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Abstract. In the last years, several works on automatic image-based food recognition have been

proposed, often based on texture feature extraction and classification. However, there is still a lack of

proper comparisons to evaluate which approaches are better suited for this specific task. In this work,

we adopt a Random Forest classifier to measure the performances of different texture filter banks and

feature encoding techniques on three different food image datasets. Comparative results are given to

show the performance of each considered approach, as well as to compare the proposed Random Forest

classifiers with other feature-based state-of-the-art solutions.
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1. Introduction

According to the World Health Organization, in the last years there has been a rapid
increase of diseases related to excessive or wrong food intake [39]. Obese people should
constantly take note of their daily meals, both for self-monitoring and to acquire useful
statistics for dietitians. This justifies the large amount of food diary applications that
have recently been developed [4]. However, these applications typically require a manual
annotation of the food intake, a tedious task that often discourages potential users. To
face this problem, many food recognition works have been recently proposed, whose aim
is to automatically classify food (and possibly its amount) directly from pictures.

Regardless of the specific application, automatic food recognition is a tough problem
with many specific challenges. Differing from other common image classification tasks,
in food recognition, generally, there is no spatial layout information to be exploited.
While for example the recognition of paintings [22] or humans [11, 21] can benefit from
prior knowledge on the spatial relationships between the parts to be detected (e.g., the
head being always over the torso) this is rarely the case when considering food. More
generally, food is typically non-rigid, and thus no structure information can be easily
exploited. Intra-class variation is another source of uncertainty, since the recipe itself
for the same food can vary depending on the location, the available ingredients and, last
but not least, the personal taste of the cook. Finally, inter-class confusion is a source
of potential problems too, since different foods may look very similar, as in many soups
where the main ingredients may be hidden below the liquid level. On the other hand,
food images often have distinctive properties, especially in terms of colors and textures,
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which humans are able to exploit to recognize foods even from a single example, so the
task is still tractable, despite the non-trivial challenges.

Recently, several excellent results have been obtained in the field of food recognition
by using Convolutional Neural Networks and more in general Deep Learning approaches
(e.g., [24,28]). However, in practical applications this is not necessarily always the opti-
mal approach, e.g. due to high computational requirements in training phase or the need
for large datasets. Therefore, there are still many works on food recognition based on
alternative approaches, typically relying on explicit feature extraction with texture filter
banks. However, there is still a lack of a study showing which features are likely to be
more useful among the many available ones. The aim of this work is thus to evaluate and
compare different approaches based on texture filters, in order to gain a better insight on
their performances. In this paper, we have considered five of the most important texture
filter banks, namely Laws filters [19], Gabor filters [38], Schmid filters [35], Leung-Malik
filters [20] and Maximum Response filters [36], and measured their performances when
used in food classification tasks. Since the responses of such filters have high dimen-
sionality, we also analyzed the effects of adopting different feature encoding schemes to
obtain a compact feature representation. The task is performed by computing either
the Bag-of-Words, the Fisher Vector or the Vector of Locally Aggregated Descriptors
(VLAD) representation for each filter bank. We finally compared the discriminative
power of each texture filter alone, and show that better results can be achieved using a
proper combination of different filters. This is obtained by using a Random Forest of
Decision Trees (RF) [3] classifier, which automatically detects and uses only the relevant
features to produce a reliable classification. The main novelty of this work thus lies in
giving a better understanding of texture filter approaches through comparative results,
despite the adopted techniques are not novel per se. This work extends the preliminary
results we discussed in [26].

2. Related work

During the last few years, the topic of food recognition for health-oriented applications
has gained increasing popularity. For example, the work by Chen et al. [6] introduced
a system exploiting different classifiers trained on multiple features. In particular, a
Support Vector Machine is trained for each texture separately, and the results are fused
to form a single classifier using a multi-class AdaBoost algorithm. Farinella et al. [10]
exploit the texture information by applying a bank of rotation and scale invariant filters
to each class of food images, in order to extract the texture-oriented features known as
Textons. The feature space is then quantized via K-means to create a codebook of tex-
tons for each class. All the textons prototypes are collected in a single visual dictionary
which is used to represent each image. A Support Vector Machine is finally used in the
classification stage. Yang et al. [41] claim that spatial relationships between different
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ingredients could be exploited for some specific food types, like sandwiches, where the
meat is always between the bread slices. They perform a soft pixel-level segmentation of
the image into eight ingredient types using a Semantic Texton Forest. Then, they com-
pute pairwise statistics over the detected local ingredients, such as distance, orientation,
etc. The statistics are accumulated in a multi-dimensional histogram, which is then used
as a feature vector classified with a Support Vector Machine. Anthimopoulos et al. [1] in-
vestigate the application of Bag-of-Features approach to food recognition. In their work
they systematically analyze the system performances under different setups, e.g. by
changing the key point extraction techniques, feature descriptors and classifiers. Mar-
tinel et al. [25, 27] exploit different image features and train a committee of Extreme
Learning Machines, each one specialized on a single feature, to perform food classifica-
tion. The obtained results are processed by a Structural Support Vector Machine, which
considers the full rankings from each single classifier, rather than just the best match,
in order to merge them in a final global ranking.

Many works are explicitly tuned for food diary applications on smartphones and
other mobile devices [15, 17, 18, 42, 43]. Kawano and Yanai [15, 17] for example are
particularly concerned with real-time performances on an Android-based smartphone.
To speed up the process, the user is asked to manually select a proper bounding box
delimiting the food to be recognized. Then, the system extracts both color histograms
and SURF-based Bag of Features, and uses them to assign the acquired image to one
of 15 possible classes using a Support Vector Machine. Kong et al. [18] have developed
DietCam, a smartphone-based system to help assessing daily food intakes. The system
requires three images of each food to be recognized to increase the robustness against
partial occlusion or lighting conditions. Classification is done using a SIFT-based Bag of
Visual Words, and then searching for the best match against a database of known foods
using a nearest-neighbor classifier. Zhu et al. propose a system for calories estimation
via mobile phones [43]. Their approach consists in segmenting the images using different
techniques (connected component analysis, active contours and normalized cuts). Then,
they extract both color and texture features using color histograms and Gabor filters, and
classify the images using a Support Vector Machine. Volume is estimated by means of a
single-view calibrated camera and a reference marker in the scene. Calories estimation
has been proposed also by Zhang et al. in [42], where BoW-encoded texture features
are classified with Support Vector Machines and geometric considerations are used to
estimate the food amount. Puri et al. [32] perform a similar task, but using 3D volume
estimation. Some works also consider the problem of multiple foods in the same picture.
For example, Matsuda and Yanai [30] merge the outputs of different region detectors
to identify different foods, which are later classified using several texture features and
a Support Vector Machine. They also exploit co-occurrence statistics on food items to
improve the classification results.

Finally, in the last years deep learning techniques have obtained excellent results
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in the field of food recognition. This is a novel approach since features are automat-
ically learned, rather than manually defined. The typical works in this field rely on
pre-trained Convolutional Neural Networks, such as ImageNet, and fine-tune them on a
specific dataset. This is the approach adopted for example by Yanai and Kawano [40],
although they also proposed a combined use of both CNN and conventional manually-
defined image features to improve the achieved results [16]. Kagaya et al. [14] instead
trained a CNN from scratch, but this required a large dataset, consisting in more than
170 000 food pictures acquired by a mobile app. Christodoulidis et al. [7] also use an
CNN, but it requires a previous image segmentation step. They give performance re-
sults with varying choice of network hyperparameters. As mentioned in section 1, despite
deep learning approaches have obtained excellent results, often outperforming traditional
techniques, they are not always an optimal solution in real-world scenarios, e.g. for com-
putational requirements or the need for large datasets. For this reason, this work focuses
on traditional feature-extraction-based techniques only, and no comparative results with
CNN or other deep learning approaches will be given.

All of the above mentioned works, except the deep learning ones, rely on some specific
type of features to be extracted and processed. However, there is a lack of comparisons
between different filter banks or feature encoding schemes. The main contribution of
this work with respect to the state of the art is thus to provide comparative results by
testing both different feature types and feature encoding schemes, in order to identify
the best feature-based strategies that can be adopted in food recognition tasks.

3. Testing framework

The pipeline of the proposed system consists of three main main phases: (i) texture
feature extraction, (ii) feature encoding, and (iii) random forest classification.

Since the proposed approach introduces a classification scheme based on a learning
mechanism, the system requires a training stage before its deployment. In the training
stage, each image is given to the feature extraction module that extracts the texture
features by means of filter banks. To reduce the high dimensionality of the obtained
features, these are processed by the feature encoding module. The encoding features are
finally given to the RF classifier that learns the parameters of the decision boundaries
that best separate the food classes.

During the classification phase, given a test image to classify, the same types of
features are extracted and nonlinear encoding procedure is applied using the learned
codebook. Then, the obtained encoded features are given to the trained RF classifier
that produces the final classification decision.
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Fig. 1: (a) Laws filter bank consisting of 16 5x5 masks; (b) Gabor filter bank with 8
orientations and 5 sizes; (c) Standard Schmid filter bank; (d) Leung-Malik filter bank.
The set consists of first and second derivatives of Gaussians at 6 orientations and 3 scales
making a total of 36 filters; 8 Laplacian of Gaussian filters; and 4 Gaussians. (e) MR8
filter bank. The set consists of 2 oriented filters with 6 orientations and 3 scales plus 2
isotropic filters.

3.1. Texture Feature Extraction

Given a grayscale image I ∈ RM×N of a particular food type, we have considered the
most widely used bank of filters that produce features robust to object scale changes
and rotations.

Laws filters The Laws filters [19] combine multiple texture energy features com-
puted in a local neighborhood to obtain rotation invariance properties. Texture energy
features are obtained by combining the 4 Laws mask into 16 2D convolutional kernels
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(see Fig. 1a). The outputs of the 16 convolutions are then combined into 9 feature
vectors which are separately vectorized, then collected in the matrix Υ(I) ∈ R(MN)×9.

Gabor filters The Gabor filters [38] with 5 different sizes and 8 orientations have
been used (see Fig. 1b). The results of the convolution process with each single filter
is then vectorized. The resulting vectors computed for every Gabor filter are finally
stacked to obtain Γ(I) ∈ R(MN)×G, where G = 40 indicates the number of exploited
Gabor filters.

Schmid filters These filters [35] are obtained by convolution with isotropic “Gabor-
like” filters and have rotation invariant properties. A zero DC component of the filter
is also computed to achieve invariance to intensity translations. The convolution of the
image with the S = 13 Schmid filters (see Fig. 1c) results in the stacked filter responses
Ψ(I) ∈ R(MN)×13.

Leung-Malik filter bank The Leung-Malik (LM) [20] filter bank has also been
used to get texture features. The LM filter bank consists of first and second derivatives
of Gaussians at 6 orientations and 3 scales, 8 Laplacian of Gaussian (LoG) filters, and 4
Gaussians (see Fig. 1d). After convolving the image with such filters the responses are
collected in the feature vector Λ(I) ∈ R(MN)×48.

Maximum Response 8 filter bank The Maximum Response 8 (MR8) filter
bank [36] has been also considered. The MR8 bank inherits from the Root Filter Set
(RFS) consisting of 38 filters similar to the LM ones (see Fig. 1e). However, RFS filters
are not rotation invariant and the MR8 ones were conceived to sidestep such a problem.
This is achieved by taking only the maximum RFS filter responses across all orienta-
tions for the two anisotropic filters. In particular, measuring only the maximum response
across orientations allows to reduce the number of responses from 38 (6 orientations at 3
scales for 2 oriented filters, plus 2 isotropic) to 8 (3 scales for 2 filters, plus 2 isotropic).
Thus, the MR8 filter bank consists of 38 filters but only 8 filter responses which are
finally collected in ∆(I) ∈ R(MN)×8.

3.2. Feature Encoding

Feature encoding techniques are commonly exploited to reduce the dimensionality of the
feature vector used to represent an image. Such methods rely on the idea that an image
can be described as a composition of “visual words”. Such visual words form a codebook
which is commonly learned in an unsupervised fashion during a training phase. More
specifically, common encoding schemes define a “visual word” as the centroid of a set of
clusters into which the feature space is split.
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Fig. 2: Bag-of-Words encoding of feature vectors x. First row shows the nearest cluster
out of the K possible ones obtained by k-means. Second row describes the final encoded
vector obtained by computing the histogram counting the frequency of each nearest
cluster.

Bag-of-Words Encoding The Bag-of-Words (BoW) encoding model [8] inherits
ideas from document processing techniques where a document is seen as a set of words
each of which has a different frequency of appearance. In the BoW encoding for images,
each image is represented by counting the frequency of a particular feature present in
the learned codebook. See Fig. 2 for the BoW feature encoding scheme.

Fisher Vector Encoding The Fisher Vector (FV) encoding [12,31] defines an aggre-
gation mechanism based on the Fisher Kernel (FK) principle by combining the benefits
of generative and discriminative approaches to pattern classification. In the FV encoding
scheme, clustering is performed through a Gaussian Mixture Model (GMM). Such an en-
coding is not limited to the number of occurrences of each visual word but it also includes
additional information about the distribution of the descriptors. Recent works [31, 34]
have shown that such an approach leads to better classification performances with re-
spect to the standard BoW encoding methods.

VLAD Encoding The Vector of Locally Aggregated Descriptors (VLAD) image
encoding was initially proposed by Jegou et al. [13] with the objective to provide an
excellent search accuracy with a reasonable vector dimensionality. VLAD is a feature
encoding and pooling method, similar to Fisher vectors. It encodes the feature vector
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set by first constructing a dictionary of such features. This is usually done by applying
a clustering method such as a Gaussian Mixture Model (GMM) or k-means on a set of
features extracted from training images.

3.3. Food Classification

Let I be a given image of a particular food type. From such an image, all the afore-
mentioned features are separately extracted and encoded. Once the encoding process
is completed, the resulting vectors are concatenated to obtain the joint encoded repre-
sentation Φ(I) = [ϕ(Υ(I))ϕ(Γ(I))ϕ(Ψ(I))ϕ(Λ(I))ϕ(∆(I))] ∈ F , where ϕ is the chosen
feature encoder. Then, the goal of classification is to learn a mapping from the joint
encoded feature space F , to the label space, Y. Where each element y ∈ Y defines a
particular food type.

However, it might be that not every component in the joint encoded representation
has the same discriminative power [23]. Motivated by this, and due to the multi-class
classification nature of the food classification problem, we exploit a Random Forest
classifier [3]. The RF classifier is able to automatically detect, and hence exploit, only
the relevant features for the given task. It builds a large collection of de-correlated
trees with the objective of reducing the variance of an estimated prediction function by
pooling many noisy but approximately unbiased models.

To learn the parameters of the decision surfaces that separate the food types in F we
trained an RF classifier as follows. Let M = {Tt}Tt=1 be a forest of T trees each one de-
noted as Tt. Each tree is trained with a set of Tr data points S = {(Φ(Ii), yi)}Tri=1. Since
bagging can also be applied, each tree can be trained with a different set of randomly
selected data points S∗ ⊆ S. The dimensionality of S∗ is controlled through the bagging
hyper-parameter η as S∗ = η|S|. Let also Sj ⊆ S∗ be the set of data points reaching
node j. Each j-th node is associated with a binary split function h(Φ(I),Θj) ∈ {0, 1},
i.e., the weak learner, which is characterized by its parameters Θj = {κ,ψ, τ} where
ψ defines the geometric primitive used to separate the data (e.g. an axis-aligned hy-
perplane). The parameter vector τ captures thresholds for the inequalities used in the
binary test. The filter function κ randomly selects some features of choice out of the
entire vector Φ(Ii). In the current framework, we select

h (Φ(I)i,Θj) = 1(⟨κ(Φ(I)i),ψ⟩>τ) , (1)

where τ = 0 and ψ denotes a hyperplane.

All the aforementioned parameters are optimized at each split node as

Θ∗
j = argmax

Θ∗
j∈Pj

J(Sj ,SL,SR,Θj) , (2)
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where

J(S,Θ) = H(S)−
∑

i={L,R}

|Si|
|S|H(Si) , (3)

with Shannon entropy H(·) and SL and SR denoting the subsets of training points going
to the left and to the right children, respectively. Pj ⊂ P is the random subset of
available parameters Θ. The dimensionality of such a random subset is controlled by
ρ = |Pj |. The training continues to split the samples until the maximum depth D is
reached, a node contains a single sample or all the samples in the node belong to the
same class.

Once the training of the whole forest is completed, a set of leaves Lt is associated to
each tree Tt. To each leaf ℓt ∈ Lt is associated a probabilistic model pt(y|Φ(Ii)) with

y ∈ Y indexing the class. Therefore, to classify a new image Î, first its feature-encoded
representation is computed. Then, for each tree, Φ(Î) follows the path from the root
node down to a leaf one. Once a leaf is reached for each tree, the RF classifier assigns
to Φ(Î) the class probability

p(y|Φ(Î)) =
1

T

T∑
t=1

pt(y|Φ(Î)) . (4)

The final class label is computed as ŷ = argmaxy p(y|Φ(Î)).

4. Experimental Results

To validate the proposed approach, results on two benchmark datasets have been com-
puted. As commonly performed in the evaluation of food recognition approaches [5,9,10],
the achieved performances are provided in terms of recognition accuracy (total number
of correct classifications over total number of samples). The performance achieved by the
existing methods have been taken from the corresponding works or have been provided
by the authors of the present work.

4.1. Experimental Settings

In the current framework, we have used a Gabor filter bank with 8 orientations and 5
sizes, therefore G = 40. When not explicitly specified, the feature encoding has been
obtained by means of the FV approach with K = 300 clusters. Similarly, by default, the
RF classifier has been trained with T = 2000 trees having maximum depth D = 100.
Each tree has been trained by setting η = 0.6. At each node the function κ randomly
selects

√
d features, where d is the dimensionality of the input feature vector.
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a
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Fig. 3: 15 randomly selected samples from the (a) UNICT-FD889, (b) UECFood100,
and (c) Food101 datasets. In each figure, columns correspond to different food classes,
rows show the appearance variations within the same class.

Finally, images have been rescaled to 128×128 to remove the effect of different image
sizes on the classifier performances.

4.2. Datasets

UNICT-FD889 Dataset The UNICT-FD889 Dataset has been recently introduced
by Farinella et al. [9]. The UNICT-FD889 dataset has the largest number of different
classes to recognize. It comes with 3583 images related to 889 distinct dishes of food
of different nationalities (e.g., Italian, English, Thai, Indian, Japanese, etc.) which have
been collected in a real and uncontrolled scenario (e.g., different backgrounds and illu-
mination conditions) by means of smartphones. Hence, the UNICT-FD889 dataset is a
collection of food images acquired by users in real cases of meals. Each food belonging to
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a particular class has been acquired multiple times (four on average) to ensure geometric
and photometric variabilities (see Fig. 3a for a few examples).

To provide a fair comparison with existing methods, the following results have been
computed by averaging the performance on the same three splits, as it has been advised
by Farinella et al. [9].

UECFood100 Dataset The UECFood100 Dataset is one of the largest food recogni-
tion datasets [29]. This dataset contains approximately 100 images for each of the 100
different food categories. Thus it contains approximately 14 000 real-world food images.
The UECFood100 dataset was built to implement a practical food recognition system
which was intended to be used in Japan. Because of this, it was collected in such a
way that multiple food items were present in a single image, thus with the objective to
perform both the detection and the recognition tasks.

Since the proposed system is designed to focus only on the recognition task, the given
ground truth bounding boxes have been used to obtain a dataset of images containing
single food items only (see Figure 3b). Despite this, the same protocol proposed by
Matsuda et al. [29] has been followed to fairly compare the obtained performance with
existing methods.

Food101 Dataset

The Food-101 Dataset is the largest food recognition dataset [2]. It has been collected by
downloading images from foodspotting.com. The top 101 most popular and consistently
named dishes were selected. Then, for each category 750 training and 250 test images
were collected and manually cleaned. On purpose, the intense colors and sometimes
wrong labels included in the training images were not cleaned. As a result the dataset
contains 101 000 real-world food images (see Figure 3c).

4.3. Performance Analysis

To evaluate the proposed approach, we have analyzed the following aspects: (i) perfor-
mance of single filter banks using grayscale or RGB color images. In the latter case,
each image plane is separately processed; (ii) performance of different encodings, also
as a function of the codebook size; (iii) influence of the RF hyper-parameters on the
classification accuracy.

4.3.1. Filter Banks

To analyze the accuracy performance of each filter bank we have computed the results
shown in Fig. 4.

UNICT-FD889 Results in Fig. 4a show that, for every considered filter bank,
the best performances are achieved when the full color information provided by three
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Fig. 4: Accuracy performance on the (a) UNICT-FD889, (b) UECFood100, and
(c) Food101 datasets achieved by filtering RGB and grayscale images with each sin-
gle filter bank.
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channels is exploited. In particular, when Schmid filters are used, the performance drops
from 41.54% to 27.34% if only grayscale information is used. The best performances are
obtained by filtering the RGB color images with the MR8 filter bank. In such a case the
accuracy is 62.46%. More interestingly, results show that while being simpler compared
to other filters, Laws filters yield the second best accuracy (i.e., 47.97%).

UECFood100 Results in Fig. 4b reflect those obtained considering the UEC-
Food100 dataset. Indeed, overall, the best performances are achieved when color in-
formation is considered. However, for the considered dataset the accuracy difference
between grayscale and RGB filtered images is never more than 9% (Schmid filters). The
best performances are obtained by using the MR8 filter bank on RGB images. In such a
case the accuracy is 34.71%. More interestingly, results show that there is less than 1%
accuracy difference when Gabor filters are applied on RGB images instead of grayscale
ones.

Food101 Food101 is the most complex of the three datasets, as it has a large intra-
class variance. This affects the results shown in Fig. 4c, where the best performing filter
bank (MR8) achieved just a 29% of classification accuracy. The other banks, except
LMF, reached similar performances. It is worth noting that, with the exception of MR8,
in the other cases working on RGB or grayscale data does not drastically affect the
performances. This is probably due to the intra-class shape variance, leading to spatial
features be more relevant than color information.

4.3.2. Feature Encoding

In the preceding section we have reported on the performance of each single filter bank
obtained by using the FV encoding scheme. To evaluate the performance of different
encodings and the influence of the codebook dimensionality, we have conducted the
following experiments. Each filter bank response is encoded using the same method and
the same number of “visual words” K. Then, the 5 obtained encoded vectors obtained
for each image are stacked and input to the RF classifier.

In addition, to see if the RF classifier is able to select the optimal features as well
as the optimal encoding, we have run one additional experiment. Specifically, the three
encoding methods are separately applied to each filter bank response. The value of K
has been kept same for each of them. The so obtained 15 encoded vectors are finally
stacked and given to the RF classifier. In the following, results obtained with such a
procedure are referred to as All.

Results in Fig. 5 show that for VLAD, FV and All optimal accuracy performance
are achieved when the number of clusters K is either 20 or 50. In particular, 20 clusters
are considered in the FV encoding scheme the classification accuracy is about 63.29%
which is very close to the performance of the single MR8 filter bank encoded with the
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Fig. 5: Accuracy performance on the UNICT-FD889 dataset achieved by using different
encoding schemes and color spaces.

same scheme but with 300 clusters (see Fig. 4a). For all the encodings, the performance
decrease when the number of clusters increase. In particular, it is worth noticing that
when the All solution is considered, performance are even lower than a single adopted
encoding scheme. Such a behavior is mainly due to the exploding dimensionality of the
encoded feature vectors which yields to a very sparse space, hence introduces the curse
of dimensionality issue. Such a problem could be addressed by increasing the number of
trees in the RF model.

On the other hand, performance obtained using the BoW encoding increases if a large
number of visual words is used. The best accuracy under such a scheme is obtained
when the number of clusters is 500. When more clusters are considered performance
decrease. Differently from VLAD and FV, BoW encoding does not suffer from the curse
of dimensionality problem since the number of dimensions in the encoded feature space
is determined by the codebook size (see Section 3.2).

Finally, as previously shown in the filter banks analysis, better performances are
achieved when RGB color information is considered.

4.3.3. Random Forest Classifier

The RF classifier model is controlled by different hyper-parameters: the number of trees
T , the maximum depth D, the bagging size defined by η and the number of features
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Fig. 6: Performances of the random forest classifier on the UNICT-FD889 dataset while
varying the hyper-parameters. Results have been computed by starting with the hyper-
parameters described in Section 4.1, and then varying, as follows: (a) number of trees
in the forest, (b) maximum depth of each single tree, (c) percentage of features selected
at each node, and (d) number of randomly selected features at each node.

that are selected through the filter function κ. To evaluate the influence of such hyper-
parameters on the performance, we have proceeded by fixing the values of the hyper-
parameters as defined in Section 4.1, then we have varied the value of a single hyper-
parameter. The results of such analysis, shown in Figs. 6, 7, and 8 have been computed
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Fig. 7: Performances of the random forest classifier on the UECFood100 dataset while
varying the hyper-parameters. Results have been computed by starting with the hyper-
parameters described in Section 4.1, and then varying, as follows: (a) number of trees
in the forest, (b) maximum depth of each single tree, (c) percentage of features selected
at each node, and (d) number of randomly selected features at each node.

considering all the filter banks encoded using 300 clusters and the FV method. Color
information has been used.
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Fig. 8: Performances of the random forest classifier on the Food101 dataset while vary-
ing the hyper-parameters. Results have been computed by starting with the hyper-
parameters described in Section 4.1, and then varying, as follows: (a) number of trees
in the forest, (b) maximum depth of each single tree, (c) percentage of features selected
at each node, and (d) number of randomly selected features at each node.

UNICT-FD889 Results in Fig. 6a have been computed by varying the number of
trees such that T ∈ [1, 5000]. Under such scenario, the classification accuracy drastically
increases when T grows from 1 to 1000. For larger values the performance improves but
with less gain. The best performance is obtained when T = 5000 trees have been used.
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Such results demonstrate the benefits of the RF classifier, and in general of aggregation
methods, which are able to strongly improve the accuracy produced by a single weak
classifier.

The results on the analysis of the depth hyper-parameter are shown in Fig. 6b.
Results show that by varying D in the range [10, 200] two main classification accuracy
peaks can be found: the first is at D = 20, the second at D = 100. For smaller and larger
values performance decreases due to underfitting and overfitting problems respectively.
Indeed, with a very shallow tree it is not possible to have enough decision boundaries
to discriminate all the samples well. Similarly, if the tree is too deep, the number of
decision boundaries is too high, thus causing the RF model to not generalize well on new
samples. The performance decrease for values in between the two peaks is caused by
the two random components of the RF, i.e., bagging and the random feature selection
at each node. Despite this, it should be noticed that for all the considered cases the gap
between the best (48.67%) and the worst performance (47.94%) is less than 0.8%, thus
showing the robustness of the model to such hyper-parameter.

Finally, in Fig. 6c and Fig. 6d the RF model performance are computed by vary-
ing the bagging percentage and the number of selected random features at each node,
respectively.

The results in Fig. 6c show that there is consistency in the results when the bagging
hyper-parameter η is changed from 0.1 to 1.0 (notice that in the latter case no bagging
is used since all the available data is used by each tree). Indeed, no matter what bagging
percentage is considered, the classification accuracy is never less than 47.71% (η = 0.9)
nor higher than 48.86% (η = 1.0).

Similarly, results in Fig. 6d show that the RF model is insensitive to the number
of randomly selected features at each node. Varying such a hyper-parameter the clas-
sification accuracy gap between the best and the worst performance is less than 0.9%.
The optimal performance is obtained when the number of selected features is computed
as

√
d.

UECFood100 Results in Fig. 7a have been computed by varying the number of trees
such that T ∈ [1, 5000]. Under such scenario, the classification accuracy drastically
increases when T grows from 1 to 500. For larger values the performance remains stable
with a peak at T = 2000.

In Fig. 7b, results of the proposed approach are given as a function of the depth
RF hyper-parameter. Differently from the results shown in Fig. 6b, the accuracy per-
formance obtained using a very shallow tree (i.e., D = 10) is much worse than the one
achieved using a deeper forest. This is due to the complexity of the dataset, which
requires more separating hyperplanes to well discriminate between the 100 classes. The
optimal results are achieved when D = 100.
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Results in Fig. 7c show the performance of the RF model varying the bagging per-
centage. The depicted results demonstrate that by considering an extreme bagging in
which each tree sees only 10% of the total training samples the worst performance are
achieved. However, it should be noticed that in such case the accuracy performance is
only about 3% less than the optimal one (obtained by setting η = 0.5).

Finally, results in Fig. 7d show that the RF model trained on the UECFood100
dataset is more sensitive to the selected number of randomly selected features at each
node. Indeed, compared to the case when only 5 features are selected at each node,
almost a 10% improvement is obtained by varying such a hyper-parameter to select 500
features.

Food101 The performances on Food101 are similar to the ones achieved on UEC-
Food100 and confirm the conclusions described above. Figure 8a confirms the initial
performance boost in the range T ∈ [1, 500], even though there is a small but constant
improvement when augmenting the number of trees up to 5000.

Figure 8b again shows very poor results when the tree depth is too low (D < 30), due
to the complexity of the dataset, and a slight performance decrease due to overfitting
when D >= 100. The best results have been obtained with D = 80.

Regarding the bagging percentage, in Figure 8c it can again be seen that this hyper-
parameter drastically influence the results only when η < 0.1, while giving substantially
stable results for any value higher than that.

Finally, the system performances with respect to the number of randomly selected
features at each node has been analyzed (Figure 8d). As already seen in UECFood100
dataset, there is an approximately linear increase in the classification accuracy while
increasing the number of selected features from 5 to

√
d, where the system reaches its

best result.

To summarize, the RF hyper-parameter analysis has shown that the number of trees
and the number of randomly selected features at each node in the forest should be
carefully selected to obtain the best possible performance. On the other hand, the model
performances do not heavily depend on the tree depth and the bagging percentage.

4.3.4. Discussion

As a result of the conducted performance analysis, we can draw the following conclusions:

1.While more computationally demanding color information should be retained to ob-
tain better recognition performance.

2. The number of clusters determining the codebook size for encoding should be carefully
selected on the basis of the chosen encoding scheme.

3. Exploiting more encoding schemes simultaneously may yield to performance degra-
dation due to the very high-dimensionality of the obtained encoded feature vector.
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4. For the specific tasks, the selected RF model has demonstrated to be sensitive to
two hyper-parameters, namely the number of trees in the forest and the number of
randomly selected features at each node. This can be exploited to simplify the cross-
validation procedure usually required to select the optimal hyper-parameters values.

To qualitatively evaluate the performance of the proposed approach we have com-
puted the results shown in Figs. 9 and 10. The performance achieved by the proposed
method are shown for 18 query images from the UNICT-FD889 and the UECFood100
datasets, respectively (see caption for additional details). The depicted results demon-
strate that, even only texture information is exploited, the proposed approach is able to
well capture the global appearance of the images and it also has the capacity to reliably
find the true match under challenging conditions (see the 3 cases in the first row). When
the query image is not correctly classified, or the considered cases are very challenging,
the resulting scores are very close to each other, thus meaning there is uncertainty in
the given answer.

In the following section, the given results have been computed following the afore-
mentioned conclusions. Thus, RGB color information, FV encoding withK = 20 clusters
and T = 5000 trees have been considered. The other RF model hyper-parameters have
been kept as defined in Section 4.1.

4.4. State-of-the-art Comparisons

Comparisons with state-of-the-art methods are shown in Fig. 11. Performances achieved
by our method are labeled as TFE-RF. The reported accuracies for other methods have
been taken from the papers describing the three main datasets. For this reason, the
results shown in Fig. 11 are not uniform, meaning that TFE-RF is the only algorithm
tested on all the three datasets.

UNICT-FD889 In Fig. 11a, the obtained performance are compared to 4 state-
of-the-art methods, namely PRICoLBP [9], SIFT [9], BoT [9] and FB [26]. Results
demonstrate that the proposed approach outperforms existing ones by improving the
previous best accuracy by more than 5%. This is an interesting result since other ap-
proaches (i) require complex procedure for feature extractions (e.g., PRICoLBP [33]);
(ii) use the original input images of size 320 × 240, which carry more information than
the resized ones.

UECFood100 A comparison with state-of-the-art approaches is given in Fig. 11b.
The obtained performance are compared to the ones achieved by 6 state-of-the-art meth-
ods [29]. Methods like Circle, JSEG, DCR, DPM, and Whole use a detector to identify
the location of the food, while GTBB [29] uses the same ground truth as TFE-RF. Re-
sults demonstrate that TFE-RF outperforms detector-based approaches but has lower
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Fig. 9: Performances achieved by the proposed method on the UNICT-FD889 dataset
are shown for 9 query images. At the bottom of each image, the bar histograms show
the score (in percentage) of the proposed approach for the true match (in green) and for
the remaining top 4 matches (in red). Beside each bar histogram, a randomly selected
training image corresponding to the food class is depicted.

Machine GRAPHICS & VISION 26(1/4):13–39, 2017. DOI: 10.22630/MGV.2017.26.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2017.26.1.2


34 An ensemble feature method for food classification

2.60%

3.16%

3.61%

4.47%

12.47%

2.52%

3.15%

3.60%

4.33%

14.52%

4.12%

4.14%

4.81%

4.97%

7.33%

2.86%

2.95%

3.54%

4.03%

5.20%

2.80%

2.94%

3.24%

3.24%

6.04%

2.20%

3.02%

3.17%

3.38%

3.67%

1.82%

3.23%

4.00%

4.48%

5.36%

0.69%

2.87%

3.43%

3.52%

11.31%

1.45%

3.09%

3.11%

3.74%

5.14%

Fig. 10: Performances achieved by the proposed method on the UECFood100 dataset
are shown for 9 query images. At the bottom of each image, the bar histograms show
the score (in percentage) of the proposed approach for the true match (in green) and for
the remaining top 4 matches (in red). Beside each bar histogram, a randomly selected
training image corresponding to the food class is depicted.
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Fig. 11: Performance of the proposed TFE-RFapproach are compared to state-of-the-art
ones. Results are shown for the (a) UNICT-FD889, (b) UECFood100, and (c) Food101
datasets.

performance than GTBB. This is mainly due to (i) the discriminative power of the
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additional color and shape features which these methods exploits [29] and (ii) the rele-
vant information which full-size images have with respect to the resized ones which our
approach considers.

Food101 Figure 11c shows a comparison of the proposed method with state-of-the-
art approaches on the Food101 dataset. The competitors performances have been taken
from [2], and include among others approaches based on HoG, BoW, SURF, AlexNet,
Random Forests, etc. (see [2] for exact references for each method). As it can be seen, in
this challenging dataset the proposed method reaches an accuracy of 38.1%, comparable
to the other approaches based on random forests, but outperformed by the results ob-
tained by deep learning strategies, as in the case of AlexNet, based on a Convolutional
Neural Network approach.

5. Conclusions

In this paper an analysis of existing filter banks and feature encoding schemes for food
classification has been provided. The work has been motivated by the lack of stud-
ies showing which filters for texture features are likely to be the most useful for the
task. In particular, we have considered five of the most widely used filter banks in com-
puter vision, namely Laws, Gabor, Schmid, Leung-Malik and MR8. To reduce the high
dimensional representations produced by filter banks we have used and analyzed the per-
formance of the three main encoding schemes in literature: BoW, FV and VLAD. Then,
the food classification task is accomplished by exploiting such encoded representations
within the RF classifier. Results on three food classification benchmark datasets have
been provided. Specifically, an in-depth analysis of the performance of each single filter
bank and encoding scheme has been provided. The proposed method has comparable
performances with respect to state-of-the-art approaches. It is worth noting that all the
tested methods have a moderate accuracy (maximum reached is 65.8% on the UNICT-
FD889 dataset), confirming that food recognition is a complex task. These results could
also be a consequence of explicit feature descriptors having sub-optimal performances in
this specific application field. For this reason, as a future work, we will investigate novel
architectures based on feature learning methods [37] to reduce the required on-board
computational costs and to improve the accuracy.
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