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Abstract. MRI scanner captures the skull along with the brain and the skull needs to be removed
for enhanced reliability and validity of medical diagnostic practices. Skull Stripping from Brain MR
Images is significantly a core area in medical applications. It is a complicated task to segment an image
for skull stripping manually. It is not only time consuming but expensive as well. An automated skull
stripping method with good efficiency and effectiveness is required. Currently, a number of skull stripping
methods are used in practice. In this review paper, many soft-computing segmentation techniques have
been discussed. The purpose of this research study is to review the existing literature to compare the
existing traditional and modern methods used for skull stripping from Brain MR images along with
their merits and demerits. The semi-systematic review of existing literature has been carried out using
the meta-synthesis approach. Broadly, analyses are bifurcated into traditional and modern, i.e. soft-
computing methods proposed, experimented with, or applied in practice for effective skull stripping.
Popular databases with desired data of Brain MR Images have also been identified, categorized and
discussed. Moreover, CPU and GPU based computer systems and their specifications used by different
researchers for skull stripping have also been discussed. In the end, the research gap has been identified

along with the proposed lead for future research work.
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1. Introduction

The rich advancement in computing world has made it easier for medical experts to
diagnose a particular disease or abnormality in living bodies. There are numerous com-
puter aided diagnostic techniques which are helping doctors, bio-scientists and other
medical investigators to understand the novel issues and their proposed solution. Image
processing is the backbone of any computer aided mechanism and there are numerous
techniques being used in medical field to investigate the human body out of which com-
mon techniques are X-rays, Computed Tomography, Magneto Encephalography, Positron
Emission Tomography, and the most common and popular technique is the Magnetic
Resonance Imaging (MRI) [29}[54].

Primary competitive advantages of using MRI over other types include its quality of
being non-invasive and the fact that it provides more detailed, deep and comprehensive
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images of organs [3] than the majority of other methods. There are four common modali-
ties of MR images, including Longitudinal Relaxation Time (T1), Transverse Relaxation
Time (T2), Proton Density (PD) and Fluid Attenuated Inversion Recovery (FLAIR) [62].

Scanners of MRI scan the body and create numerous images from multiple rotated
axes, due to which, different views are reported for diagnosis. The 3D nature of MRI
helps taking the view of the body from left to right, top to down, and from front to
back [34456]. The common types of anatomical orientation are Coronal plane from front
to back; Sagittal plane from left to right; and Transversal plane from top to down [56].

The brain is a very sensitive part of the human body as it is made of soft tissues which
are a combination of cerebrospinal fluid and fats. Such a complex system is fully covered
with the strongest bone of the body called the skull [44]. MRI scanners capture the skull
which needs to be removed for clearer understanding of the actual brain tissues [50].
The process of removing the skull from the brain images is called skull stripping. The
more precise and efficient skull stripping ensures better help for clinical diagnosis.

This research study consists in the review of existing methods available for skull
stripping from brain MR images along with their merits and demerits. Moreover, identi-
fying the research gap in order to understand the current status and get lead for future
research work also belongs to the scope of the present study.

1.1. Significance of the study

This research study provides understanding of the existing research gap and provides
an abstraction of the experimental framework for future experiments generally in the
field of digital image processing and most specifically in the domain of brain MR images
for removing skull and other non-brain cells, in order to enhance the readability and
understanding of brain MR images by medical experts for diagnostic purposes.

1.2. Methodology

This research study is carried out using semi-systematic review of literature pertaining
to skull stripping methods. Fully systematic review requires extensive resources as well
as at least 18 months to complete. Both said constraints provided the rationale to opt
for the semi-systematic approach instead of the fully systematic one. Reviewed research
studies are available in the respective cited journals for analyses using the meta-synthesis
approach. Thematic convergence of different skull stripping methods has been assessed as
the outcome of meta-synthesis on the basis of shared properties or architectural similarity
between them.
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2. Thematic convergence of skull stripping methods

Thematic convergence of developed, reviewed and discussed methods of skull stripping
and image processing by different authors in latest research studies has been discussed
in temporal order, i.e. older to newer.

2.1. Traditional methods

The reign of traditional methods have been popular in the field of image processing
until the invention of neural networks. The convergence of traditional methods has been
synthesized in the following subsections.

2.1.1. Traditional methods recently studied

Histogram Analysis and Deformable Model methods comprising the Thresholding and
Simplex Mesh respectively have offered significantly positive results on the scale of Jac-
card Index = 0.904, Dice Similarity Coefficient (DSC) = 0.95, Specificity = 0.985 [17].
Researchers experimented with Multi Atlas method [11] and Atlas model [20] with sig-
nificant results of DSC = 0.9802, Specificity = 0.9908, Sensitivity = 0.9802, Average
Distance = 0.66 and Hausdorff Distance = 7.72. Binarization method [40] including
the irrational filter has provided significant results on the scale of DSC = 0.942, Sen-
sitivity = 0.912, Specificity = 0.971, Overlap Fraction = 0.958 and Extra Fraction =
0.092. The said method remained competitive to the Otsu’s method [53]. Another tradi-
tional method named as S3 [48] based upon brain anatomy and image intensity has also
provided significant results on the scale of Jaccard Similarity > 0.99 and 0.95 for data-
sets taken from BrainWeb [5[6] and IBSR [59] databases respectively; moreover, three
measures of DSC, Sensitivity and Specificity > 0.99 for both data-sets. Mathematical
Morphology [2] based upon erosion and dilation have also provided better results for
skull stripping.

The summary of above discussed traditional methods recently experimented with is
presented in Table

2.1.2. Competitive methods in comparison with traditional methods

Common state of the art competitive methods in comparison with traditional methods
include Brain Extraction Tool (BET) [11,[17,[48], Brain Surface Extractor (BSE) [17.48|,
Robust Brain Extraction (ROBEX) [11148]. Afore-cited research studies have offered bet-
ter results in terms of performance measures such as Precision, Accuracy, Effectiveness
and Efficiency (PAEE) while comparing with aforementioned state of the art methods.

2.1.3. Data and systems used for traditional methods

Most common data-sets taken for experimenting with the most recently tested traditional
methods include Internet Brain Segmentation Repository (IBSR) [2}[11}/17,[40L/48}/59],
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Tab. 1. Summary of traditional methods

Author & Methods Backbone archi- Measures calcu- Methods Data type
year studied tecture lated compared
Galdames Histogram Thresholding and Jaccard Index .904; HWA; BET | T1 from
et al. Analyses Simplex Mesh DSC .9500; Speci- and BSE BrainWeb
(2012) [17) and De- ficity .985; Sensitiv- and IBSR
formable ity .9900
Model
Doshi et al. Multi Atlas | Single Atlas and | DSC .9802; Speci- | BET and | T1 from
(2013) [11) Model Multi Atlas ficity .9908; Sen- | ROBEX ADNT;
sitivity .9802; Av- IBSR  and
erage Distance .66; OASIS
Hausdorff Distance
7.72
Huang Atlas Model | Unified Segmenta- | Tissue Correlation | Intra- T1 from
and Parra tion Algorithm Map method BrainWeb
(2015) [20] and Marom
Bikson
Moldovanu Binarization Irrational Filter DSC .942; Senstiv- Otsu 142]; T1, T2;
et al. | Mehtod ity .912; Specificity | Sauvola [51]; | GAD  and
(2015) [40] .971; Overlap Frac- | Niblack |[41]; | PD from
tion .958; Extra | Bernsens [1] | WBA; T2
Fraction .092 methods from IBSR
Roy and | S3 Brain Anatomy and | Jaccard Similarity | BET; T1 from
Mayji Image Intensity .99 for BrainWeb | BSE and | BrainWeb;
(2015) [48] and .95 for IBSR; | ROBEX T1 from
DSC .99; Senstivity IBSR
.99; Specificity .99
Bhadauria Mathe- Erosion and Dila- | N/A Intra- WBA  and
et al. | matical tion method IBSR
(2020) [2] Morphology

BrainWeb [5,/17,/20,/48], and Open Access Series of Imaging Studies (OASIS) [11,27,
28]. Ouly T1 weighted brain MR images both simulated and real have been used for
the purpose. CPU based systems with 8 GB RAM have been used by the number of
researchers for experimenting with traditional methods.

2.2. Deep Learning Neural Network based methods

Deep Learning Neural Network (DLNN) based methods took over the reign of traditional
methods because of their enhanced sophistication with their own strengths and weak-
nesses. The convergence of recently studied DLNN based methods has been synthesized
in the following subsections.

2.2.1. Recently developed DLNN methods

Through numerous experiments, the robustness of DLNN based architectures including
U-Net, Rectified Linear Unit (ReLU), ConvNet, ResNet, and ConsNet has been proved.
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Intensive review has suggested that the most common architectures include U-Net [7}/12,
141|21}[221|23[|30L36L37L[55].

U-Net architectures of both 2D and 3D types have successfully produced significant
results for different performance measures of PAEE in different research studies. In an
experimental research study, DSC = 0.71 has been achieved while utilizing the follow-
ing hyperparameters: Epochs = 4, Discount Rate = 0.5 and 0.2, and Learning Rate =
0.0004 |14]. In another study, researchers have achieved DSC = 0.965 with False Negative
Rate (FNR) = 0.2 and False Positive Rate (FPR) = 0.8 by implementing three layers
of Convolutional Neural Network (CNN) with one steroid in the first and two steroids
in the second layer [55]. Simultaneous Truth and Performance Level Estimation (STA-
PLE) constituted over 2D FCN U-Net has achieved DSC = 0.9575, 0.8887 and 0.8932
for three different data-sets of T1 weighted MR images with Learning Rate = 0.0001;
while the measures of Sensitivity, Specificity, Hausdorff and Mean Distance were also
significant [36]. The version of 2D U-Net has been extended for establishing 3D U-Net
through max-pooling and batch normalization, which has achieved DSC = 0.9903, Sensi-
tivity = 0.9853 and Specificity = 0.9953 on the data-set of T1 weighted MR images [21].
Researchers have experimented with the method HD-BET which is primarily comprised
of U-Net CNN with remarkable results for the measures of DSC = 0.976 and Hausdorff
Distance = 3.3 using T1, T2 and FLAIR images from databases of European Organiza-
tion for Research and Treatment of Cancer (EORTC), LONI Probabilistic Brain Atlas
(LPBA) and Neurofeedback Skull-stripped (NFBS) [22]. Researchers experimented with
3D U-Net based method comprised of Transfer Learning (TL) and Multi Output Net
which performed exceptionally with DSC = 0.785 and 0.843 on the data-set of Multi-
Atlas Labeling Challenge (MALC) and Hammers Adult Atlases (HAA), respectively [7].
Researchers experimented with another 2D U-Net based method of STAPLE which of-
fered high rates of DSC = 0.9718 and Symmetric Surface-to-Surface Mean Distance
(SSSMD) = 0.037 on T1 weighted images taken from databases of Calgary-Campinas,
LPBA and OASIS [37]. The score of other scales like Sensitivity = 0.9891, Specificity =
0.9946 and Hausdorff Distance = 9.713 have also been remarkable but could not outper-
form other state of the art methods in comparison. Different hyperparameters have been
used for the experiment including Learning Rate = 0.001, Exponential Decay = 0.995
after each epoch, and Fixed Kernel Size = 3x 3 [37]. Time Distributed U-Net based CNN
method has been tested with Model Accuracy = 0.583 in intra-method comparison with
T1 weighted images taken from the database of MICCAI Brain Tumor Segmentation
(BraTS) [12]. Researchers experimented with the method of Cascade 3D U-Net based
CNN while using hyperparameters of Learning Rate = 10 — 5, Weight Decay = 0.0005,
Momentum = 0.9 (in Adam optimizer), and Epochs = 300 [23]. The method offered
considerably good results and achieved Root Mean Square (RMS) = 0.86 on 90 MR
images of kidney. In another research study, an experiment with the method of U-Net
based CNN named as ACEnet has been carried out with hyperparameters like Epochs
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= 100, Dropout Rate = 0.1, Momentum = 0.9 and Weight Decay = 0.0001 [30]. The
studied method offered remarkable results as DSC > 0.8 and Average Time to Segment
~ 10s on T1 weighted MR images taken from databases of MALC, Alzheimer’s Disease
Neuro-imaging Initiative (ADNI), Mindboggle, and SchizBull (see |30] for references).

ReLU architectures have also successfully produced significant results for different
measures of PAEE in different research studies. An experiment has been run with
ReLU architecture and achieved significant results as DSC = 0.965, FNR = 0.2 and
FPR = 0.8 using T1 weighted images taken from NFBS [55]. Apart from this, an
experiment has been carried out with ReLU based CNN which provided remarkable
results for the measure of Sensitivity > 0.87, Specificity > 0.94 and Accuracy > 0.918
on T1 weighted images taken from OASIS [52]. Another ReLU based CNN named as
DeepMedic performed outstanding using hyperparameters of Learning Rate = 0.0005
and Epochs = 35 on T1 weighted MR images taken from different data-sets of OASIS,
LPBA, and St. Olavs Hospital [13]. ReLU has also been included in an experiment
along with U-Net features and achieved significant results [21]. An experiment has been
carried out on ReLLU based CNN named as DeeplCE using hyper-parameter of Epochs
= 20 with significant results of DSC = 0.9889 on T1 weighted MR images taken from
IXI, OASIS, and BSTP [38]. CNN based methods of Focal Loss and RetinaNet based
upon multiple architectures like ReLLU, ConvNet, and ResNet have been experimented
with using hyperparameters of Learning Rate = 0.01 x 0.1 after 60 K and then after
80K iterations, Momentum = 0.9 and Weight Decay = 0.0001 [31]. The method tested
increased the mean Average Precision 3-4 points on each T1 weighted MR image taken
from Common Objects in Context (COCO) [33].

The summary of the above listed DLNN methods is presented in Table

2.2.2. The rise of masking technique in DLNN methods

Along with the success of U-Net and ReLLU based DLNN, another great architecture
ResNet jointly with Region CNN R-CNN and in the latest cases with Faster R-CNN
methods [45,/46] has provided significant results in numerous experiments. The state of
the art method of Mask R-CNN [32] has been tested which is primarily based upon the
architecture of Faster R-CNN, Feature Pyramid Network (FPN), ResNet, and ResNeXt,
and is using hyperparameters of Learning Rate = 0.02, Weight Decay = 0.0001, and Mo-
mentum = 0.9 on T1 weighted MR images taken from COCO [18|. Before this, the FPN
has been studied which has later been induced to postulate and experiment the revolu-
tionary method of Mask R-CNN [32]. The developed FPN is based upon Faster R-CNN
and two versions of ResNet50 and ResNet101 with hyperparameters of Learning Rate =
0.02 x 0.1 after 60K and 80K iterations on T1 weighted MR images from COCO [33]
and PASCAL [15]. In continuation of their own work, researchers experimented with
RetinaNet which actually received the contribution from their own FPN [31]. Transfer
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Learning in Mask R-CNN has successfully been induced with hyperparameters of Learn-
ing Rate = 0.02 x 0.1 after 60K and then 80K iterations on T1 weighted MR images
from COCO and Visual Genome . Non-local Neural Network functionally compris-
ing Mask R-CNN and ResNet architectures has been tested with hyperparameters of
Learning Rate = 0.01 x 0.1 after every 150 K iterations, Momentum = 0.9, and Weight
Decay = 0.0001 . Apart from the novelty of the method, the experiment is unique
because the video data has been taken into experiment for segmenting moving objects.

2.2.3. Competitive methods in comparison with DLNN methods

DLNN methods have outperformed traditional methods out of which prominent
DLNN methods include Bayesian Evolutionary Analysis by Sampling Trees BEaST
, ROBEX 7 BET , Hybrid Watershed
Algorithm (HWA) [24,[37], BSE [22,124//37,/49,/55], FMRIB Software Library (FSL) [55],
Analysis of Functional Neurolmages (AFNI) [47,[55], Advanced Normalization Tools
(ANTs) [2255], CompNet [10], Spectre [47], Kleesiek’s method [21], 3dSkullStripping
, SLAN , Marker based Watershed Scalper (MBWSS), STAPLE and Optimized
Brain Extraction Tool (OptiBET) , FreeSurfer , NICE , G-RMI , and
AttractioNet .

2.2.4. Data and systems used for DLNN methods

Experimental studies conducted to test different DLNN methods of skull stripping has
taken data from different databases out of which some are publicly available and for the
rest of them the prior permission is needed to access the database and to use data. Lead-
ing databases provided different types of brain MR, images like T'1 weighted, T2 weighted,

FLAIR etc. and such databases include OASIS , IBSR ,
LPBA [13/2224], MALC [7/30], ADNI [30], PASCAL [19,32], COCO [18,19/31}/32], Ham-
mers 7], NAMIC [49], MPRAGE [49], UKBB [7], BraT$ [12|[14], Visual Genome [19],
NFBS , and Calgary-Campinas, .

In addition to databases, different GPU based computer systems have been utilized by
researchers for image processing; out of which, NVIDIA Tesla M40 , NVIDIA GTX
1050 TI NVIDIA GTX 970 [55], and NVIDIA GTX Titan

are cominon.
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3. Research Gap

In the light of intensive literature review, we have come to the conclusion that the most
recent development has been made in the domain of DLNN and the scientific progress
has led the experts of digital image processing to successfully experiment with the latest
and robust CNN variant named as Mask R-CNN [18] for image segmentation. The
comprehensive literature audit did not provide sufficient empirical evidence pertaining
to the use of Mask R-CNN for skull stripping. The availability of deep learning weights
for hundreds of objects and classes and non-availability of the same for the skull stripping
in giant public digital libraries like COCO etc. are also empirical evidences addressing
the dearth of research stated above in the realm of image segmentation. The research
gap identified and discussed above needs prompt attention of researchers. Therefore, the
scientific research study may be carried out to experiment skull stripping using Mask R-
CNN along with its underlying structure and auxiliaries to ultimately bridge the existing
research gap.
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