken with different cameras Pi,
i = 1, . . . , n, the images xij = Pi(Xj), i = 1, . . . , n of the same point via different cameras
are called corresponding points.

As mentioned above, several authors have introduced generalizations of the classical
set up, dealing with certain types of dynamic or segmented scenes, that can be profitably
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8 Critical hypersurfaces and instability for reconstruction of scenes. . .

modelled through the framework of multiple view geometry in higher dimensional spaces.
In analogy with the situation in P3, a scene in Pk is a set of N points {Xj} ∈ Pk.
A camera is defined as a projection from Pk to a projective space Ph i.e. by a linear map
P associated to a full-rank (k + 1) × (h + 1) matrix P , whose null space is the center
of projection. As before, a ray is the set of points that are mapped to the same point
by P . In this case the center and the rays are linear subspaces of dimension k − h − 1
and k − h respectively. The notion of corresponding points generalizes to corresponding
subspaces in the higher dimensional setting: proper linear subspaces Li, i = 1 . . . n, of
different views, are said to be corresponding if there exists at least a point X ∈ Pk such
that Pi(X) ∈ Li for all i = 1 . . . n.

2.3. Fundamental matrices and Grassmann tensors

In the classical situation of two cameras P1 and P2 taking photographs of a scene
{Xj} ⊂ P3, the intrinsic relationships between corresponding points in the two view
planes are summarized by a 3×3 matrix F of rank 2, the fundamental matrix associated
to the pair of cameras P1 and P2. (see [15] for a thorough exposition.)

Generalizations of the notion of fundamental matrix for two view planes in P3, are
given in two different ways. On one side, a generalized fundamental matrix is defined in [4]
to express the relation between corresponding points in two image spaces Phi , i = 1, 2,
in Pk. On the other side, Hartley and Schaffalitzky in [17], introduced a class of tensors,
called Grassmann tensors, with the purpose of translating into appropriate equations the
relationships among corresponding points, for multiple views in higher ambient spaces.
As in the case of the fundamental matrix, Grassmann tensors are determined by the
projection matrices and, vice versa, the projection matrices can be reconstructed from
the Grassmann tensors, up to projective transformation of the ambient space. We recall
here the basic elements of their construction and for more details see also [2, 17].

Consider a set of projections Pj : Pk \ CPj
→ Phj , j = 1, . . . , n, hj ≥ 2 with centers

in general position. Moreover consider a profile, i.e a partition (α1, α2, . . . , αn) of k + 1,
i.e. 1 ≤ αj ≤ hj for all j, and

∑
αj = k + 1.

Let {Lj}, j = 1, . . . , n, where Lj ⊂ Phj , be a set of general sj-spaces, with sj =
hj −αj , and let Sj be the maximal rank (hj +1)× (sj +1)−matrix whose columns are a
basis for Lj . By definition, if all the Lj are corresponding subspaces there exists a point
X ∈ Pk such that PjX ∈ Lj for j = 1, . . . , n. In other words, there exist n vectors
vj ∈ Csj+1 j = 1, . . . , n, such that:

S1 0 . . . 0 P1

0 S2 . . . 0 P2

...
...

. . .
...

...
0 . . . 0 Sn Pn



v1

v2

...
vn

X

 =


0
0
...
0

 . (1)
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The existence of a non trivial solution {v1, . . . ,vn,X} for system (1) implies that the
system matrix has zero determinant. This determinant can be thought of as an n-linear
form, i.e. a tensor, in the Plücker coordinates of the spaces Lj . This tensor is the Grass-
mann tensor. In the cases of two views the Grassmann tensor turns out to be the
generalized fundamental matrix.

2.4. Projective reconstruction

While reconstruction problems can be posed in several geometric settings as metric,
affine, or projective, this work is conducted entirely within the projective framework
and therefore reconstruction will always be assumed to be achieved up to projective
transformations.

Within a projective setting the camera center is the only property of the camera which
is preserved under homographies of the view plane, hence projective reconstruction of
cameras consists only of the determination of their centers.

In this subsection we are working under the assumption that the centers CPj
of the

projections we consider are in general position. In the examples we will deal with, the
technical assumption of centers being in general position implies that

⋂
j CPj = ∅. Notice

that reconstruction of a scene would be impossible if
⋂

j CPj ̸= ∅ because a scene-point X
would be indistinguishable from any other point in the linear projective space generated
by X and

⋂
j CPj

.

Given n views of a scene {Xj} ⊂ Pk, the recovery of the scene structure has two
consecutive stages: the reconstruction of the camera centers, followed by the reconstruc-
tion of the scene, i.e., the position of the points {Xj} in Pk, once cameras have been
determined.

To perform both these tasks one needs to have a sufficient number of corresponding
points in a suitable number of views. In the classical case of P3, one easily sees that
two views and eight corresponding points allow the reconstruction of the fundamental
matrix F by solving a linear system. Once F is determined, projection matrices can also
be reconstructed, [15, Section 8.5.3]

In the more general case of multiple views and higher dimensional spaces, reconstruc-
tion is significantly more involved and requires the use of Grassmann tensors, see [2,17].

Assuming enough scene points are given, in general enough mutual positions, a first
natural question is to determine the minimum number of views necessary to allow recon-
struction. In this context two numbers play an important role: the minimum number ωk

of views necessary to reconstruct cameras Pi and a minimum number µk of views neces-
sary to reconstruct the scene {Xj} in Pk, when the position of the centers are assumed
to be known.

Both these numbers are implicitly given in [17], as the numerical conditions for the
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10 Critical hypersurfaces and instability for reconstruction of scenes. . .

existence of a suitable Grassmann tensor, and explicitly computed in [2] under the hy-
pothesis that all the image spaces have the same dimension h. For the convenience of
the reader, we recall them.

Assume that the ambient space is Pk and all the target spaces have the same dimen-
sion, i.e. h1 = h2 = · · · = hn = h. Then the following propositions hold [2]:

Proposition 1. Assume k − 1 = σh+ λ, where σ and λ are non negative integers and
λ ≤ h−1. Assuming that cameras are known (up to projective equivalence), the minimum
number of views necessary to reconstruct a scene for projections from Pk to Ph is

µk,h = σ + 1 .

Proposition 2. Assume k = sh+l, where s and l are non negative integers and l ≤ h−1.
The minimum number of views necessary to reconstruct the cameras for projections from
Pk to Ph is

ωk,h = s+ 1 .

2.5. Critical loci

As discussed in the previous section, sufficiently many views and sufficiently many sets
of corresponding points in the given views, should allow for a successful projective recon-
struction. This is generally true, but it is very easy to notice that even in the classical
set up of two projections from P3 to P2 one can have non projectively equivalent pairs of
sets of scene points and cameras that produce the same images in the view planes, from
a projective point of view, thus preventing reconstruction. Such configurations and the
loci they describe are referred to as critical. Critical loci arising in the reconstruction
from a single view, when only the camera can be reconstructed, are fully treated in [6].
A detailed treatment of critical loci in P3 is found in [13], where the classical result of
the criticality of a quadric surface in the case of 2-views, is analyzed.

A partial treatment of critical loci for multiple views in higher dimension is given
in [2]. As mentioned in the introduction, in this paper a general framework to study
critical loci was proposed, working in a setting in which affine charts had been chosen in
each view. Critical loci were shown to be special determinantal varieties, and particular
attention was given to the case of P4 in which a Bordiga surface was obtained as essential
component of the critical locus. This case has been further investigated in a fully projec-
tive context in [5] and in [1]. Finally, critical loci for multiple views, i.e., for projections
from Pk to P2, are extensively considered in [3], where the varieties arising as critical
loci turns out to be hypersurfaces of degree r in P2r−1 or varieties of codimension 2 and

degree (r+2)(r+1)
2 in P2r. Moreover, the ideal of these varieties is investigated.

We recall here the formalization of the notion of critical configuration and locus. Let
us suppose to have n views of a static scene in Pk, consisting of a set of N ≥ k + 3
points {Xj} in Pk. These n views correspond to n matrices Pi, i = 1, ..., n, of dimension
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(h+1)×(k+1) and maximal rank which give the projections xij = Pi(Xj) on the image
h-spaces.

Definition 1. A set of points {Xj}, j = 1, . . . , N, N ≥ k+3, in Pk is said to be a critical
configuration for projective reconstruction from n-views if there exist a non-projectively
equivalent set of N points {Yj} ⊂ Pk and two collections of (h + 1) × (k + 1) full-rank
projection matrices Pi and Qi, i = 1, . . . , n, such that, for all i and j, PiXj = µijQiYj,
µij ̸= 0. The two sets {Xj} and {Yj} are called conjugate critical configurations, with
associated conjugate matrices {Pi} and {Qi}.

According to [3], the natural setting to study the locus of all critical configurations
associated to sets of conjugate matrices is the product variety Pk × Pk, endowed with
the two standard projections π1 and π2 onto the two factors.

Let {Xj ,Yj} be conjugate critical configurations as above, with associated conjugate
matrices {Pi} and {Qi}.
Definition 2. If {(Xj ,Yj)} in Pk × Pk are pairs of conjugate critical configurations,
with associated conjugate matrices {Pi} and {Qi}, the associated unified critical locus for
projective reconstruction from n-views in Pk × Pk is the subscheme Uk = Uk

({Pi},{Qi}) ⊆
Pk × Pk defined by the equations PiXj = µijQiYj, given in Definition 1.

Critical loci appearing in practical applications, and studied in the literature, are the
projections of Uk onto each factor. This motivates the following definition:

Definition 3. Let Uk be the unified critical locus for projective reconstruction from
n-views with associated conjugate matrices {Pi} and {Qi}, and let π1 and π2 be the
natural projection from Pk × Pk onto each factor. The corresponding critical locus and,
respectively, conjugate critical locus for projective reconstruction from n-views in Pk are
the subschemes:

X k = X k
({Pi},{Qi}) = π1(Uk)

or respectively
Yk = Yk

({Pi},{Qi}) = π2(Uk) .

3. The critical hypersurface in the case k ≡ h− 1 mod h

Explicit equations of the critical locus X k can be obtained directly making use of the
Grassmann tensor introduced in the previous section.

Indeed, the Grassmann tensor T P1,...,Pn encodes the algebraic relations between cor-
responding subspaces in the different views of the projections P1, . . . , Pn. Hence by def-
inition of critical set, if {Xj ,Yj} are conjugate critical configurations, then, for each j,
the projections P1Xj , . . . , PnXj are corresponding points not only for the projections
P1, . . . , Pn, but for the projections Q1, . . . , Qn, too.

In this section we explicitly construct the Grassmann tensor for n projections from
Pk to Ph, under the hypothesis that k = h − 1 mod h. Then we use this tensor to
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12 Critical hypersurfaces and instability for reconstruction of scenes. . .

get the generators of the ideal of X k, which, under our hypothesis, comes out to be
a hypersurface.

The condition k ≡ h− 1 mod h, together with the hypothesis that n is the minimum
number of views to get a reconstruction, implies that k = nh− 1 and the only possible
profile for the Grassmann tensor is (h, h, . . . , h).

Using the Grassmann formula we get that, if all the centers are in general position,
dim(

⋂
j CPj) = k − n(h+ 1) < 0, hence the reconstruction is possible.

In this case L1, L2, . . . , Ln are points and equation (1) specializes to
S1 0 . . . 0 P1

0 S2 . . . 0 P2

...
...

. . .
...

...
0 0 . . . Sn Pn


︸ ︷︷ ︸

T
P1,...,Pn
L1,...,Ln


λ1

λ2

...
λn

X

 = 0 , (2)

where Sj = (x1,j , . . . , xh+1,j)
T are the homogeneous coordinates of points Lj . The left

matrix TP1,...,Pn

L1,...,Ln
becomes a square one of dimension n(h+ 1)× n(h+ 1). If in addition

L1, . . . , Ln are corresponding points, the above linear system has a nontrivial solution
{λ1, . . . , λn,X} and therefore

det(TP1,...,Pn

L1,...,Ln
) = 0 . (3)

Moreover, the case X = 0 doesn’t occur. Otherwise, there would exist a certain ī for
which λī ̸= 0 and we could get 0 = PīX = λīxī which implies xī = 0, a contradiction.

In other words, for the chosen profile (h, . . . , h), one sees that det(TP1,...,Pn

L1,...,Ln
) = 0 is

indeed the n–linear constraint between the homogeneous coordinates (x1,j , . . . , xh+1,j)
of the points Lj so to let them be correspondent.

Analogously, if L′
1, . . . , L

′
n is a set of corresponding points in n views, for a set of

projections Q1, . . . , Qn, we get:
S′
1 0 . . . 0 Q1

0 S′
2 . . . 0 Q2

...
...

. . .
...

...
0 0 . . . S′

n Qn


︸ ︷︷ ︸

T
Q1,...,Qn

L′
1,...,L′

n


λ1

λ2

...
λn

X

 = 0 , (4)

and the n linear relation between L′
1, . . . , L

′
n is given by the vanishing of det(TQ1,...,Qn

L′
1,...,L

′
n
).

Considering as corresponding spaces L′
1 = P1X, . . . , L′

n = PnX, expressed in coordi-
nates as S′

j = (p1
jX, . . . ,ph+1

j X)T , with X any point in the critical locus, one gets that
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the determinant of the following matrix must vanish:

M ′ =



p1
1X
...

ph+1
1 X

0 . . . 0 Q1

0

p1
2X
...

ph+1
2 X

. . . 0 Q2

...
...

. . .
...

...

0 0 . . .

p1
nX
...

ph+1
n X

Qn



. (5)

Hence the determinant of M ′ generates the ideal of the critical locus X k, as X has to
satisfy no other constraint. So we get that the ideal is principal and we have got the
following:

Theorem 1. Let k = nh−1 and let n be the number of views. Then X k is a hypersurface
of degree n, whose equations is

g =
∑

(j1,...jn)∈A×n

pj1
1 X · · ·pjn

n Xdet(DRj1,...,jn(Q)) , (6)

where Q is the n(h + 1) × (k + 1) matrix given by staking in column the projection
matrices Qj:

Q =


Q1

Q2

...
Qn

 . (7)

As already noted in the Introduction, it is worth observing that the case analysed
in Theorem 1 is a generalization to projections to Ph, h ≥ 3, of the case, discussed
in [3, Section 4] of projections on P2. Indeed the equation 6 obtained above for the
hypersurface X k is analogous to the one computed in [3, equation (8)], but the techniques
used are very different. Indeed the procedure followed in [3] is much more involved as
it conducts to get the generators of the principal ideal via the study of the actions of
goups on the maximal minors of suitable matrices. While here we get the generator of
the principal ideal via a direct application of the Grassmann tensor.
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4. Singularities of the hypersurface X k

In this section we investigate the singularities of X k and we prove the following propo-
sition:

Proposition 3. The points of Pk which belongs to at least two center of projections are
singular points for the hypersurface X k, in other words

⋃
i,j=1...n

(CPi
∩ CPj

) ⊂ Fk ,

where CPi
and CPj

denotes the centers of the projections Pi and Pj, respectively, and
Fk denotes the singular locus of X k. Moreover if k ≥ 2(h + 1) then Fk ̸= ∅, hence X k

is singular.

Proof.The thesis holds for a generic hypersurface of equation

f =
∑

(j1,...jn)∈A×n

aj1,...jnp
j1
1 X . . .pjn

n X , (8)

where the coefficients aj1,...jn ∈ C are not all zero. Indeed, the structure of the coefficients
aj1,...jn , which for the equation of X k are the maximal minors of the matrix Q, is not
relevant for the implication of the proposition; hence in the following we will consider
a hypersurface V (f) for arbitrary coefficients aj1,...jn .

First we can notice that all the projection centers CPi
, i = 1 . . . n, lies on V (f).

Indeed each CPi
is a (k − h− 1)-linear subspace of Pk, given by

CPi
=

⋂
j=1...h+1

V (pj
iX)

and, for each fixed i, every summand of f contains one pj
iX as a factor.

Then we show that CPi ∩CPj ⊆ Fk, for each i, j = 1 . . . n, i ̸= j. Indeed, Fk is the set
of points Ȳ ∈ X k such that each line passing through Ȳ intersects X k with multiplicity
bigger than 1.

Let l =< Ȳ , Z̄ >= {λȲ + µZ̄|(λ : µ) ∈ P1} a line through Ȳ ; the intersection points
l ∩ X k are computed via the solutions λ and µ of the equation:
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∑
(j1,...jn)∈A×n

aj1,...jnp
j1
1 (λȲ + µZ̄) . . .pjn

n (λȲ + µZ̄) =

∑
(j1,...jn)∈A×n

aj1,...jn(λp
j1
1 (Ȳ ) + µpj1

1 (Z̄)) . . . (λpjn
n (Ȳ ) + µpjn

n (Z̄)) =

λn
∑

(j1,...jn)∈A×n

aj1,...jnp
j1
1 (Ȳ ) . . .pjn

n (Ȳ )

+λn−1µ
∑

(j1,...jn)∈A×n

aj1,...jnp
j1
1 (Ȳ ) . . .pjs

s (Z̄) . . .pjn
n (Ȳ )

+λn−2µ2
∑

(j1,...jn)∈A×n

aj1,...jnp
j1
1 (Ȳ ) . . .pjs

s (Z̄) . . .pjt
t (Z̄) . . .pjn

n (Ȳ )

+ . . . = 0 ,

(9)

with (λ, µ) ̸= (0, 0) and s, t = 1, . . . , n.

Obviously we get that Ȳ ∈ Fk ⇐⇒ µ = 0 is a double solution of (9) ⇐⇒ the
coefficient of λn−1µ vanishes for all Z̄, being the coefficient of λn zero, as Ȳ ∈ X k. If Ȳ
belongs to at least two centers, this condition is verified.

Moreover, computing the dimension of CPi ∩ CPj in Pk via the Grassmann formula,
we get that dim(CPi

∩CPj
) ≥ 0 if and only if k ≥ 2(h+1), hence, under this assumption,

the hypersurface k ≥ 2(h+ 1) is singular.

5. Experimental validation and instability results

This section is devoted at reporting numerical results to demonstrate the occurrence of
instability phenomena near critical loci. Although, from a practical point of view, it is
almost unlikely that all points and all the cameras constitute a critical configuration,
nevertheless, for configuration close to critical ones, the attained reconstructions exhibit
a certain degree of instability, in the sense that small perturbations of the points change
the reconstructed solution drastically.

In order to validate the above discussion, following the setup conceived in [7], an ex-
periment for projections P5 → P3 is performed. Specifically, we illustrate the instability
of the reconstruction of a dynamic scene modelled by two projections from P5 to P3 by
performing the following steps.

•Random generation of projection matrices

Two pairs of projections matrices {P1, P2}, {Q1, Q2} are instantiated: without loss
of generality P1 is chosen as the canonical projection, the remaining projections are
randomly generated with integer entries:
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P1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 , P2 =


−3 0 0 −1 2 1
−1 −1 0 1 0 0
0 3 −2 0 0 −1
3 2 −2 2 0 0

 ,

Q1 =


0 −1 1 1 0 0
1 0 0 0 1 −2
0 3 0 0 −1 0
0 2 1 −2 −1 −1

 , Q2 =


0 2 0 0 1 −4
−1 1 2 1 0 0
1 0 0 1 0 0
2 1 −1 0 −2 −1

 .

•Equations of the critical locus

The ideal of the critical locus for the projection matrices {P1, P2}, {Q1, Q2} is deter-
mined, using Macaulay2 [11].

•Random generation of critical points

A set X of 500 points on the critical loci is randomly generated; this set of crit-
ical points on the corresponding algebraic set was obtained regarding the defining
polynomial as a real valued function and finding randomly distributed zeros through
numerical routines in Matlab [24]1.

•Perturbation of the critical points

The points in X are perturbed with increasing levels of zero-mean gaussian noise, in
particular we considered several levels of standard deviation σj , and obtained various
perturbed configurations. Precisely, we considered 30 different values of standard
deviation logarithmically spaced between decades 10−16 and 10−14.

•Projection of the perturbed critical points

For each perturbed configuration, i.e. for each σj , j = 1, . . . , 30, the noisy configura-
tions of points are projected in P3 using the camera matrices previously introduced.

• Fundamental matrix estimation

Critical points are projected on the two views giving rise to pairs of corresponding
points. These correspondence are hence used to estimate a generalized fundamental
matrix Fpoints. The procedure [4] employed to compute Fpoints follow closely the
classical one to estimate the fundamental matrix in the case of projections from P3

and P2: every pair of corresponding points give rise to a constraint on the entries of
Fpoints which in turn are determined by solving an overdetermined linear system. As
a reference, a generalized fundamental matrix Fcams was also computed directly from
the cameras. This matrix is not affected by the instability phenomenon.

1Code available upon request.
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•Estimating instability

Finally we compare the fundamental matrix obtained from correspondences with the
one computed from cameras. In order to assess the quality of the reconstructions
computed from the perturbed point clouds, we compared the two fundamental ma-
trices, measuring their antipodal distance d(Fpoints, Fcams). In other words, as both
Fpoints and Fcams are defined up to a multiplicative factor, we identified the space
of generalized fundamental matrices with a quotient of the unit sphere in R16 and
evaluate the distance between the corresponding two points as:

d(A,B) = min {∥A−B∥, ∥A+B∥} (10)

•Displaying the results

The distribution of these distances with respect to the noise level is reported in
Figure 1, where the average angular distance in 1000 trials is reported for each σj .

It can be appreciated that when the points of the scene lie near the critical locus – i.e.
low values of noise – the instability of the reconstruction ends in the fact that Fpoints is
far from Fcams and their respective distance are affected by great variance. Therefore,
the flawed estimation of Fpoints determines an unreliable reconstruction of a point cloud
close to be critical. On the contrary, when the points are far away from the neighborhood

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×10
-14

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

noise, σj

distance, d

Fig. 1. The antipodal distance d(Fpoints, Fcams), with respect to different levels of noise
σj , in points on a critical configuration. The average distance is the blue line
plot, the width of the shadowed area corresponds to ±standard deviation of the
antipodal distances distribution.
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of the critical locus – high values of σ – the fundamental matrix Fpoints estimated from
the correspondences is consistently close to the reference Fcams, and can be profitably
used to start the reconstruction process.

This phenomenon is absolutely consistent with the situations analyzed in the other
papers [2, 6, 7]: as expected, the larger the distance of points from the critical locus is,
the stabler the reconstruction gets.

6. Conclusion

In this paper we study the critical locus for the projective reconstruction of a set of
points, in the case of n projections from Pk to Ph for k > h ≥ 3, where n is the minimum
number of projections which allows the reconstruction (Propositions 1 and 2) and the
dimensions of the ambient space, k, and of the image space, h, are linked by the relation:
k ≡ h−1 mod h. Under this numerical hypothesis (Section 3) the critical locus turns out
to be a hypersurface in the ambient space, hence it has the higher dimension allowed. The
main theoretical result of the paper is contained in Section 3, where, using the notion
of Grassmann tensors previously recalled, the equation of the critical hypersurface is
obtained in Theorem 1.

Finally, to give evidence of some practical implications of the existence of critical
loci, we perform a simulated experiment, in the case of two projections from P5 to
P3, to show the instability phenomena for the reconstruction of a scene near a critical
hypersurface. Indeed, for points close to the critical locus, the attained reconstruction
exhibits a certain degree of instability, in the sense that small perturbations of the points
change the reconstructed solution drastically.
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