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Abstract. The goal of this paper is to propose two nonlinear variational models for obtaining

a refined motion estimation from an image sequence. Both the proposed models can be considered

as a part of a generalized framework for an accurate estimation of physics-based flow fields such as

rotational and fluid flow. The first model is novel in the sense that it is divided into two phases:

the first phase obtains a crude estimate of the optical flow and then the second phase refines this

estimate using additional constraints. The correctness of this model is proved using an evolutionary

PDE approach. The second model achieves the same refinement as the first model, but in a standard

manner, using a single functional. A special feature of our models is that they permit us to provide

efficient numerical implementations through the first-order primal-dual Chambolle-Pock scheme. Both

the models are compared in the context of accurate estimation of angle by performing an anisotropic

regularization of the divergence and curl of the flow respectively. We observe that, although both the

models obtain the same level of accuracy, the two-phase model is more efficient. In fact, we empirically

demonstrate that the single-phase and the two-phase models have convergence rates of order O(1/N2)

and O(1/N) respectively.
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1. Introduction

Optical flow plays a key role in many advanced Computer Vision applications. It is
a rich source of information on perceptible motion in our visual world. It’s reliable
estimation is thus important and at the same time challenging. Assuming the principle
of local conservation of intensity and small temporal variations, optical flow involves the
recovery of a function u = (u, v) such that

f(x, τ) = f(x+ u, τ +∆τ) ,

where f : Ω × [0, T ] → R is the image sequence, Ω ⊂ R2 is open and bounded. This
establishes a correspondence between pixel motions. Using first-order approximations
the above relation can be written as

fτ +∇f · u = 0 , (1)
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46 Nonlinear evolutionary PDE-based refinement of optical flow

which is widely known as the Optical Flow Constraint (OFC). To recover the velocity
components using a variational minimization approach one writes (1) as

min
u
J1(u) =

∫
Ω

(ft +∇f · u)2 .

This is the simplest least-square minimization. This problem is ill-posed as it leads
to the aperture problem. Additional regularization terms are necessary to ensure well-
posedness. The most common regularization term is the quadratic smoothness penalizing
the gradient of the components of the flow originally introduced by Horn and Schunck [16]
in their seminal work. Cohen [8] and Kumar et al. [17] used the L1 regularization which
is more robust to outliers and preserves important edge information. A new discontinuity
preserving optical flow model with L1 norm on the OFC was proposed and studied by
Aubert et al. [1] in the space of functions of bounded variations BV (Ω)×BV (Ω). The
well-posedness of the Horn and Schunck model, as well as the Nagel model was studied
by Schnörr [23] in the space H1(Ω) ×H1(Ω). Taking a step further, the authors in [5]
proposed a Lp − TV/Lp (p = 1 or 2) model combining both L1 and L2 terms. The
behaviour of their regularization term is similar to the Huber function:

H(x; ϵ) =


x2

2ϵ , 0 ≤ |x| ≤ ϵ

|x| − ϵ
2 , |x| > ϵ .

A detailed review and rigorous analysis of several variational optical flow models within
the framework of calculus of variations can be found in [15].

Though most of the estimation involving rigid or quasi-rigid motion can be handled
by minimizing OFC with a suitable regularization, it is insufficient to provide an accurate
estimation for fluid-based images. Traditional computer vision techniques may not be
suitable to capture these deformations of brightness patterns because of the high spatio-
temporal turbulence in these sequences. These reasons have motivated researchers to
look for an alternative constraint that can not only preserve pixel-correspondence but also
capture certain intrinsic features of the flow. This paradigm shift hints at constraints that
are physics-dependent. A lot of work has been done involving physics-based constraints
for fluid motion estimation [9, 10, 18, 19, 20]. In [12], we have proposed a constraint-based
refinement of optical flow. Using an image-driven evolutionary PDE model resulting
from a quadratic regularization we have shown the well-posedness of such a refinement
principle. An important characteristic of the model is the possibility of a diagonalization
by the Cauchy-Riemann operator leading to a decoupled system involving diffusion of
the curl and a multiplicative perturbation of the laplacian of the divergence of the flow.
For a specific case, it was shown that the model is close to the physics-based model [18]
using a modified augmented Lagrangian method.

The current work proposes a unified framework for a nonlinear evolutionary PDE-
based refinement of optical flow. The first model is a two-phase refinement process.

Machine GRAPHICS & VISION 30(1/4):45–65, 2021. DOI: 10.22630/MGV.2021.30.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2021.30.1.3


H. Doshi, N. U. Kiran 47

A crude pixel correspondence is obtained in the first phase which constitutes a good
starting solution. In the next phase, this estimate is refined using additional constraints.
This constraint is chosen motivated by the non-conservation term f∇ ·u in the physics-
based constraint, (see [12]). The second model estimates the flow directly in a sin-
gle phase. In this case the additional constraint is chosen motivated by the harmonic
constraint-based regularization (see [30]). This approach replaces the oriented smooth-
ness constraint with a weighted decomposition of divergence and curl of flow. We aim
to capture the rotational features better by preserving edge information and improving
the accuracy of the flow. Thus we consider only the curl component in our framework
with an anisotropic weight term.

The total variation regularization leads to ∆1, the 1-Laplacian operator in the Euler-
Lagrange equations. Obtaining a stable convergent scheme is a difficult task because of
the singularity of the operator at the origin. As a result most of the implementation
methods often yield slower algorithms. In this direction important contributions were
made by Chambolle [6] and Zach [27]. Chambolle and Pock [7] proposed a first-order
primal-dual algorithm for solving non-smooth convex optimization problems. This fur-
ther opened up newer directions as a large class of problems in Image Processing could
be solved within this framework. In our work, we use the Chambolle-Pock algorithm for
both of our models. The numerical implementation of the algorithm has two main steps,
namely updating the primal variables by solving a system of equations at each iteration
and updating the dual variables by computing the point-wise projection maps onto the
unit ball. Both of these steps are computationally expensive. As a result the second
model yields a slower algorithm with a convergence rate of order O(1/N2). By O(1/N2)
we mean if ϵ is the error threshold then the number of iterations required to reach this
threshold is 1/ϵ2. The first model splits the above-mentioned steps in two-phases. This
leads to a faster algorithm with a convergence rate of O(1/N).

The organization of the paper is as follows. In Section 2 we give the general formu-
lation and describe our model in detail. Next in Section 3, we study the mathematical
well-posedness of our formulation using an evolutionary PDE approach. Subsequently,
we employ the first-order primal-dual Chambolle-Pock algorithm to our models and
derive the necessary optimality conditions in Section 4. We then discuss the implemen-
tation details, discretization of our models and empirically demonstrate the nature of
convergence in Section 5.

2. Our Model Description

Our general formulation is given as:

J(u) =

∫
Ω

ρ(|ft +∇f · u|) + α

2∑
i=1

∫
Ω

γ(|∇ui|) + β

∫
Ω

ϕ(x, f,∇f)ψ(u,∇u) , (2)
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48 Nonlinear evolutionary PDE-based refinement of optical flow

where ρ : R → R is a function of the optical flow constraint, γ : R → R governs the
regularization of the flow. The functions ϕ and ψ are chosen specific to applications.
A summary of some of the variational models which belong to this framework is listed
in Table 1. Based on the choice functions mentioned in this table, the constraint-based
refinement formulation becomes

(M1) J(u) = α

2∑
i=1

∫
Ω

|∇ui|+ β

∫
Ω

f2(∇ · u)2 , (3)

where | · | is the Euclidean norm. Starting with u = u0, where u0 is the Horn and
Schunck optical flow the above formulation obtains a refinement of u0 driven by the
additional constraint f∇ · u. This term is the non-conservation term in the physics-
based constraint due to non null-out of plane components [14]. This constraint preserves
the spatial characteristics and vorticities of the flow. Thus this model can extract flow
information from fluid-based digital imagery much better.

From the choice functions, our second formulation is given as:

(M2) J(u) =

∫
Ω

(ft +∇f · u)2 + α

2∑
i=1

∫
Ω

|∇ui|+ β

∫
Ω

λ2

|∇f |2 + λ2
(∇H · u)2 . (4)

The additional constraint in this formulation is motivated by the harmonic-constraint
based regularization discussed in [30]. By associating an anisotropic weight term with
the curl in our formulation there are two main advantages. First, we are able to get a
precise estimation of the infinitesimal rotation within the regions. Secondly, we achieve
a better alignment of small vectors in the flow. This leads to an overall improvement in
the endpoint error.

In either case, the choice of ϕ decides the influence of the image term in the reg-
ularization process. If ϕ = 1, then the additional constraint term in the functional is

Tab. 1. Some choices for the functions.

ρ(x) γ(x) ϕ(x, f,∇f) ψ(u,∇u)
Horn and Schunck [16] x2 x2 0 0

Cohen [8] x2 x 0 0

Aubert [1] x
√
1 + x2 c(x) u2

L1 − TV [27] x x 0 0

Our Model (M1) 0 x f2 (∇ · u)2

Our Model (M2) x2 x λ2

∥∇f∥2+λ2 (∇H · u)2
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flow-driven, i.e. independent of the influence of the image data. The weight parameters
α, β play an important role in the regularization process. For rigid-body like motion
which requires important edge-information to be preserved a higher value of α is pre-
ferred. For fluid-based images where there is less edge-prominence, we choose a higher
β value.

3. Well-Posedness

In this section we discuss the mathematical well-posedness of the proposed formulation.
Let us denote u = (u1, u2). The space W 1,p(Ω), p > 1, is the reflexive Banach space

W 1,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ 1}

with the usual norm

∥u∥W 1,p =

( ∑
|α|≤1

∥Dαu∥pLp

)1/p

, 1 ≤ p <∞ .

To study the mathematical well-posedness of the proposed formulation we consider the
following approximation.

Jp,R(u) = β

∫
Ω

ϕ(x, f,∇f)(∇ · u)2 + α

p

∫
Ω

{|∇u1|p + |∇u2|p}, 1 < p < 2 . (5)

This functional being strictly convex in W 1,p(Ω) admits a unique minimizer. For this
discussion we consider ϕ(x, f,∇f) = f2. The first important step is to show that Jp,R
converges to J1,R as p→ 1. For this, we refer to the discussion in Section 3.4 in [21].

Lemma 1.

lim
p→1

1

p

∫
Ω

|∇u|p =

∫
Ω

|∇u| . (6)

Remark 1. As Jp,R(u)→ J1,R(u), p→ 1, the corresponding Euler-Lagrange equations
Ap = ∆p associated with the regularization term also converges to A1 = ∆1.

Remark 2. The case p = 2 leads to a linear diffusion-driven refinement process. We
have previously studied and discussed this case in [12].

The associated parabolic system corresponding to the Euler-Lagrange equations of
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(5) are given as

∂u1
∂t

= ∆pu1 + a0
∂

∂x
[f2((u1)x + (u2)y)] in Ω× (0,∞) ,

∂u2
∂t

= ∆pu2 + a0
∂

∂y
[f2((u1)x + (u2)y)] in Ω× (0,∞) ,

u1(x, y, 0) = u01 in Ω ,

u2(x, y, 0) = u02 in Ω ,

u1 = 0 on ∂Ω× (0,∞) ,

u2 = 0 on ∂Ω× (0,∞) ,

(7)

where (u01, u
0
2) is the starting feasible solution obtained by the Horn and Schunck optical

flow, a0 = 2β/α. Rewriting the system in an abstract form leads us to
du

dt
+Apu = 0, t > 0 ,

u(0) = u0 ∈ H1(Ω)2 .

(8)

Here the operator Ap = Ap + F , where

Apu = −

[
∆pu1

∆pu2

]
, Fu = −a0


∂

∂x
[f2((u1)x + (u2)y)]

∂

∂y
[f2((u1)x + (u2)y)]

 .
We will show that both the operators Ap and F are maximal monotone in W 1,p(Ω) ∩
L2(Ω) and L2(Ω), respectively.

Lemma 2. The operators Ap and F is maximal monotone in W 1,p(Ω) ∩ L2(Ω) and
L2(Ω), respectively.

Proof.The maximal monotonicity of Ap follows directly from the discussions in [26]. To
show monotonicity we show that ⟨Fu,u⟩ ≥ 0. Indeed,

⟨Fu,u⟩ = −a0
∫
Ω

{ ∂

∂x
[f2((u1)x + (u2)y)]u+

∂

∂y
[f2((u1)x + (u2)y)]v

}
,

= a0

∫
Ω

{f2((u1)x + (u2)y)ux + f2((u1)x + (u2)y)vy} ,
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= a0

∫
Ω

f2((u1)x + (u2)y)
2 ≥ 0 ,

proving the monotonicity of F . To show the maximality we have to show that

Ran(I + F ) = L2(Ω)2 , (9)

i.e. there exists u for all f ∈ L2(Ω)2 such that u+Fu = f holds. Let f = (f, g) ∈ L2(Ω)2

and consider the system

u+
∂

∂x
[f2((u1)x + (u2)y)] = f ,

v +
∂

∂y
[f2((u1)x + (u2)y)] = g ,

where f, g ∈ L2(Ω). Applying the Cauchy-Riemann operator

R =

[
∂y −∂x

∂x ∂y

]

on both sides we obtain the decoupled system

(u1)y − (u2)x = fy − gx , (10)

(∆ ◦ k)((u1)x + (u2)y) = fx + gy , (11)

where k is the image-dependent multiplicative function k : f 7→ 1 + a0f
2. The first

equation (10) governs the curl of the flow u = (u1, u2). The second equation (11)
indicates a non-homogeneous weighted diffusion process on the divergence with a weight
k. Let us define h1 = fy − gx and h2 = fx + gy. Solving the second equation gives us
an expression for the divergence of the flow. Let us call this as h3. We thus obtain the
following system

(u1)y − (u2)x = h1 ,

(u1)x + (u2)y = h3/k .

These are the inhomogeneous Cauchy-Riemann equations. In a compact form we rewrite
them as

Ru = f̃ ,

where f̃ = (h1, h3/k). The operator R
−1 is a continuous operator of order -1 in the space

W 1,p(Ω). Hence there exists a unique u such that u+Fu = f holds. This concludes the
proof.
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Now that we have shown the maximal monotonicity let us define a function Φp :
L2(Ω)2 → (−∞,+∞] by

Φp(u) =

Jp,R(u), u ∈ [W 1,p(Ω) ∩ L2(Ω)]2

+∞, u ∈ [L2(Ω) \W 1,p(Ω)]2
.

Then clearly Φp is convex and lower semi-continuous. Also Φp is proper since D(Φp) =
D(Ap)∩D(F ) ̸= ∅. Thus the associated subdifferential ∂Φp(u) ≡ Ap is maximal mono-
tone. Thus there is a unique solution u of the inclusion

0 ∈ u′(t) + ∂Φp(u)

satisfying the initial conditions.

4. The Primal-Dual Framework

The primal-dual method is a numerical tool for solving optimization problems. The
main idea is to replace a primal problem with an equivalent saddle point problem by
introducing dual variables and employ efficient algorithms to obtain the desired con-
vergence. In the recent past several saddle point frameworks have been proposed for
variational problems in image processing and computer vision [7, 28, 29]. As our formu-
lation involves non-smooth convex functionals, the most suitable framework is the one
proposed by Chambolle and Pock [7]. Let Ω ⊂ R2 be an open, bounded set, X ,Y be two
finite-dimensional vector spaces with the scalar product (·, ·) and the norm ∥ · ∥. Denote
the primal variable u = (u1, u2) and the dual variable d = (d1, d2, d3). We first consider
the variational problem in the following form

argmin
u

G(u) + F (Ku) . (12)

where F,G : X → [0,∞] are convex, proper and lower-semicontinuous functionals, K :
X → Y is a continuous, linear operator. The equivalent primal-dual formulation is given
as

argmin
u

argmax
d

G(u) + (Ku,d)− F ∗(d) , (13)

where F ∗ is the convex conjugate of F . Table 2 gives a summary of each term of
our model using the above notations. Given a τ, σ > 0, an initial (u0,d0) ∈ X × Y,
the Chambolle-Pock algorithm solves the saddle point problem (13) by the following
algorithm:

dk+1 = proxσF∗(dk + σKūk) ,
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uk+1 = proxτG(u
k − τK∗dk+1) ,

ūk+1 = 2uk+1 − uk (over-relaxation) ,

where

proxτG(d) = (I + τ∂G)−1(d) = argmin
u

{
1

2
∥u− d∥2 + τG(u)

}
is the proximal or the resolvent operator. This can be thought of as a trade-off between
minimizing G and being close to d. We now employ the above algorithm for our problem
and derive the necessary optimality conditions.

4.1. Optimality Condition for Our Model M1

In this case we have

G(u) = 0, F (Ku) =
1

2

∫
Ω

f2(∇ · u)2 +
2∑

i=1

∫
Ω

|∇ui| .

The Operator K is given as

Ku =

 ∇ 0
0 ∇

f2∂x f2∂y

u1
u2

 .
Therefore,

K∗d = −
[
∇· 0 ∂x(f

2·)
0 ∇· ∂y(f

2·)

]d1d2
d3

 .

Tab. 2. Summary of the terms in the Primal-Dual Formulation.

Model ϕ(x, f,∇f) G(u) F (Ku) K

(M1) f2 0
1

2

∫
Ω

ϕ(x, f,∇f)(∇ · u)2

+

2∑
i=1

∫
Ω

|∇ui|

 ∇ 0
0 ∇
ϕ∂x ϕ∂y



(M2)
λ2

λ2 + ∥∇f∥2
1

2

∫
Ω

(ft +∇f · u)2
1

2

∫
Ω

ϕ(x, f,∇f)(∇H · u)2

+

2∑
i=1

∫
Ω

|∇ui|

 ∇ 0
0 ∇
ϕ∂y −ϕ∂x



Machine GRAPHICS & VISION 30(1/4):45–65, 2021. DOI: 10.22630/MGV.2021.30.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2021.30.1.3
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Using standard dual identities the convex conjugate F ∗(d) is computed as

F ∗(d) =
1

2
∥d3∥22 + α

2∑
i=1

δB(L∞)(di/α) ,

where B(L∞) denotes the unit ball in L∞(Ω) and

δB(L∞)(x
∗) =

{
0, if x∗ ∈ B(L∞)

+∞, otherwise
.

Thus the primal-dual formulation is given as

argmin
u

argmax
d

(u,K∗d)− 1

2β
∥d3∥22 − α

2∑
i=1

δB(L∞)(di/α) .

Accordingly, the Chambolle-Pock algorithm for this primal-dual problem is given as:

d̃
k+1

= dk + σKū ,

dk+1
1,2 = argmin

d

{
1

2
∥d− d̃

k+1

1,2 ∥22 + ασδB(L∞)(d/α)

}
,

dk+1
3 = argmin

d

{
1

2
∥d− d̃k+1

3 ∥22 +
σ

2β
∥d∥22

}
,

ũk+1 = uk − τK∗dk+1 ,

ūk+1 = 2uk+1 − uk .

To derive the optimality condition for the dual variables d3, consider the functional

J(d3) =
1

2

∫
Ω

(d3 − d̃3)2 +
σ

2β

∫
Ω

d23 .

Therefore, setting dθJ = 0 we get

d3 − d̃3 +
σ

β
d3 = 0 .

Rearranging we get

dk+1
3 =

β

β + σ
d̃k+1
3 .

The solution for the indicator function δ is given by the point-wise projections of d̃
k+1

,

projα(d̃
k+1

) onto the unit ball, see [5, 11]. Thus, the iterative scheme for the Chambolle-
Pock is given as

d̃
k+1

= dk + σKū ,
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dk+1
1,2 = projα

(
d̃
k+1

1,2

)
,

dk+1
3 =

β

β + σ
d̃k+1
3 ,

ũk+1 = uk − τK∗dk+1 ,

ūk+1 = 2uk+1 − uk .

4.2. Optimality Condition for Our Model (M2)

In this case we have

G(u) =
1

2

∫
Ω

(ft +∇f · u)2, F (Ku) =
1

2

∫
Ω

ϕ(f,∇f)(∇H · u)2 +
2∑

i=1

∫
Ω

|∇ui| .

The Operator K is given as

Ku =

 ∇ 0
0 ∇
ϕ∂y −ϕ∂x

u1
u2

 .
Therefore,

K∗d = −
[
∇· 0 ∂y(ϕ·)
0 ∇· −∂x(ϕ·)

]d1d2
d3

 .
As before, the convex conjugate F ∗(d) is computed as

F ∗(d) =
1

2
∥d3∥22 + α

2∑
i=1

δB(L∞)(di/α) ,

Thus the primal-dual formulation is given as

argmin
u

argmax
d

1

2

∫
Ω

(ft +∇f · u)2 + (u,K∗d)− 1

2β
∥d3∥22 − α

2∑
i=1

δB(L∞)(di/α) .

Accordingly, the Chambolle-Pock algorithm for this primal-dual problem is given as:

d̃
k+1

= dk + σKū ,

dk+1
1,2 = argmin

d

{
1

2
∥d− d̃

k+1

1,2 ∥22 + ασδB(L∞)(d/α)

}
,
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dk+1
3 = argmin

d

{
1

2
∥d− d̃k+1

3 ∥22 +
σ

2β
∥d∥22

}
,

ũk+1 = uk − τK∗dk+1 ,

uk+1 = argmin
u

{
1

2
∥u− ũk+1∥22 +

τ

2

∫
Ω

(ft +∇f · u)2
}
,

ūk+1 = 2uk+1 − uk .

The optimality conditions for the dual variables follow directly from above. For the
primal variable u the optimality condition can be obtained directly by a quadratic min-
imization, see [11] for more details. The equations are given as

(1 + τf2x)u1 + τfxfyu2 = ũk+1
1 − τfxft ,

τfxfyu1 + (1 + τf2y )u2 = ũk+1
2 − τfyft .

Thus the iterative scheme for the Chambolle-Pock is given as

d̃
k+1

= dk + σKū ,

dk+1
1,2 = projα

(
d̃
k+1

1,2

)
,

dk+1
3 =

β

β + σ
d̃k+1
3 ,

ũk+1 = uk − τK∗dk+1 ,

uk+1 =

(
b1c3 − c2b2
c1c3 − c22

,
b2c1 − c2b1
c1c3 − c22

)
,

ūk+1 = 2uk+1 − uk ,

where c1, c2, c3 are the elements of the coefficient matrix given by c1 = 1 + τf2x , c2 =
τfxfy, c3 = 1+τf2y , b1, b2 are the right hand side values given by b1 = ũk+1

1 −τfxft, b2 =

ũk+1
2 − τfyft. In the next section we will look at the numerical discretization and other

implementation details.

5. Results

Having obtained the Chambolle-Pock algorithm for solving the saddle-point problem,
we now look at the implementation details. Algorithm 5.1 shows the Chambolle-Pock
algorithm for our nonlinear constraint-based refinement model.
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Algorithm 5.1

1: Initialize τ, σ ← 1/
√
8, 1/
√
8

2: Initialize u0 ← HS(f1, f2), d
0 ← 0

3: Initialize matrix K
4: repeat
5: uold ← u
6: Update matrix K
7: d̃← d+ σKū
8: d1,2 ← projσ/α(d̃1,2)

9: d3 ← β
β+σ d̃3

10: Compute matrix K∗

11: ũ← u− τK∗d
12: u← ũ
13: ū← 2u− uold

14: until convergence

As mentioned previously this model works in two phases wherein the first phase
we obtain a crude-pixel correspondence and subsequently refine this estimate in the
next phase driven by additional constraints. The initial Horn and Schunck flow was
computed using the Chambolle-Pock algorithm, see [7, 11]. Here we observed that using
a forward difference scheme for both spatial and temporal image derivatives fx, fy and ft
respectively does not yield a stable discretization. Instead, a forward difference scheme
for ft and a central difference scheme for fx, fy does yield a stable numerical scheme.
In the next step, the operator matrix K is constructed for updating the dual variables
d1, d2, d3 shown in steps 9 and 10. This requires solving two sub-problems, one for d1, d2
and the other for d3.

Now ∇ui = (uix , uiy ), i = 1, 2. The associated dual variable is di = (di,1, di,2). The
primal formulation comprises of the total-variation regularization. Accordingly,

|∇ui|L1 = |uix |+ |uiy | .

Thus the associated dual norm for the variable di gives

∥di∥L∞ = max{|di,1|, |di,2|} .

The solution for this minimization is the point-wise projection onto the unit ball cor-
responding to the dual norm. As shown previously, the convex conjugate of the total
variation term is the indicator function δL∞(di/α). The associated convex set is defined
by

{di : ∥di/α∥ ≤ 1} = {di : ∥di∥ ≤ α}, i = 1, 2 .

Machine GRAPHICS & VISION 30(1/4):45–65, 2021. DOI: 10.22630/MGV.2021.30.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2021.30.1.3


58 Nonlinear evolutionary PDE-based refinement of optical flow

Thus the dual update for d1,2 can be obtained by the point-wise projection of d̃1,2 onto
[−α, α] (see [11]) as

d1,2 = projσ/α(d̃1,2) = min(α,max(−α, d̃1,2)) .

The sub-problem for d3 is a linear quadratic minimization problem as discussed in the
previous section. In the next step the adjoint operator K∗ is constructed to update the
primal variable u. The subsequent over-relaxation step ū ← 2u − uold is a particular
case for θ = 1 in [7] for easier estimates of the convergence. The algorithm is further
simplified if the regularization term is linear. In this case the only difference that occurs
is the updation of the dual variable d1,2 leading to the optimality condition

d1,2 =
α

α+ σ
d̃1,2 .

The stopping criterion is determined by computing the normalized error from the primal
and dual residues. This error metric was introduced by the authors in [13] and is numer-

ically less expensive. Let u(k),d(k) be the primal and the dual updates after k iterations
respectively. Then the primal and dual residues at the kth iteration are computed by
the formula:

p(k)res : =

∣∣∣∣∣u(k) − u(k+1)

τ
−K∗(d(k) − d(k+1))

∣∣∣∣∣ ,
d(k)res : =

∣∣∣∣∣d(k) − d(k+1)

σ
−K(u(k) − u(k+1))

∣∣∣∣∣ .
Therefore, the normalized error at kth step is obtained as:

e(k) =
p
(k)
res + d

(k)
res

µ(Ω)
,

where µ(Ω) refers to the measure of the domain Ω. Chambolle and Pock [7] also showed
that the convergence criterion is fulfilled when τσ∥K∥2 < 1, θ = 1. Thus τ and σ
need to be chosen accordingly. An optimal numerical upper-bound was obtained by
Chambolle [6] which satisfies the above criterion. Accordingly we set τ = σ = 1/

√
8.

The Chambolle-Pock algorithm for the angular accuracy model follows in a similar
manner. The main difference lies in the primal update step 12 because of the explicit
presence of the data term in the functional. The primal variable u is updated by solving
a quadratic minimization problem discussed previously leading to the following update
step,

uk+1 =

(
b1c3 − c2b2
c1c3 − c22

,
b2c1 − c2b1
c1c3 − c22

)
,
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where c1 = 1+ τf2x , c2 = τfxfy, c3 = 1+ τf2y , b1 = ũk+1
1 − τfxft, b2 = ũk+1

2 − τfyft. We
now show the results for obtained by implementing the algorithm. The first sequence is
the Oseen vortex pair. For more details on the sequence we refer to [18].

Figure 2 shows the velocity magnitude plot obtained for the Oseen vortex pair. The
algorithm produces dense flow fields while correctly estimating the vortex cores. We now
empirically demonstrate the rate of convergence of both models.

Table 3 shows the number of iterations required by the algorithm to reach the error
threshold of ϵ. By an order O(1/N) convergence we mean that the number of iterations
required to reach a tolerance ϵ is O(1/ϵ). This is validated from the above table. For
Model (M1), for ϵ = 0.1, the number of iterations required to reach the threshold of 0.1 is
a multiple of 10. For Model (M2) it requires a multiple of 102 iterations. The table also

Fig. 1. Oseen vortex pair [18].

Tab. 3. Total numbers of iterations required by the algorithms to reach the threshold of ϵ.

ϵ = 0.1 ϵ = 0.01
Model (M1) Model (M2) Model (M1) Model (M2)

Oseen vortex pair 78 627 755 53753
Cloud sequence 20 99 450 16068
Sphere sequence 10 316 561 18009
Hydrangea 103 346 937 12574
Rubberwhale 42 351 617 13590
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Fig. 2. Velocity plot for the Oseen vortex pair with α = 0.1, β = 0.01, iter = 50.

shows that roughly it requires a multiple of 100 iterations for the Model (M1) algorithm
to reach the threshold of ϵ = 0.01 and a multiple of 1002 iterations for Model (M2). The
reason for this efficiency can be explained from the fact that in phase 1, the Horn and
Schunck initialization brings the solution within a close error range. As a result in the
second phase we observe a O(1/N) convergence as mentioned in [7].

5.1. Modern Implementation Principles

Recent developments in optical flow computation reveal that the flow estimates can be
significantly improved by incorporating certain established implementation principles.
To accommodate these principles in our framework, Algorithm 5.1 is suitably modified
to make it a part of a larger implementation procedure.

The computation of image derivatives follows a weighted averaging principle [4, 24].
The current flow estimates are used to warp the second image towards the first using
bi-cubic interpolation. The time derivative is the difference between the first image and
the warped image. The spatial derivatives are obtained as a weighted average of the first
image and the warped image. The weight coefficient is called the blending ratio chosen
between 0 and 1.

To account for large displacements of pixel motions, a coarse-to-fine pyramidal scheme
is employed [4, 11, 25]. The flow field is first computed at the coarsest level. This
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Fig. 3. Estimated flow field for the rubberwhale sequence with α = 10, β = 1.

estimate is upsampled to the next finer level via interpolation and is used to warp the
second image towards the first image. The flow increments at this finer level are then
computed between the first image and the warped image. This process continues till the
finest resolution level is reached. At each pyramid level, 10 warping steps are performed.
after each warping iteration, a 5 × 5 median filter is applied on the flow estimates to
remove outliers. Figure 3 shows the obtained flow field for nonlinear refinement using
Algorithm 5.1 for the rubberwhale sequence.

An improvement is seen in the average angular error (AAE) and the end-point error
(EPE) for the nonlinear refinement compared to the linear refinement for the rubber-
whale sequence as shown in Table 4. The improvement however is not significant which
indicates that incorporating the modern implementation principles like coarse-to-fine
warping, median filtering and so on also improves the accuracy of the linear refine-
ment process. There are however image sequences for which edge-information are not

Tab. 4. Comparison of the Average Angular Error (AAE) and End Point Error (EPE) for rubberwhale
sequence († refers to the algorithm implemented with the modern principles).

Model 1† Model 2†

AAE EPE AAE EPE
Linear Refinement 3.412 0.105 3.410 0.105
Nonlinear Refinement 3.397 0.104 3.355 0.103
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Fig. 4. Sphere sequence [22].

(a) Linear Refinement (b) Nonlinear Refinement

Fig. 5. Estimated flow fields of the sphere sequence from [22] using Algorithm 1† with α = 1, β = 0.1
(† refers to the algorithm implemented with the modern principles).

well-preserved by the linear refinement process. We demonstrate this with the sphere
sequence [22] (Fig. 4).

Figure 5 shows the color-coded flow estimate for the sphere sequence using the Mid-
dlebury color coding [2, 3]. The isotropic behaviour is seen in the linear case because of
which the edges are not well preserved.
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6. Conclusion

In this paper we have proposed two nonlinear variational models for obtaining an accu-
rate estimation of physics-based flow fields such as rotational and fluid flow. The first
model is a novel two-phase refinement process where in the first phase a crude estimate
is obtained and subsequently refined using additional constraints in the second phase.
We have studied the well-posedness of this model using an Evolutionary PDE approach.
The second model performs the same refinement using a single functional. We used the
first-order primal-dual Chambolle-Pock algorithm for the numerical implementation of
the above models. We further empirically demonstrated that the two-phase model leads
to a faster convergence rate of the order O(1/N) compared to the second model which
has a convergence rate of the order O(1/N2).
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