
Interpreted Graphs and ETPR(k) Graph Grammar Parsing
for Syntactic Pattern Recognition

Mariusz Flasiński
IT Systems Department, Jagiellonian University

ul. St.  Lojasiewicza 4, 30-384 Cracow, Poland

Abstract. Further results of research into graph grammar parsing for syntactic pattern recognition

(Pattern Recognit. 21:623–629, 1988; 23:765–774, 1990; 24:1223–1224, 1991; 26:1–16, 1993; 43:249–2264,

2010; Comput. Vision Graph. Image Process. 47:1–21, 1989; Fundam. Inform. 80:379–413, 2007;

Theoret. Comp. Sci. 201:189–231, 1998) are presented in the paper. The notion of interpreted graphs

based on Tarski’s model theory is introduced. The bottom-up parsing algorithm for ETPR(k) graph

grammars is defined.

Key words: syntactic pattern recognition, graph grammar, parsing, interpreted graph, model

theory

1. Introduction

Syntactic pattern recognition consists in representing patterns with string, tree or graph
structures, defining generative grammars for sets of such structures, and using cor-
responding automata/syntax analyzers for classifying unknown structural patterns [1,
2, 3, 4]. Graph grammars are the strongest formalism generating structural patterns
and they are used in machine graphics and vision for this purpose for more than 40
years [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Although the extensive research into parsing of graph languages for syntactic pattern
recognition has been carried out, only a few syntax analyzers for graph-based patterns
have been developed. The efficient parser for expansive graph grammars was defined by
Fu and Shi in 1983 [20]. In 1990 parsing algorithms for plex grammars were constructed
by Bunke and Haller [21], and Peng, Yamamoto and Aoki [22]. Then, syntax analyzers for
relational grammars were proposed by: Wittenburg, Weitzman and Talley in 1991 [23],
and Ferruci, Tortora, Tucci and Vitiello in 1994 [24]. The parsing algorithm for context-
sensitive layered grammars was presented by Rekers and Schürr in [25]. The parsing
method for reserved graph grammars was defined by Zhang, Zhang and Cao in 2001 [26].

Till the first half of 1990s three efficient parsing algorithms, O(n2), were defined
for subclasses of classical Node Label Controlled (NLC ) graph grammars introduced
in [27]. Firstly, the syntax analyzer for the regular ETL(1) subclass of edNLC lan-
guages was proposed in [28, 29], then its error-correcting extension was defined [30, 31],
and finally the parser for the context-free ETPL(k) subclass of edNLC languages was

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


4 Interpreted graphs and ETPR(k) graph grammar parsing. . .

constructed [32]. Moreover, formal power properties of ETPL(k) graph languages were
characterized in [33] and the inference algorithm for these languages was defined [34]. The
ETPL(k) parser was successfully used in a variety of practical applications like: scene
analysis in robotics [28], software allocation in distributed systems [35], CAD/CAM
integration [36, 37], reasoning in real-time expert system [38], mesh refinement (finite
element method, FEM) in CAE system [39], reasoning with semantic networks in AI
systems [40], sign language recognition [41, 42].

The successful use of the ETPL(k) model in aforementioned applications results,
among others, from the linear ordering of graphs representing visual objects, compo-
nents of networks, etc. In turn, the effective definition of this ordering is the result
of constructing the graphs on the basis of semantic features of represented phenom-
ena. Formulating general preconditions allowing one to construct such graphs, called
here interpreted graphs is the first goal of the paper. The complete formalization of
the bottom-up parsable version of the deterministic subclass of edNLC graph gram-
mars analogous to ETPL(k) grammars1 and presenting the ETPR(k) parsing algorithm
analogous to the one introduced in [32] is the second goal of the paper.

Definitions relating to edNLC graph grammars are presented in Section 2. Notions
of interpreted graphs and (reversely) indexed edge-unambiguous graphs that allow us
to introduce linear ordering on graphs used for representing patterns are included in
Section 3. Definitions of bottom-up parsable ETPR(k) graph grammars are contained
in Section 4, whereas in Section 5 the ETPR(k) parsing algorithm is presented. The
concluding remarks are included in the last section.

2. Preliminaries

In this section we present basic definitions of: EDG graph, edNLC graph grammar and
edNLC graph language [27].

Definition 2.1. A directed node- and edge-labelled graph, EDG graph, over Σ and
Γ is a quintuple

H = (V,E,Σ,Γ, ϕ) ,where

V is a finite, non-empty set of nodes,
Σ is a finite, non-empty set of node labels,
Γ is a finite, non-empty set of edge labels,
E is a set of edges of the form (v, λ, w), where v, w ∈ V, λ ∈ Γ,
ϕ : V −→ Σ is a node-labelling function.

The family of all the EDG graphs over Σ and Γ is denoted by EDGΣ,Γ. The compo-
nents V,E, ϕ of a graph H are sometimes denoted with VH , EH , ϕH .

1The preliminary formalization was presented in [37].

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


M. Flasiński 5

Let A = (VA, EA,Σ,Γ, ϕA), B = (VB , EB ,Σ,Γ, ϕB) and C = (VC , EC ,Σ, Γ, ϕC) be
EDG graphs. An isomorphism from A onto B is a bijective function h from VA onto VB

such that

ϕB ◦ h = ϕA and EB = {(h(v), λ, h(w)) : (v, λ, w) ∈ EA} .

We say that A is isomorphic to B, and denote it with A
isom
= B.

A graph C is a (full) subgraph of B iff VC ⊆ VB , EC = {(v, λ, w) ∈ EB : v, w ∈ VC} and
ϕC is the restriction to VC of ϕB .

Definition 2.2. An edge-labelled directed Node Label Controlled, edNLC , graph
grammar is a quintuple

G = (Σ,∆,Γ, P, Z),where

Σ is a finite, non-empty set of node labels,
∆ ⊆ Σ is a set of terminal node labels,
Γ is a finite, non-empty set of edge labels,
P is a finite set of productions of the form (l,D,C), in which
l ∈ Σ\∆, D ∈ EDGΣ,Γ, C : Γ× {in, out} −→ 2Σ×Σ×Γ×{in,out} is the embedding transfor-
mation,
Z ∈ EDGΣ,Γ is the starting graph called the axiom.

Definition 2.3. Let G = (Σ,∆,Γ, P, Z) be an edNLC graph grammar.

1. Let H,H ∈ EDGΣ,Γ. Then H directly derives H in G, denoted by H =⇒
G

H, if there
exists a node v ∈ VH and a production (l,D,C) in P such that the following holds.

(a) l = ϕH(v).

(b) There exists an isomorphism from H onto the graph X in EDGΣ,Γ constructed as
follows. Let D be a graph isomorphic to D such that VH ∩ VD = ∅ and let h be an
isomorphism from D onto D. Then

X = (VX , EX ,Σ,Γ, ϕX) ,

where

VX = (VH \ {v}) ∪ VD ,

ϕX(y) =

{
ϕH(y) if y ∈ VH \ {v} ,
ϕD(y) if y ∈ VD ,

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


6 Interpreted graphs and ETPR(k) graph grammar parsing. . .

EX = (EH \ {(n, γ,m) : n = v or m = v}) ∪ ED ∪
{ (n, γ,m) : n ∈ VD ,m ∈ VX\D and there exists an edge (m,λ, v) ∈ EH

such that(ϕX(n), ϕX(m), γ, out) ∈ C(λ, in) } ∪
{ (m, γ, n) : n ∈ VD ,m ∈ VX\D and there exists an edge (m,λ, v) ∈ EH

such that(ϕX(n), ϕX(m), γ, in) ∈ C(λ, in) } ∪
{ (n, γ,m) : n ∈ VD ,m ∈ VX\D and there exists an edge (v, λ,m) ∈ EH

such that(ϕX(n), ϕX(m), γ, out) ∈ C(λ, out) } ∪
{ (m, γ, n) : n ∈ VD ,m ∈ VX\D and there exists an edge (v, λ,m) ∈ EH

such that(ϕX(n), ϕX(m), γ, in) ∈ C(λ, out) } .

2. By *=⇒
G

we denote the transitive and reflexive closure of =⇒
G

.

3. The language of G, denoted L(G), is the set

L(G) = {H : Z *=⇒
G

H and H ∈ EDG∆,Γ} .

An example of a derivation step is shown in Fig. 1. The graph h which will be
transformed is shown in Fig. 1a. The left-hand side l = A and the right-hand side D of
a production are shown in Fig. 1b. Let us assume that the embedding transformation is
defined in the following way.

(i) C(p, in) = {(D,B, v, out)} ,

(ii) C(v, out) = {(b, a, v, out)} .

The derivation step is performed in two stages. Firstly, the node labelled with A of
the graph h is removed and the graph of the right-hand side D is placed instead of this
node. The transformed graph after removing the node is called the rest graph. During
the second stage the embedding transformation is used in order to connect certain nodes
of the graph D with the rest graph. The item 2 is interpreted in the following way.

1. Each edge labelled with p and coming in the node corresponding to the left-hand side
of a production, i.e. A, should be replaced by

2. the edge:

(a) connecting the node of the graph of the right-hand side of the production and
labelled with D with the node of the rest graph and labelled with B,

(b) labelled with v,

(c) and going out from the node D.

So, the item 2 generates the edge of the graph h, shown in Fig. 1c, which is labelled
with v and connects nodes labelled with D and B on the basis of the edge of the graph
h labelled with p and connecting nodes labelled with A and B. Let us notice that the
application of the item 2 preserves the edge labelled with v of the graph h.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


M. Flasiński 7

3. Interpreted graphs and indexed edge-unambiguous graphs

As it has been discussed in [33], there are two main reasons of difficulties with construct-
ing efficient parsing algorithms for graph languages (comparing with such algorithms for
string and tree languages): the lack of ordering of graph structure and the complexity
of embedding transformation. In this section we consider the first problem.

Let is notice that the main idea of any syntax analysis algorithm consists in repet-
itive tearing off succeeding subphrases/substructures (handles) from an analyzed sen-
tence/structure and matching them against phrases/structures which are defined on the
basis of right-hand sides of productions. In case of a graph structure it means look-
ing for a subgraph (a handle) which is isomorphic to a given graph, i.e. resolving the
subgraph isomorphism problem known to be NP-complete. To resolve this problem we
have introduced the subclass of EDG graphs called indexed edge-unambiguous graphs,
IE graphs [28, 33] in which the linear order has been defined. In spite of the fact that

 

 

 

 

 

 

 

 

 

 

  

h = 

B 

a 

v 

p 

y 

A 

v 

C 

B 

D a 

b 
v u 

s 

t 

y 

h = 

a) 

b) 

c) 

l  =  A 

C 

D 

b 

u 

s 

t 
=  D 

Fig. 1. An example of a derivation step in an edNLC graph grammar.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


8 Interpreted graphs and ETPR(k) graph grammar parsing. . .

formal restrictions have been imposed on the class of IE graphs, it has turned out that
they do not limit its descriptive power in practice. The IE graphs have been used as
a descriptive formalism for representing: combinations of objects of scenes analyzed by
industrial robots [28], configurations of hardware/software components analyzed by dis-
tributed software allocators [35], structures consisting of geometrical/topological features
of machined parts in CAD/CAM integration systems [36, 37], frames in real-time expert
systems [38], grids analyzed with FEA methods in CAE systems [39], semantic networks
in AI systems [40] hand postures analyzed by sign language recognition systems [41, 42].

Although specific preconditions which have to be fulfilled for the effective use of IE
graphs have been determined and discussed for each of these applications, they have not
been defined formally in a general case till now. Only in [28, 33] it has been pointed out
intuitively that one has to refer to a semantic aspect of a graph representation. Indeed,
in order to formulate general conditions for the effective use of the class of IE graphs
we have to refer to Tarski’s (semantic) model theory. We will use the model theory
approach to define the class of interpreted EDG graphs.

Graphs are used in computer science for representing structures which consist of ob-
jects and relations among them. These objects, corresponding to individual objects in
logic, can represent physical entities/phenomena (e.g. Albert Einstein, Hurricane Kat-
rina), sets (groups) of entities (e.g. my family), social/cultural/political constructs (e.g.
UNESCO, USA), (theoretical) concepts (e.g. the set of natural numbers, triangle, an-
imal). Individual objects are represented with graph nodes, whereas relations among
these objects are represented with graph edges. Hereinafter structures represented with
graphs will be called relational structures (in order to distinguish them from (abstract)
structures defined in model theory)2 Then we will assume that a graph node is charac-
terized with node attributes and a node label (which in fact is a kind of the distinguished
attribute). Usually for a graph node representing a unique object (e.g. (this) Albert Ein-
stein) the node label corresponds to the unique “identifier” of the object, and for a graph
node representing a concept object (class, category) (e.g. tree) the node label corresponds
to the name of the concept. A graph edge between nodes v and w is characterized with
an edge label which defines the kind of the relation between objects (of a relational struc-
ture) which are represented with the nodes v and w. Since we construct our formalism
for EDG graphs we assume that relations are binary and there are no multiple relations
between objects (cf. [27]). For graph edges, similarly as for nodes, attributes can be also
defined.

Let us formalize our considerations. Firstly, we introduce the definition of relational
structure.

Definition 3.1. Let U be a finite set of individual objects called universe, NU be
a set of their names, AU be a set of their attributes.

2That is, in our terminology graphs (treated as a representative formalism) represent relational
structures that are constituted by objects and relations among them.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


M. Flasiński 9

Let each object ok, k = 1, . . .K of U be represented by its name nk
u ∈ NU and the set of

its attributes3 aku ∈ 2AU .
Let R ⊂ 2U×U be a set of binary relations such that for a pair of objects at most one
relation is established, NR be a set of their names, AR be a set of their attributes,
R = {(nr, ar) | nr ∈ NR, ar ∈ 2AR}.
A relational structure is a sextuple S = (U ,R,NU ,NR,AU ,AR).

Now we can define the interpretation of EDG graph over relational structure and the
interpreted EDG graph.

Definition 3.2. Let H = (V,E,Σ,Γ, ϕ) be an EDG graph over Σ and Γ, S be
a relational structure defined as in Definition 3.1, Σ ⊂ NU ,Γ ⊂ NR.
An interpretation I of the graph H over the structure S is a pair

I = (S,F) , where

F = (F1,F2) is the denotation function defined in the following way.

• F1 assigns an object u ∈ U having a name a ∈ NU to each graph node v ∈ V, ϕ(v) =
a, a ∈ Σ,

• F2 assigns a pair of objects (u
′, u′′) ∈ r, r ∈ R to each graph edge (v, λ, w) ∈ E, v, w ∈

V, λ ∈ Γ such that F1(v) = u′, F1(w) = u′′ and r has the name λ.

Definition 3.3. Let H be an EDG graph over Σ and Γ, S be a relational structure,
I be the interpretation of H over S defined as in Definition 3.2. An interpreted EDG
graph is a triple HI = (S, H, I).

The family of all the EDG graphs over Σ and Γ interpreted by I, shortly interpreted
EDG graphs, is denoted by EDGI

Σ,Γ.

The examples of defining interpreted graphs for representing machined parts in the
vision subsystem of the CAD/CAM system [36] and hand gestures in the Polish Sign
Languages recognition system [41] are shown in Figs. 2a and 2b, respectively.

As we have mentioned above, we have been able to define the linear order for EDG
graphs in various application areas because, in fact, we have considered interpreted EDG
graphs. In all mentioned applications of edNLC grammars, the linear order has been
introduced on the basis of semantics (i.e. attributes) of graphs representing relational
structures.

Before we introduce the family of indexed edge-unambiguous graphs (defined for top-
down parsable edNLC languages) and the family of reversely indexed edge-unambiguous
graphs (defined for bottom-up parsable edNLC languages), let us define the string-like
graph representation of EDG graphs as in [28, 32]. (This kind of the representation was
originally defined for Ω graphs in [20].)

Definition 3.4. Let k ∈ V be the node having the index k of the EDG graph
H = (V,E,Σ,Γ, ϕ). A characteristic description of the node k is the quadruple

3The set of attributes for an object can be the empty set.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


10 Interpreted graphs and ETPR(k) graph grammar parsing. . .

n(k), r, (e1 . . . er), (i1 . . . ir) , where

n is the label of the node k, i.e. ϕ(k) = n,
r is the out-degree of k (out-degree of the node designates the number of edges going
out from this node),
(i1 . . . ir) is the string of node indices to which edges going out from k come (in increasing
order),
(e1 . . . er) is the string of edge labels ordered in such a way that the edge having the
label ex comes into the node having the index ix.

If nodes of the graph h from Fig. 1a labelled with: a,B,A are indexed with: 1, 2, 3,
respectively, then:

B(2), 2, (y p), (1 3)

is the characteristic description of the node indexed with 2.

Definition 3.5. Let H = (V,E,Σ,Γ, ϕ) be an IE graph, where V = {1, . . . , k} is
the set of its nodes, I(i), i = 1, . . . , k is the characteristic description of the form of the
node i. A string I(1) . . . I(k) is called a characteristic description of the graph H.

Assuming a way of indexing of the graph h from Fig. 1a as it has been defined above,
we receive the following characteristic description of this graph

a(1) B(2) A(3)
0 2 1
− y p v
− 1 3 1

.

 

 

 

 

 

 

 

 

 

 

  

a) b) 

a a 
P 

s 

h h 

5.1.6 

1.2 1.2 
s 

a 

s 

k k 

h 

i 

i 

g e 

e 

Fig. 2. The application of interpreted graphs for representing (a) machined parts in the
vision subsystem of the CAD/CAM system [36] and (b) hand gestures in the
Polish Sign Language recognition system [41].

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


M. Flasiński 11

 

 

 

 

 

 

 

 

 

 

 

b) b 

f 

r 

1 
s 

t p 

h2 = 

a 

e 

h f

b 

d 

c 

r 

r 

s 

s 

t 

p 

p 

2 

3 

4 

9 

7 

8 

5 

6 

a) b 

f 

r 

1 
s 

t p 

h1 = 

a 

e 

h f

b 

d 

c 

r 

r 

s 

s 

t 

p 

p 

2 

3 

4 

5 

6 

7 

8 

9 

Fig. 3. An example of an IE graph (a) and an rIE graph (b).

On the basis of semantic features of EDG graphs we have constructed the so-called IE
graphs used in the top-down ETPL(k) parsing scheme [28, 32]. Let us define them for-
mally on the basis of the concept of interpreted graphs introduced above in Definition 3.3.

Definition 3.6. Let HI = (S, H, I) be an interpreted EDG graph over Σ and Γ.
An indexed edge-unambiguous graph, IE graph, over Σ and Γ defined on the basis of the
graph HI is an EDG graph G = (V,E,Σ,Γ, ϕ) which is isomorphic to H up to direction
of edges4, such that the following conditions are fulfilled.

1.G contains a directed spanning tree T such that nodes of T have been indexed due
to the Level Order Tree Traversal (LOTT)5.

2. Nodes of G are indexed in the same way as nodes of T .

4That is, (some) edges of G can be re-directed with respect to their counterparts in H.
5Let us recall that LOTT means that for each node firstly the node is visited, then its child nodes

are put into the FIFO queue. This type of a tree traversal is also known as the Breadth First Search
(BFS) scheme.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


12 Interpreted graphs and ETPR(k) graph grammar parsing. . .

3. Every edge in G is directed from the node having a smaller index to the node having
a greater index.

The family of all the IE graphs over Σ and Γ is denoted by IEΣ,Γ.

The exemplary IE graph h1 is shown in Fig. 3a. The indices are ascribed to the graph
nodes according to LOTT. The edges of the spanning tree T are thickened.

Since in the paper we characterize formally bottom-up parsable ETPR(k) graph
grammars, we will introduce the class of graphs which are generated by these grammars.
These graphs should be indexed according to the scheme allowing us to apply a reductive
parsing. During such a parsing a syntax analyzer produces the rightmost derivation in
reverse. (As it is performed for Knuth’s (string) LR(k) parsers [43].) The class of
such graphs has been introduced informally in [37]. We define them on the basis of
interpreted graphs using the new traversal scheme called the Reverse Level Order Tree
Traversal (RLOTT). This scheme is analogous to the LOTT scheme used above for IE
graphs, however it uses the LIFO queue, i.e. the stack, instead of the FIFO queue.

Definition 3.7. Let HI = (S, H, I) be an interpreted EDG graph over Σ and Γ.
A reversely indexed edge-unambiguous graph, rIE graph, over Σ and Γ defined on the
basis of the graph HI is an EDG graph G = (V,E,Σ,Γ, ϕ) which is isomorphic to H up
to direction of edges, such that the following conditions are fulfilled.

1.G contains a directed spanning tree T such that nodes of T have been indexed due
to the Reverse Level Order Tree Traversal (RLOTT).

2. Nodes of G are indexed in the same way as nodes of T .

3. Every edge in G is directed from the node having a smaller index to the node having
a greater index.

The family of all the rIE graphs over Σ and Γ is denoted by rIEΣ,Γ.

The exemplary IE graph h2 is shown in Fig. 3b.

At the end of this section we introduce the notion of node level. We say that the
node v of the IE (rIE) graph is of the n level, if v is at the n level of the spanned tree
T constructed as in Definition 3.6 (Definition 3.7).

4. Formal properties of ETPR(k) graph grammars

The formal properties of the ETPR(k) bottom-up parsable subclass of edNLC graph
grammars are presented in this section. Some of them are analogous to those imposed
of the ETPL(k) top-down parsable graph grammars [28, 29, 32].

Firstly, let us impose the constraint on the form of the right-hand side graphs in
order to reduce the computational complexity of a single derivation step.

Definition 4.1. Let G = (Σ,∆,Γ, P, Z) be an edNLC graph grammar. The gram-
mar G is called a TLP graph grammar, abbrev. from Two-Level Production, if the fol-
lowing conditions are fulfilled.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


M. Flasiński 13

1. P is a finite set of productions of the form (l,D,C), where:

(a) l ∈ Σ,
(b)D is the rIE graph having the characteristic description:

n1(1) n2(2) . . . nm(m) or n1(1), where ni(i)
r1 r2 . . . rm 0 ri
E1 E2 . . . Em − Ei

I1 I2 . . . Im − Ii

is a characteristic description of the node i, i = 1, . . . ,m, n1 ∈ ∆ (i.e. n1 is a terminal
label), i, i = 2, . . . ,m is the node of the second level,

(c)C : Γ× {in, out} −→ 2Σ×Σ×Γ×{in,out} is the embedding transformation.

2.Z is an rIE graph such that its characteristic description satisfies the condition defined
in point 1(b).

Let us require a derivation process to be performed according to the linear ordering
imposed on rIE graphs.

Definition 4.2. A TLP graph grammar G is called a closed rTLP graph grammar
G if for each derivation of this grammar

Z = g0 =⇒
G

g1 =⇒
G

. . . =⇒
G

gn

a graph gi, i = 0, . . . , n is an rIE graph.

Definition 4.3. Let there be given a derivation of a closed rTLP graph grammar G:

Z = g0 =⇒
G

g1 =⇒
G

. . . =⇒
G

gn .

This derivation is called a regular right-hand side derivation, denoted =⇒
rr(G)

if:

1. for each i = 0, . . . , n− 1 we apply a production for a node having the greatest) index
in a graph gi,

2. node indices do not change during a derivation.

A closed rTLP graph grammar rewriting graphs according to the regular right-hand
side derivation is called a closed rTLPO graph grammar, abbrev. from reverse Two-
Level Production-Ordered.

Now we introduce notions used for extracting handles in analyzed graphs which are
matched against right-hand sides of productions during graph parsing.

Definition 4.4. Let g be an rIE graph, l some node of g defined by a characteristic
description n(l), r, e1 . . . er, i1 . . . ir. A subgraph h of the graph g consisting of node
l, nodes having indices ia+1, ia+2, . . . , ia+m, a ≥ 0, a + m ≤ r, and edges connecting
the nodes: l, ia+1, ia+2, . . . , ia+m is called an m-successors two-level graph originated
in the node l and beginning with the (ia+1)th successor. The subgraph h is denoted
h = m − TL(g, l, ia+1). By 0 − TL(g, l,−) we denote the subgraph of g consisting only
of node l.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


14 Interpreted graphs and ETPR(k) graph grammar parsing. . .

Definition 4.5. Let g be an rIE graph, l some node defined by a characteristic
description n(l), r, e1 . . . er, i1 . . . ir. A subgraph h of graph g consisting of node l, nodes
having indices ia+1, ia+2, . . . , ir, a ≥ 0, and edges connecting the nodes l, ia+1, ia+2, . . . , ir
is called a complete two-level graph originated in node l and beginning with the (ia+1)th
successor. The subgraph h is denoted

h = CTL(g, l, ia+1).

Let us impose the fundamental constraint which is analogous to that used in the
definition of string Knuth’s LR(k) grammars [43]. It allows us to construct the efficient
non-backtracking bottom-up parsing scheme.

Definition 4.6. Let G = (Σ,∆,Γ, P, Z) be a closed rTLPO graph grammar. The
grammar G is called a PR(k) abbrev. Production-ordered k-Right nodes unambiguous,
graph grammar if the following condition is fulfilled. Let

Z *=⇒
rr(G)

X1AX2 =⇒
rr(G)

X1gX2 ,

Z *=⇒
rr(G)

X3BX4 =⇒
rr(G)

X1gX5 ,

and

k − TL(X2, 1, 2)
isom
= k − TL(X5, 1, 2) ,

where *=⇒
rr(G)

is the transitive and reflexive closure of =⇒
rr(G)

, A, B are characteristic

descriptions of certain nodes, X1, X2, X3, X4, X5 are substrings of characteristic de-
scriptions, g is the right-hand side of a production: A −→ g.
Then:

X1 = X3, A = B, X4 = X5 .

The last restriction concerns the embedding transformation. The edNLC embedding
transformation operates at the border between the production and its context. So, we
do not have the context freeness property stated that reordering of derivation steps does
not influence the result of a derivation. The lack of the order independence property,
related to the finite Church-Rosser, fCR, property, results in the intractability of parsing.
Thus, we have to restrict the power of the embedding transformation in order to obtain
fCR and to guarantee the parsing efficiency. We make it by preserving the part of the
production context unchanged during a derivation step.

Definition 4.7. Let G = (Σ,∆,Γ, P, Z) be a PL(k) (PR(k)) graph grammar. A pair
(b, x), b ∈ ∆, x ∈ Γ, is called a potential previous context for a node label a ∈ Σ, if there
exists the rIE graph g = (V,E,Σ,Γ, ϕ) belonging to a certain regular left-hand (right-
hand) side derivation in G that: (k, x, l) ∈ E, ϕ(k) = b, and ϕ(l) = a.

Definition 4.8. A PR(k) graph grammar G is called an ETPR(k), abbrev. from
Embedding Transformation-preserving Production-ordered k-Right nodes unambiguous,
graph grammar, if: for each production of the form

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


M. Flasiński 15

X1(1) X2(2) . . . Xm(m)
r1 r2 . . . rm

(l) A −→ E1 E2 . . . Em

I1 I2 . . . Im

where Xa ̸= Xb, a, b = 1, . . . ,m .

If (b, y) is a potential previous context for A, then there exists only one (Xi, b, z, in) ∈
Cl(y, in), i ∈ {1, . . . ,m}, where Cl is the embedding transformation of the lth production.
If i = 1, then z = y, i.e. (X1, b, y, in) ∈ Cl(y, in).

Let G = (Σ,∆,Γ, P, Z) be the ETPR(k) graph grammar. The language of G denoted
L(G) is the set

L(G) = {H : Z *=⇒
rr(G)

H and H ∈ rIE∆,Γ} .

5. Parsing algorithm of ETPR(k) graph languages

The general scheme of parsing for ETPR(k) graph grammars [37] is a slight modification
of the parsing schemes for ETL(1) [28] and ETPL(k) [32] graph grammars. It consists
in a succeeding identification of a handle constructed on the basis of the property of an
unambiguous choice of a production in the regular right-hand side derivation6 according
to Definition 4.6.

Let us introduce the following denotations and functions.

•G – an rIE graph to be analyzed represented by its characteristic description.

•H – the rIE graph represented by its characteristic description, which is being con-
structed (with succeeding reductions) during parsing on the basis of the graph G.

• give index() – the function gives the succeeding index from the stack of node indices
constructed according to Definition 3.7.

• nonempty indices stack() – the Boolean function gives true if the stack of node in-
dices is nonempty.

• give handle(H, i) – the function extracts the handle (in the form of its characteristic
description) originated in the node indexed with i from the graph H according to
Definition 4.6.

• choose production(handle) – the function, on the basis of handle, identifies the proper
production to be used for a reduction according to Definition 4.6.

• reduction(H, i, k) – the function performs the reduction to the node indexed with i
in the graph H according to the production k.

We assume that the right-hand side graphs of the grammar are stored in the form of
their characteristic descriptions.

Now, we can define the parsing algorithm 5.1.

6In ETL(1) and ETPL(k) graph grammars the corresponding property concerns the regular left-hand
side derivation.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


16 Interpreted graphs and ETPR(k) graph grammar parsing. . .

Algorithm 5.1 The parsing algorithm for ETPR(k) graph grammar

H := G;
err := 0;
while err = 0 and nonempty indices stack() do
begin

i := give index();
handle := give handle(H, i);
k := choose production(handle);
if k = 0 then err := 1 else reduction(H, i, k);

end;

In order to evaluate the time complexity of Algorithm 5.1 let us analyze the running
times of its functions. Let n be the number of nodes of the graph G. The running
time of the function give index() operating on the stack of indices is ∼ n. Extracting
the handle with the help of the function give handle(H, i), if we assume that H is
represented with its characteristic description, is ∼ n, as well. The running time of the
function choose production(handle) is bounded by the constant c which depends on the
size of the grammar, i.e. the number of its productions and the maximum size of the
right-hand size graph. (Thus, c does not depend on the size of the input graph G.)
The function reduction(H, i, k) is analogous to the function production(H, i, k) of the
ETPL(k) parser introduced in [32]. Its running time is ∼ n.

Now, we can formulate the following theorem.

Theorem 5.1. The running time of the parsing algorithm for ETPR(k) graph gram-
mar (Algorithm 5.1) is O(n2), where n is the number of the nodes of the analyzed rIE
graph.

Proof. The while loop of Algorithm 5.1 is performed at most n times. Since the
running times of all the functions inside the loop are bounded either by a constant or
by n, the running time of the algorithm is O(n2).

6. Concluding remarks

The deterministic subclasses of Node Label Controlled (NLC) graph grammars for syn-
tactic pattern recognition and computer vision have been studied for thirty years. They
have been used in a variety of the real-world applications. The possibility of imposing the
linear ordering on EDG graphs is one of two crucial factors resulting in the high efficiency
of the model. (The balanced restrictions imposed on the embedding transformation of
edNLC grammars is the second key factor.) In all the aforementioned applications of the
model the linear ordering has been defined on the basis of semantic features of patterns

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


M. Flasiński 17

considered. However, the theoretical foundations of the scheme allowing us to index
graph nodes based on pattern semantics have not been formulated till now. We have
introduced them in the paper defining concepts of: relational structure, interpretation of
EDG graphs over relational structure and interpreted EDG graph. These notions allow
us to introduce the concept of (reverse) indexed edge-unambiguous graphs (IE and rIE
graphs) in a formalized way.

The presentation of formal properties of ETPR(k) graph grammars introduced pre-
liminarily in [37] and their parsing algorithm has been the second goal of the paper. The
ETPR(k) parsing scheme is analogous to the ETPL(k) one [32]. However, our experi-
ence with practical applications has revealed that there are some graph languages that
cannot be generated by ETPL(k) grammars and can be generated by ETPR(k). This
problem is worth further studying. Therefore, similarly as in case of ETPL(k) grammars
which are characterized from the point of view of descriptive power [33], the research
into power properties of ETPR(k) graph grammars will be carried out and the results
obtained will be the subject of further publications.

References

[1] T. Pavlidis. Structural Pattern Recognition. Springer, New York, 1977.

[2] R.C. Gonzales and M.G. Thomason. Syntactic Pattern Recognition: An Introduction. Addison-
Wesley, Reading, 1978.

[3] K.S. Fu. Syntactic Pattern Recognition and Applications. Prentice Hall, Englewood Cliffs, 1982.

[4] H. Bunke and A. Sanfeliu (eds.). Syntactic and Structural Pattern Recognition – Theory and Ap-
plications. World Scientific, Singapore, 1990.

[5] V. Claus, H. Ehrig and G. Rozenberg (eds.). Graph Grammars and Their Application to Computer
Science and Biology. Lecture Notes in Computer Science 73, 1979. doi:10.1007/BFb0025713.

[6] H. Ehrig, M. Nagl and G. Rozenberg (eds.). Graph Grammars and Their Application to Computer
Science. Lecture Notes in Computer Science 153, 1983. doi:10.1007/BFb0000094.

[7] H. Ehrig, M. Nagl and G. Rozenberg (eds.). Graph Grammars and Their Application to Computer
Science. Lecture Notes in Computer Science 291, 1987. doi:10.1007/3-540-18771-5.

[8] H. Ehrig, H.-J. Kreowski and G. Rozenberg (eds.). Graph Grammars and Their Application to
Computer Science. Lecture Notes in Computer Science 532, 1991. doi:10.1007/BFb0017372.

[9] J. Cuny, H. Ehrig, G. Engels and G. Rozenberg (eds.). Graph Grammars and Their Application to
Computer Science. Lecture Notes in Computer Science 1073, 1996. doi:10.1007/3-540-61228-9.

[10] H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg (eds.). Theory and Application of Graph
Transformations. Lecture Notes in Computer Science 1764, 2000. doi:10.1007/b75045.

[11] A. Corradini, H. Ehrig, H.-J. Kreowski and G. Rozenberg (eds.). Graph Transformations. Lecture
Notes in Computer Science 2505, 2002. doi:10.1007/3-540-45832-8.

[12] H. Ehrig, G. Engels, F. Parisi-Presicce and G. Rozenberg (eds.). Graph Transformations. Lecture
Notes in Computer Science 3256, 2004. doi:10.1007/b100934.

[13] A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro and G. Rozenberg (eds.). Graph Transformations.
Lecture Notes in Computer Science 4178, 2006. doi:10.1007/11841883.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://doi.org/10.1007/BFb0025713
https://doi.org/10.1007/BFb0000094
https://doi.org/10.1007/3-540-18771-5
https://doi.org/10.1007/BFb0017372
https://doi.org/10.1007/3-540-61228-9
https://doi.org/10.1007/b75045
https://doi.org/10.1007/3-540-45832-8
https://doi.org/10.1007/b100934
https://doi.org/10.1007/11841883
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


18 Interpreted graphs and ETPR(k) graph grammar parsing. . .

[14] H. Ehrig, R. Heckel, G. Rozenberg and G. Taentzer (eds.). Graph Transformations. Lecture Notes
in Computer Science 5214, 2008. doi:10.1007/978-3-540-87405-8.

[15] H. Ehrig, A. Rensink, G. Rozenberg and A. Schürr (eds.). Graph Transformations. Lecture Notes
in Computer Science 6372, 2010. doi:10.1007/978-3-642-15928-2.

[16] H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg (eds.). Graph Transformations. Lecture
Notes in Computer Science 7562, 2012. doi:10.1007/978-3-642-33654-6.

[17] H. Giese and B. König (eds.). Graph Transformations. Lecture Notes in Computer Science 8571,
2014. doi:10.1007/978-3-319-09108-2.

[18] F. Parisi-Presicce and B. Westfechtel (eds.). Graph Transformations. Lecture Notes in Computer
Science 9151, 2015. doi:10.1007/978-3-319-21145-9.

[19] R. Echahed and M. Minas (eds.). Graph Transformations. Lecture Notes in Computer Science 9761,
2016. doi:10.1007/978-3-319-40530-8.

[20] Q.Y. Shi and K.S. Fu. Parsing and translation of attributed expansive graph lan-
guages for scene analysis. IEEE Trans. Pattern Analysis Mach. Intell., 5:472–485, 1983.
doi:10.1109/TPAMI.1983.4767426.

[21] H.O. Bunke and B. Haller. A parser for context free plex grammars. Lecture Notes in Computer
Science, 411:136–150, 1990. doi:10.1007/3-540-52292-1 10.

[22] K.J. Peng, T. Yamamoto and Y. Aoki. A new parsing scheme for plex grammars. Pattern Recog-
nition, 23:393–402, 1990. doi:10.1016/0031-3203(90)90026-H.

[23] K. Wittenburg, L. Weitzman and J. Talley J. Unification-based grammars and tabu-
lar parsing for graphical languages. Journal Visual Languages Computing, 2:347–370, 1991.
doi:10.1016/S1045-926X(05)80004-7.

[24] F. Ferruci, G. Tortora, M. Tucci and G. Vitiello. A predictive parser for visual lan-
guages specified by relational grammars. In Proc. IEEE Symp. Visual Lang. VL’94, 245-252.
doi:10.1109/VL.1994.363611.

[25] J. Rekers and A. Schürr. Defining and parsing visual languages with layered graph grammars.
Journal Visual Languages Computing, 8:27–55, 1997. doi:10.1006/jvlc.1996.0027.

[26] D.Q. Zhang, K. Zhang and J. Cao. A context-sensitive graph grammar formalism for the specifica-
tion of visual languages. The Computer Jornal, 44:186–200, 2001. doi:10.1093/comjnl/44.3.186.

[27] D. Janssens and G. Rozenberg. On the structure of node-label-controlled graph languages. Infor-
mation Sciences, 20:191–216, 1980. doi:10.1016/0020-0255(80)90038-9.

[28] M. Flasiński. Parsing of edNLC-graph grammars for scene analysis. Pattern Recognition, 21:623–
629, 1988. doi:10.1016/0031-3203(88)90034-9.

[29] M. Flasiński. Characteristics of edNLC-graph grammars for syntactic pattern recognition. Computer
Vision Graphics Image Processing, 47:1–21, 1989. doi:10.1016/0734-189X(89)90050-9.

[30] M. Flasiński. Distorted pattern analysis with the help of Nodel Label Controlled graph languages.
Pattern Recognition, 23:765–774, 1990. doi:10.1016/0031-3203(90)90099-7.

[31] M. Flasiński. Some notes on a problem of constructing the best matched graph. Pattern Recognition,
24:1223–1224, 1991. doi:10.1016/0031-3203(91)90147-W.

[32] M. Flasiński. On the parsing of deterministic graph languages for syntactic pattern recognition.
Pattern Recognition, 26:1–16, 1993. doi:10.1016/0031-3203(93)90083-9.

[33] M. Flasiński. Power properties of NLC graph grammars with a polynomial membership problem.
Theoretical Computer Science, 201:189–231, 1998. doi:10.1016/S0304-3975(97)00212-0.

[34] M. Flasiński. Inference of parsable graph grammars for syntactic pattern recognition. Fundamenta
Informaticae, 80:379–413, 2007.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://doi.org/10.1007/978-3-540-87405-8
https://doi.org/10.1007/978-3-642-15928-2
https://doi.org/10.1007/978-3-642-33654-6
https://doi.org/10.1007/978-3-319-09108-2
https://doi.org/10.1007/978-3-319-21145-9
https://doi.org/10.1007/978-3-319-40530-8
https://doi.org/10.1109/TPAMI.1983.4767426
https://doi.org/10.1007/3-540-52292-1_10
https://doi.org/10.1016/0031-3203(90)90026-H
https://doi.org/10.1016/S1045-926X(05)80004-7
https://doi.org/10.1109/VL.1994.363611
https://doi.org/10.1006/jvlc.1996.0027
https://doi.org/10.1093/comjnl/44.3.186
https://doi.org/10.1016/0020-0255(80)90038-9
https://doi.org/10.1016/0031-3203(88)90034-9
https://doi.org/10.1016/0734-189X(89)90050-9
https://doi.org/10.1016/0031-3203(90)90099-7
https://doi.org/10.1016/0031-3203(91)90147-W
https://doi.org/10.1016/0031-3203(93)90083-9
https://doi.org/10.1016/S0304-3975(97)00212-0
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1


M. Flasiński 19

[35] M. Flasiński and L. Kotulski. On the use of graph grammars for the control of a distributed software
allocation. The Computer Journal, 35:A165–A175, 1992.

[36] M. Flasiński. Use of graph grammars for the description of mechanical parts. Computer-Aided
Design, 27:403–433, 1995. doi:10.1016/0010-4485(94)00015-6.

[37] M. Flasiński and Z. Flasińska. Characteristics of bottom-up parsable edNLC graph languages for
syntactic pattern recognition. In L.J. Chmielewski et al., editors, Computer Vision and Graphics:
Proc. Int. Conf. ICCVG 2014, volume 8671 of Lecture Notes in Computer Science, pages 195–202,
Warsaw, Poland, September 2014. Springer, Heidelberg. doi:10.1007/978-3-319-11331-9 24.

[38] U. Behrens, M. Flasiński, L. Hagge and K. Ohrenberg. ZEX – an expert system for ZEUS. IEEE
Trans. Nuclear Science, 41:152–156, 1994. doi:10.1109/23.281478.

[39] M. Flasiński, R. Schaefer and W. Toporkiewicz. Supporting CAE parallel computations with IE-
graph solid representation. J. Geometry Graphics, 1:23–29, 1997.

[40] M. Flasiński. Introduction to Artificial Intelligence. Springer International, Switzerland, 2016.
doi:10.1007/978-3-319-40022-8.

[41] M. Flasiński and S. Myśliński. On the use of graph parsing for recognition of iso-
lated hand postures of Polish Sign Language. Pattern Recognition 43:2249–2264, 2010.
doi:10.1016/j.patcog.2010.01.004.

[42] M. Flasiński. Syntactic pattern recognition: paradigm issues and open problems. In C.H. Chen (ed.),
Handbook of Pattern Recognition and Computer Vision, World Scientific, New Jersey – London –
Singapore, 2016, Chapt. 1, pp. 3-25.

[43] D.E. Knuth. On the translation of languages from left to right. Information Control 8:607–639,
1965. doi:10.1016/S0019-9958(65)90426-2.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://doi.org/10.1016/0010-4485(94)00015-6
https://doi.org/10.1007/978-3-319-11331-9_24
https://doi.org/10.1109/23.281478
https://doi.org/10.1007/978-3-319-40022-8
https://doi.org/10.1016/j.patcog.2010.01.004
https://doi.org/10.1016/S0019-9958(65)90426-2
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1



	Introduction
	Preliminaries
	Interpreted graphs and indexed edge-unambiguous graphs
	Formal properties of ETPR(k) graph grammars
	Parsing algorithm of ETPR(k) graph languages
	Concluding remarks

