
Isocontouring with Sharp Corner Features

Sui Gong, Timothy S. Newman
Department of Computer Science, University of Alabama in Huntsville, Huntsville, USA

sg0010@uah.edu , tnewman@cs.uah.edu

Abstract. A method that achieves closed boundary finding in images (including slice images) with sub-

pixel precision while enabling expression of sharp corners in that boundary is described. The method

is a new extension to the well-known Marching Squares (MS) 2D isocontouring method that recovers

sharp corner features that MS usually recovers as chamfered. The method has two major components:

(1) detection of areas in the input image likely to contain sharp corner features, and (2) examination of

image locations directly adjacent to the area with likely corners. Results of applying the new method,

as well as its performance analysis, are also shown.

Key words: marching squares, feature preservation, corner recovery, contour finding, isocontours.

1. Introduction

In this paper, we describe an improvement for a popular means to find a closed boundary
of a region of constant value (i.e., intensity or activity) in an image. This improvement
can be considered to be an extension of the popular Marching Squares (MS) isocon-
touring method for 2D scalar fields (N.B. We have previously briefly described this new
extension’s key features in a conference report [9]). An isocontour can be defined as
follows. Given a scalar field f(x, y) (for example, f may represent the abstract function
describing the densities captured in an X-ray), the isocontour is the collection of locations
in the field having a particular scalar value α (e.g. the (x, y) locations where f(x, y) = α).
The scalar value α is the isovalue associated with (i.e., giving rise to) that isocontour.
Isocontouring is a strategy often employed in processing or analyzing many types of data
organized on grids. The most prevalent class of scalar 2D grid data is probably data
arranged on rectilinear grids (such as X-ray images, slice images of CT datasets, inten-
sity images, some planar simulation outputs, etc.). Other popular grid types include
triangular and hybrid/adaptive grids [18, 29]. Here, our focus is on isocontouring for
scalar data arranged on a rectilinear grid. Isocontouring is a very valuable technique for
such data as it can, in one integrated process, define a closed boundary, with sub-pixel
precision, of an area associated with some fixed level of activity (e.g. density).

There are a number of algorithms for finding isocontours in datasets of 2, 3 and more
dimensions arranged on a grid. In determining the isocontour on these types of datasets,
the existing algorithms treat the data values as samples from an underlying scalar field;
such isocontouring algorithms form an isocontour in consideration of the samples. It is

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

22 Isocontouring with sharp corner features

often useful to find an approximate description of the boundaries of phenomena or struc-
tures in image processing and analysis applications. For example, boundary delineation
can be useful for location-finding tasks, such as defect detection and front tracking. Also,
isocontouring can be used to enable estimation of boundary or region properties (e.g.
perimeter or area). In such uses, especially where a structure boundary is desired, the
produced isocontour is sometimes said to be a reconstruction [17]. Other uses include
as components of feature extraction [27] and segmentation [15] methods. Isocontouring
can also be integrated into contour extraction frameworks [26]. Isocontours also have
other uses, including discovery in terrain data [1, 12], simulation analysis [6] and fluid
surface tracking [19].

The MS algorithm has been widely applied in 2D rectilinear grid data isocontouring.
MS produces a piecewise linear approximation of the isocontour, as described in detail in
Section 2. However, when applied in cases where the actual boundary has sharp corners,
MS instead produces mostly blunted corners. This behavior of MS creates a problem
for contour recovery when sharp corners are present. Producing a contour that recovers
sharp corner features can improve renderings as well as assist in registration and pattern
recognition. Thus, it is important for isocontouring to recover them correctly. However,
previously there has not been a 2D isocontouring method that is able to correctly recover
sharp corners. In this paper, we describe our extension to the Marching Squares that
improves on that situation; our approach allows producing an isocontour that has sharp
corner features. This extension enables better expression of actual boundary shape for
boundaries containing such features.

This paper is organized as follows. Background is discussed in Section 2. Related
work is described in Section 3. In Section 4, we present our extension to Marching
Squares that enables construction of an isocontour that includes sharp corners. In Sec-
tion 5, we provide results from applying the extended algorithm and comparisons with
standard MS. The conclusion and future work are presented in Section 6.

2. Background

Marching Squares takes a 2D rectilinear grid of scalar data as its input. Such inputs could
be X-ray images, individual slice images of volumetric datasets, infrared (IR) images, etc.
The rectilinear grid is treated as a collection of grid cells by MS. In the case of images,
each pixel value is treated as the data value at a grid point. The MS algorithm produces
an isocontour with sub-cell accuracy bymarching through the dataset in sequential order,
processing one grid cell at a time until all grid cells have been processed. In each of the
cells, the algorithm’s processing involves a series of steps that determine if any isocontour
segments need to be generated within the cell.

The first step MS follows in each cell is to compare each grid point’s data value
with the isovalue α. MS marks each data point with a value greater than or equal to α

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 23

������ ������ ������ �����	 �����
 ������ ������� �����

������ ������ �������� ������� ������� ������	� ������
 �������

Fig. 1. 16 topological cases of cells in Marching Squares.

with a “1.” It marks the others with a “0.” Grid edges marked with a “1” at one end
point and a “0” at the other are intersected by the isocontour.

There are 24 = 16 possible markings for a cell since each grid cell has four grid points.
Each unique marking type is called a topological case and defines a particular isocontour
topology. The 16 cases and the general form of the contour segment(s) produced by MS
for each case are shown in Fig. 1. In the figure, data points with a “1” marking are
indicated by filled (black) grid points. Data points with a “0” marking are indicated by
hollow (white) grid points. Typically, MS encodes the 16 possible cell cases in a look-
up table before processing the dataset. For each case, that table records the identity
of intersected edges and how the intersected edges are connected by the isocontour
segments. When a look-up table is used, the second step of processing in the cell is to
use the markings to determine the topological case for the cell.

Next, for each cell MS calculates positions of any isocontour intersections with the
cell’s grid edges. If a look-up table is used, the identities of intersected edges are retrieved
directly from the table. For each such edge, linear interpolation on the values at the end
points of the edge is used to find the intersection location.

Finally, in each cell, the isocontour is formed. In this step, MS connects each pair of
intersection locations by a line segment. If a look-up table is used, the identities of the
edges that are to be connected are found from it. The collection of such line segments
defines the isocontour.

We note that two of the MS cases (i.e., Cases 5 and 10 in Fig. 1) can be contoured in
a variant way from what is shown in Figure 1 (since there are two ways to connect each
set of four intersections such that the contour does not self-intersect). Since triangular
cells do not have this issue of variant contours (due to there being only one choice for
each cell in a triangular mesh), in some cases isocontouring of rectilinear grid data is done
by an analogue of MS that triangulates the cells before isocontouring (i.e., by dividing
each cell into two triangles and then performing isocontouring in each triangle). This
analogue can be called Marching Diagonally Divided Squares (MDDS).

One of MS’s potential problems is that when sharp corner features occur in an actual
boundary (e.g. of a structure), the isocontour that MS produces usually has chamfered
corners at the places where the actual boundary has sharp corners, unless the location

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

24 Isocontouring with sharp corner features

c c

actual MS

Fig. 2. A sharp corner of a boundary (left) that MS chamfers (right).

of the actual corner is very close to the edge of a grid cell. Fig. 2 shows an example
of the problem. In the figure, a grid cell with three grid points whose values are less
than the isovalue (i.e., denoted as hollow (white) circles in the figure) and one grid point
whose value is greater than the isovalue (i.e., denoted as a filled (black) circle in the
figure) is shown. The contour shown at the left (as a dashed line) represents the actual
phenomenon boundary, which has a sharp corner feature. Such cells are recognized by
the standard MS as Case 2 cells (using the numbering as in Fig. 1). The Case 2 topology
specifies two grid edge intersections, and MS performs linear interpolation on these edges
to find the intersection locations. For the Fig. 2 example, the ×marks show the locations.
MS connects the two intersections with a single line segment, as shown in the contour
on the right (as a dotted line) of Fig. 2. The corner produced here by MS does not have
the sharp shape of the actual boundary; instead, MS produces a chamfered corner.

The analogue of MS that triangulates each rectilinear grid cell before isocontouring
in that triangulation can reduce the degree of chamfering for some corners. However,
there are several costs for that benefit. First, the upfront triangulation of cells imposes an
additional computational burden. Second, for an actual contour with a long, straight run
that is diagonally-oriented, the contour produced for that run can be staircased. Third,
the contour intersection locations on the diagonal edge segments of the triangulation
differ from segment positions in MS since the analogue uses a different interpolation
than the axis-aligned bilinear interpolant used by MS on the underlying rectilinear grid.
Fourth, the total number of segments is usually significantly increased.

MS is often applied on many types of 2D grayscale images as a boundary-finding
method (e.g. for segmentation [2, 29] or silhouette determination [11]). Compared to
using contours or boundaries based on traditional, popular edge detectors, like the So-
bel edge detector [10] (that typically produce edges that pass through pixel locations
where the highest gradient changes are detected), using MS for boundary-finding has
certain advantages. First, traditional edge detectors can produce a boundary that is
not continuous (i.e., some individual edge pixels can be isolated (i.e., disconnected) from
others), rather than a guaranteed continuous water-tight contour, as MS does. While
edge detectors can be coupled with edge linking algorithms (e.g. such as [3, 17]) on the
disconnected edge segments, the boundaries may still not be continuous. If the area need-
ing the boundary description is known, one historically popular alternative approach to

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 25

determine a boundary description has been chain coding [7] (or its variants). However,
in chain coding, the segment endpoints have pixel-level precision only. In comparison
to traditional edge detection with linkage or chain coding, MS produces a contour that
has sub-pixel-level precision. In addition, the MS contour segments have many possible
orientations (limited only by the finite precision of machine floating-point arithmetic).
In contrast, the elements of a chain-coded boundary can have only 8 possible orien-
tations. Finally, the MS boundary is associated with a specific activity (or intensity)
level whereas boundaries from edge linkages may not be associated with one activity (or
intensity) level.

The boundary MS produces has been used in many applications, such as a part of
processing to find the contour of a pelvic region in CT data [8], for generating toolpaths
in a 3D printing application [28], and in a set relations visualization scheme [4]. Other
than boundary finding, MS has been combined with methods for image segmentation [3]
or with methods based on Minkowski functionals for image analysis [16]. In addition,
MS has been used in a color distinguishability study to extract features such as stripe
outlines from images [23]. MS can also be used in contour length estimation [3], since
the contour segment produced for each cell is easy to calculate. A parallelization scheme
for MS has also been described [20].

3. Related work in feature preserving isocontouring

Isocontouring that maintains certain shape features in the boundary it produces is called
feature-preserving isocontouring. Next, some such existing approaches are described.
These existing approaches are aimed at true 3D isocontouring (on volumetric data),
usually by extension of the Marching Cubes (MC) Algorithm. MC can be viewed as
a generalization of MS to volumetric data. Its isocontour is a surface called an isosurface.
MC is very well-known [21, 22]. Like MS, MC can produce an isocontour that lacks
certain “sharp” features, even if the isocontour represents the boundary of an underlying
phenomenon or structure that does have such features.

One approach to enable certain sharp features to be preserved in an isosurface was
described by Kobbelt et al. [14]. In their approach, after the isovalue is determined,
the original dataset is converted into a directed distance field that stores three distance
values at each grid point, namely the shortest distances in the x, y and z directions from
the point to an isosurface component.

Then, Kobbelt et al.’s approach performs MC-like processing on the distance field as
follows. First, a basic octree is built whose leaf nodes each store one 3D grid cell.
The octree also records which cells are candidates for containing sharp features, as
described later. The octree building starts from the leaf nodes. A merging process forms
higher levels of the tree by merging some leaf nodes with their parent (if certain rules
are satisfied). One such rule, for example, involves considering the current isocontour

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

26 Isocontouring with sharp corner features

position in lower level nodes versus the isocontour position in the next higher level node
(i.e., formed by merging the lower level nodes). If the difference between these positions
is too large, no merging takes place. Merging of non-leaf nodes with their parents occurs
if they have particular values and all their children can also be merged. Following the
merging process, nodes that haven’t been merged are the candidate nodes (for containing
sharp isocontour features). Grid cells within merged nodes are processed by standard
Marching Cubes (since no sharp corner is likely present). In all cells of candidate nodes,
the algorithm produces a different isocontour than MC; it creates additional triangular
facets that could allow a sharp corner shape to be produced. These facets are connected
to the ones generated in the nearby cells to avoid “holes” occurring in the isocontour.

Another feature preserving approach for 3D data is the fine feature recovery approach
of Kaneko et al. [13]. By recovering fine features, they mean that the isocontour includes
the thin or narrow parts of the actual underlying object or structure in a volumetric
dataset. In the isocontour produced by standard MC, these types of features could be
smaller or larger than they actually are. The Kaneko et al. approach first produces the
standard MC contour. Then, using this contour, it estimates what the dataset values
at each grid point location would need to be if the produced isocontour was the actual
boundary. At each grid point, it then compares these estimates with the actual data
value. Whenever such values differ significantly, the approach considers the recovered
isocontour segments near this grid point to be in need of adjustment. It follows a two-step
process to do that. First, it adds or subtracts a constant to the value at that grid point,
producing an adjusted dataset. Then it produces an isocontour on the adjusted dataset
using standard MC. The isocontour produced from the adjusted dataset encloses a region
that has a volume that better resembles the volume enclosed by the actual boundary [13].

These two methods, however, are extensions of 3D isocontouring. They have not
been extended to address sharp corner recovery in 2D isocontouring. In addition, while
inspiring, the Kobbelt method has some overhead (i.e., it must produce the distance
field prior to isocontour recovery), which can be time consuming. Kaneko’s method,
on the other hand, has a primary focus on fine feature preservation instead of sharp
corner preservation. While sharp corners can sometimes also be fine features (e.g. when
they are narrow and long), in most cases they are not fine enough for Kaneko’s method
to recover.

Our method described here extends the state-of-the-art for 2D isocontouring by al-
lowing sharp corner recovery in 2D isocontouring.

4. Methods: Corner Feature Expressive Marching Squares

Our new algorithm is a feature-preserving approach that extends the Marching Squares
to allow expression of sharp corner features. In this section, a step-by-step elaboration
of our algorithm and an enumeration of its topological cases are described.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 27

c c c

Fig. 3. Two possible contours. (Left) contour with a sharp corner feature; (right) con-
tour with a chamfered corner feature; (middle) with the same intersection loca-
tions.

4.1. Corner Feature Expressive Marching Squares: motivation

Our corner feature expressive algorithm can produce a contour with sharp corners using
information from small, local regions surrounding the corner. We motivate the algo-
rithm’s approach next. Later in the section, the specific, step-by-step processing is
laid out.

As discussed in Section 2, the standard MS has, for each topological case, a single
predefined way to connect the points of intersections of the isocontour with the grid
lines. Thus, no matter what type of contour shape is actually present in a given cell, the
predefined contour shape for that cell’s topological case is the only type of shape that
can be produced for the isocontour for the cell. An example of this situation is shown
for one cell (of topological Case 4) in Fig. 3. For the case of this figure, the isocontour
has a segment below the cell, which starts from the middle of the lower edge and extends
down and to the right, and a segment on the right of the cell, which starts in the middle
of the right edge and extends above and to the right (i.e., these parts of the isocontour
are shown as dotted lines in the center part of the figure). The lower right lattice point
of this cell is labeled as C. The value at that lattice point is used in determining both
of the isocontour’s intersection locations with the cell. Here, those points are marked
with “×” marks in the center part of the figure. The contour MS produces is shown as
a dotted line on the right. This contour has a chamfered corner, even though the true
contour shape could include a sharp corner, like the one shown on the left of this figure.
Using only the locations of the isocontour intersections with the grid lines bounding
the cell, it is not possible to tell whether the shape of the contours inside the grid cell
contains a chamfered corner shape or a square corner shape.

Our algorithm exploits the contour segment orientations in the cells adjacent to
possible corners to estimate contour shape and corner position in cells possibly containing
a corner. In particular, it first considers if the contour segments in the adjacent cells
provide clues suggesting if there could be a sharp corner.

An example of two sorts of clues that neighboring cells can provide is shown in Fig. 4.
In the middle part of this Figure, two types of contours with different corner shapes are
shown for one cell. Beside that, two possible arrangements of cells neighboring the one in

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

28 Isocontouring with sharp corner features

�

�

� �

� �

�

�

�

Fig. 4. Two possible arrangements of cells neighboring one grid cell.

question are shown. The cell in question is shaded and numbered “2.” The neighboring
cells in this example are labelled “1,” “3” and “4.” The actual contour shapes are also
shown for each arrangement. In both arrangements shown here, the cell in question
has the Case 2 topology. One arrangement features a diagonal edge (perhaps part of
a chamfered corner), as shown by the dotted line. The other one features a sharp corner,
as shown by the dashed segments. Since the grid cell in question has a Case 2 topology,
the isocontour in it will be produced as a diagonal edge in standard MS, regardless if
there is in fact a chamfered corner there. However, here the neighboring cells can provide
some clue about the likely corner type in the cell. For the arrangement shown at the left,
the dashed contour in the cells labeled “1” and “4” provides a clue that there may be
a sharp corner feature in the shaded cell. For that arrangement, cells “4” and “1” have
the Case 3 and Case 6 topologies, respectively. For such scenarios, a contour similar to
the square corner shown in the left arrangement seems more credible to many human
observers. In contrast, for the arrangement shown at the right, the dotted contour in the
cells labeled “1” and “4” does not provide such a clue. For that arrangement, cells “1”
and “4” have Case 7 topologies, and the contour produced by MS has a suitable shape
for the cell in question.

4.2. Corner Feature Expressive Marching Squares: elaboration

In keeping with such reasoning, our extended Marching Squares considers cells adjacent
to potential corner-containing grid cells to determine situations for which sharp corners
are credible. Our approach follows processing similar to the illustration shown for the
situation in Fig. 4; cells likely to contain a part of the boundary that has a sharp
corner are found by considering the neighborhood about the cell. We call such possible
corner-containing cells candidate corner cells, and we call neighborhoods about the corner
candidates grid cell groups. Each grid cell group consists of the candidate corner cell and
two cells adjacent (i.e., that are 4-neighbors) to that one. Specifically, the two adjacent
cells considered are the ones that the contour enters from the possible corner-containing
cell. (Due to the way MS finds isocontour-cell intersections, the adjacent cells can only
be horizontally or vertically adjacent to the candidate corner cell.) We call those two
adjacent cells the adjacent neighbor cells.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 29

� � � � � �

a b

Fig. 5. Grid cell group layouts and insufficient groups. (a) Enumeration of grid cell
group. (b) Insufficient (grid cell) groups.

There are 6 possible layouts (forms) for each grid cell group, as shown in Fig. 5a.
We call each one a grid cell group layout, and we label them as Layouts 1 through 6. In
Fig. 5a, the candidate corner cell for each layout is shaded. The other two grid cells that
are not shaded are its adjacent neighbor cells. Each grid cell group has a total of eight
grid points and ten unique edges. Since each grid point can either be marked as “1” or
“0”, there are 28 = 256 possible different combinations of markings. However, in corner
detection processing, it is not necessary to consider such a number of combinations since
some of the combinations do not contain a corner (e.g. the combinations with all 0 or
all 1 markings have no cells intersected by the isocontour).

Grid cell groups that include diagonally-adjacent cells could potentially be used, but
we do not consider them here, since by themselves they often do not provide additional
credible evidence of corners. But, if a larger set of nearby cells was considered, these
larger groups of grid cells could be useful for corner detection. We leave corner detection
and sharp corner contour production for such groups to future work; we focus here on
a methodology that is applicable to grid cell groups of size 3. In the work here, evidence
from size 3 grid cell groups is used to detect where sharp corner features are likely and
then to produce contours containing such features. We also focus only on grid cell groups
that have sufficient neighbor information.

Fig. 5b shows six example grid cell groups with insufficient neighbor information. In
it, each group contains at least one part of a contour that might in fact be a sharp corner
but the candidate corner cells in the group do not have two adjacent neighbors that both
contain continuations of the contour segment from the candidate corner cell. We term
such grid cell groups without enough neighboring information as insufficient groups. We
call grid cell groups that have enough neighboring information sufficient groups.

Some sharp corners in insufficient groups are in fact detected and produced correctly
by our method. This detection occurs due to a nearby sufficient group that includes
some grid cells that are also in the insufficient group. An example of such a situation
is shown in Fig. 6b. In this figure, there are three grid cell groups that are highlighted
(using an outline feature or by gray shading). One of them (the gray shaded one) can
be considered as an insufficient group. The other two (shown as the solid outline and
dashed outline) are sufficient groups. The insufficient grid cell group contains two corner

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

30 Isocontouring with sharp corner features

��� ��� ��� ���

��� ��� ��	 ��

�

a b

Fig. 6. Examples of group topology and insufficient/sufficient groups. (a) Group topol-
ogy list for Case 1 candidate corner cell. (b) Corner features detectable from the
sufficient groups (dashed outlined and solid outlined) but not in the insufficient
group (shaded).

features, but neither occurs at its candidate corner cell (marked by “∗”). However, each
corner feature can be detected via one of the two (outlined) sufficient grid cell groups
since they offer credible evidence that a corner could be present.

We examined all of the 16 topological cases for MS and determined the grid cell
group topologies that could contain sharp corners. Our algorithm stores such cases in
a group topology list. In this list, each group contains the three grid cells making up
a grid cell group. These are the candidate corner cell and its opposing neighbor cells.
Each MS topological case, except Cases 0 and 15, can give rise to a candidate corner
cell. Thus, for the Case 1 through 14 topologies, we examined all of the 4-neighbors of
candidate corner cells and the contour segments in them.

We list some examples of the group topologies in Fig. 6a. In this figure, each group
topology is labelled with a combination of a number and a letter. The number indicates
the case topology of its candidate corner cell in the original MS look-up table (from
Fig. 1), and the letter indicates our subcase identifier. For example, in Fig. 6a, we list
all 8 subcases for candidate corner cells with Case 1, labeled as 1-a through 1-h. The
complete group topology listing for all the cases is shown in Appendix A, and that listing
is labelled with the same scheme as in Fig. 6a.

While our method can produce a contour in the candidate corner cell that differs from
what standard MS produces for that, it does not vary the contour shape in the other
cells of the grid cell group. To detect if the contour in a candidate corner cell is likely to
contain a sharp corner, we first determine the orientations of the contour segments in the
adjacent neighbor cells of its grid cell group. Then the angular difference between these
orientations is calculated. If that difference is close to 90 degrees, our method marks the

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 31

����������	�
�������

�������������
��
��

���
��
�����	������

�����	����������

�������
��������
��������
��

���������������������

��	������������
�� �������
�����

���
���������

Fig. 7. Corner detection and production process.

cell as one which likely has a sharp corner feature. Otherwise, when the angle between
two line segments in the neighbors is not sharp, we classify the cell as a non-corner
cell and use the standard MS rules to produce the isocontour segments. In addition, all
other non-corner cells are produced according to the standard MS rules.

For candidate corner cells that likely have a sharp corner, a two-step process is used
to produce the corner. First the corner location is determined as the point where the
contour segments in the adjacent neighbor cells intersect. Then, contour segments are
formed connecting this point to the locations where the contours intersect cell edges.

Fig. 7 shows an example of the corner construction process for a grid cell group with
a Case 4 candidate corner cell. In the adjacent neighbor cells, the two contour segments
form an angle of 90 degrees. In this case, due to the size of the angular difference, our
method determines that the candidate corner cell contains a sharp corner feature (i.e.,
thus, for that cell, we do not use standard MS rules to produce its contour). Once
a likely sharp corner has been determined, contour segments in opposing neighbor cells
are extended, as shown at the right part of the figure. The final result is the contour
with the sharp corner shown in the last panel of the figure.

4.3. Corner Feature Expressive Marching Squares: algorithm

A step-by-step elaboration of our algorithm is shown in the listing labelled Algorithm 4.1.

5. Results and discussion

Next, some results of applying our algorithm in images are presented. Results of synthetic
images are presented first, followed by images from volumetric datasets, and then X-ray
images at last. For comparison, results for standard MS are also exhibited.

Our synthetic images are density/occupancy images of objects with density 100 in
a 16×16 rectilinear grid. The background density is 0. At each grid lattice point, the
data value is the aggregate density over a unit-sized square region centered at that lattice
point. Thus, any lattice point representing a fully occupied unit-sized region in space

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

32 Isocontouring with sharp corner features

Algorithm 4.1 Corner Feature Expressive Marching Squares.

for each grid cell in the dataset do
determine its topological case
if it is not Case 0 or Case 15 then

locate its two adjacent neighbor cells according to the group topology list
calculate the contour segment orientations in the neighboring cells
if they form a sharp angle then

extend the contour segments of the adjacent neighbor cells into this cell to
produce a sharp corner

else
apply standard MS on the cell

end if
else

apply standard MS on the cell
end if

end for

has a data value of 100 associated with it. The objects are axis-aligned in some of the
images, but not in others. We can determine the error in an isocontouring method’s
result using these images because the actual boundaries in each of them are known.

A comparison of results from standard MS and our algorithm for synthetic images
of an L-shaped block, star-shaped object (in two orientations), and a ninja star-shaped
object is shown in Fig. 8. In this figure, the dashed contours are the results produced
by our algorithm and the dotted contours are the results produced by standard MS.
The solid black contours are the actual object boundaries. The parts of the boundary
that lack sharp corner features yield overlapping contours from standard MS and our
algorithm.

We also show a result from standard MS, our algorithm, and MDDS in Fig. 9b. In
this figure – and for Fig. 10, 11 and 12 – we use the same contour drawing patterns
as used in Fig. 8, except we periodically overlay circle glyphs on the dashed results (of
our approach). In addition, the result of MDDS is drawn in a dash-dot pattern in the
Fig. 9b. Our approach recovered four sharp corners while MDDS recovered none. MDDS
also recovered some of the straight edges as wavy edges. Since MDDS does not produce
a competitive result for sharp corner recovery, it is not shown in other result images in
this paper.

Our new algorithm recovered many, but not all, of the sharp corners in these images.
In particular, if a corner feature spans a few cells, the new algorithm can have difficulty
to fully recover all corners. Expanding the size of the grid cell groups may improve
matters, although possibly at a cost of false positives.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 33

Fig. 8. Synthetic dataset of object isocontouring results for two approaches. (a) L-shape
oriented at 45 degree angle with the x-axis. (b) A star object oriented at 15
degree angle with the x-axis. (c) A Star object oriented at 0 degree angle with
the x-axis. (d) A ninja star object.

a b

Fig. 9. Some applications. (a) X-ray images of: (left) hook embedded in a human face,
(right) hook caught on a dog. (b) Example results.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

34 Isocontouring with sharp corner features

Fig. 10. Engine Block dataset slice image isocontouring results. (Upper left cor-
ner) the slice image.

Next, we describe results from applying our algorithm on real images. First, results
for one slice image (size 256×256) of the well-known Engine Block dataset (from the
Volume Library [25]) are shown in Fig. 10 using the line marking pattern described
earlier. In this figure, zoomed-in call-outs are shown for several corners. The gray scale
image of this slice of data is also shown at the upper left of the figure as a reference.

We applied our algorithm and standard MS on 10 of the slices of the Engine Block
dataset and counted the number of sharp corners recovered by each algorithm. The
corner counts are presented in Tab. 1. On average, our algorithm recovered 10 sharp
corners more than standard MS did.

Results for applications to some X-ray images are shown in Fig. 11, which includes
comparison results for standard MS versus our algorithm for two images containing
objects with sharp corners (from radiopaedia.org [5]). The Fig. 11a image is of a biopsy
needle is size 220×320. The Fig. 11b image is of scissors lodged in a human and is
size 320×240. We call these images Needle and Scissors, respectively. For each image,

Tab. 1. Number of sharp corners recovered by our algorithm but not by standard MS.

Image No. 1 2 3 4 5 6 7 8 9 10
Sharp Corners 13 12 10 15 10 9 14 7 4 6

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 35

a b

Fig. 11. X-ray image and isocontour comparison results: (a) biopsy needle, (b) scissors
lodged inside human.

a zoomed-in call-out of an area containing a sharp corner feature is shown, with the
result of standard MS (in dotted segments) side-by-side with our algorithm result (in
dashed segments). In these images, the new algorithm has produced a sharper point for
the needle and scissors objects than standard MS has. We also applied both algorithms
on four images (labelled Hook1, Hook2, Hook3, and Hook4) of hooks embedded in tissue,
two of which are shown in Fig. 9a.

Some results for applying our algorithm to three range images of block or box ob-
jects containing sharp corners are shown in Fig. 12. These images are from the OSU
(MSU/WSU) range image database [24] and include a set of rectangle blocks (called
Blox2), a set of cylindrical blocks (called Blox3), and three stacked boxes (called Stack).
The Blox2 and Blox3 images are size 240×240. The Stack image is size 128×128. For
each image, we exhibit several zoomed-in call-outs of areas containing sharp corner fea-
tures, showing both the result of standard MS (in dotted segments) and our algorithm
(in dashed segments) shown. In these images, the new algorithm has produced many
sharp corners while MS has failed to produce them.

5.1. Empirical Error Studies: Our Algorithm vs. Standard MS

We have also used synthetic images in empirical tests of our algorithm and standard
Marching Squares to study contour accuracy in a quantifiable way. In these images, there

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

36 Isocontouring with sharp corner features

a

b c

Fig. 12. Range images and isocontour comparison results. (a) Blox2. (b) Blox3.
(c) Stack.

are sharp corners that have an internal angle very close to 90 degrees. In determining
accuracy for the tests, the lower left grid point of each cell was taken as a local coordinate
system origin of a cell assumed to be size 1×1. A number of test scenarios were used in
the experiments, with the sharp corner locations varied in each scenario. Four methods
were used to estimate the error in the contours. Those methods and outcomes from
using them are presented next.

5.1.1. Average Closest Euclidean Distance Error Measure

For each test case, we determined the smallest Euclidean distance to the actual boundary
from points sampled from the recovered contour. The average of these distances was
taken as the error ED in the recovered contour for that test case:

ED =
1

N

∑
D(i) , (1)

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 37

Fig. 13. Average closest Euclidean distance error measure, ED, for new algorithm (cir-
cles) and standard MS (stars).

where N is the number of sample points, and D(i) is the closest distance from the i-th
sample point on the recovered contour to the actual boundary.

Plots of such errors for a range of test cases are shown in Fig. 13. These plots consider
test cases for three distinct corner locations (the center of the cell and two other points
on the diagonal of a cell, as indicated in the plot captions). For each plot, the x axis
indicates the degree of the corner, and the y axis indicates the error for each case. The
stars show error for standard MS, and the circles show error for the new algorithm. For
most cells with sharp corners, the new algorithm yielded the lower error. Its improvement
appears to be best when corner angles are close to 90 degrees.

5.1.2. Corresponding Points Error Measure

Another error measurement we considered was EDC , an average distance measure com-
puted by averaging distances between corresponding points on two contours. Since stan-
dard MS does not usually produce a sharp corner feature, we determined the distance
measure’s component for the corner by taking the mid point of MS’s contour as the point
corresponding to the corner of the actual contour. We then divided it into two pieces at
its mid point, with each piece corresponding to one portion of the contour that forms the
sharp corner. Then, evenly-spaced point samples were taken on each part of the contour.
The same number of point samples were also taken on the actual corner boundary, and
they were also evenly-spaced. The correspondences of the two sets of points were then
found one-for-one (e.g. the first point on the recovered boundary corresponded to the
first point on the actual boundary, etc.)

We tested nine cases of distinct corner locations inside a cell using this error measure.
Results are shown in plots in Fig. 14. In each test case, the location of the corner was
fixed as indicated in each plot (e.g. in the first plot, the corner location is (0.5, 0.5)
– the center of the cell). For each location, the degree of the corner varied from 80

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

38 Isocontouring with sharp corner features

to 90 degrees. The stars show error for standard MS and the circles show error for
the extended method. For the cases shown in Fig. 14, the isocontour produced by our
algorithm had a lower error than the isocontour produced by standard MS.

5.1.3. Contour Length Ratio Error Measure

A third measure we considered was the length of the produced contours versus the length
of the actual boundary. We call this measure the contour length ratio error measure.
The measure uses the ratio of the length of the recovered isocontour, Lr, to the length
of the actual boundary, La. The error of this measure, EL, is defined as:

EL = Lr/La . (2)

Thus, values closer to 1 represent better contours. We used the same test cases described
at the beginning of Section 5.1 to find this error measure, and we show several plots of
error in Fig. 15, with the circles denoting the error of our method and the stars denot-
ing the error of standard MS. The average value of EL for standard MS is 0.55 (45%
underestimation) while the average value of EL for our algorithm is 0.77 (23% under-
estimation). These experiments suggest that the extended method produces a contour
that has a length closer to the actual boundary than does standard MS.

5.1.4. Error between Actual Corner Location and Recovered Corner Location

A fourth error measure we considered is the discrepancy (error) between the actual corner
location and the recovered corner location. We consider such error versus the corner’s
relative distance to a reference location, LAC , on the grid cell. Since standard MS does
not recover a sharp corner, we considered the midpoint of the contour as the recovered
corner location, LRC , to measure the discrepancy. The error of this measure, ECL, is
defined as:

ECL = |LAC − LRC | . (3)

To evaluate this error, we used synthetic images of an object with a 90-degree sharp
corner inside one grid cell. We varied the corner location in each test image.

To determine ECL, we used a grid cell vertex as the reference location. Specifically,
we used the vertex that is closest to the recovered corner. A plot of error measured this
way is shown in Fig. 16a. In this figure, the errors of our algorithm are shown as circles,
and the errors of standard MS are shown as stars. Our algorithm was found to produce
an error free contour when the actual location is at the center of the grid cell (at that
location, the distance to the reference location is 0.71).

We also computed ECL using a location of the grid cell edge closest to the recovered
corner as the reference location. A plot of error measured this way is shown in Fig. 16b.
This plot uses the same color coding as Fig. 16a does. The error free corner case can also
be observed in this figure. These two experiments suggest that our algorithm produces

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 39

Fig. 14. Average distance between corresponding points error measure, EDC , for new
algorithm (circles) and standard MS (stars).

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

40 Isocontouring with sharp corner features

Fig. 15. Contour length ratio error, EL, measure for new algorithm (circles) and stan-
dard MS (stars).

Fig. 16. The distance between recovered corner and the actual corner, ECL, vs. the
distance between the actual corner location and two different reference locations.
(a) Reference location: the closest grid cell vertex. (b) Reference location: the
closest grid cell edge.

a corner that is located closer to, and sometimes at the exact location of, the actual cor-
ner, while standard MS invariably exhibited error. Our algorithm also tends to produce
corners with error smaller than the contours produced by standard MS.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 41

5.2. Processing Time

Next, we report on processing times for the new algorithm and the standard MS. Timings
were done on a machine with an Intel i7-3770 quad core processor and 12GB of mem-
ory. The datasets used for testing were the Hook1, Hook2, Needle, and Scissors images
described earlier and the synthetic L-shaped axis aligned block used in Fig. 8 (which we
call Synthetic here). Results are presented in Tab. 2. In these tests, our method had
slightly longer processing times than the standard MS due to its additional processing
steps for the corner-containing grid cells, but the amount of overhead associated with
sharp corner production is quite small (averaging 3.3% overhead).

6. Conclusions

We have presented a new algorithm that allows for production of an isocontour with
sharp corner features. The method is an extension to the Marching Squares algorithm.
It exploits contour information from neighboring cells to determine likely locations of
sharp corners and then creates a contour with sharp corners there. Applications of
the new algorithm on synthetic datasets and X-ray images suggest that when sharp
corner features occur in the actual boundaries, the new algorithm produces contours
closer to the actual boundaries than standard MS does. Error studies show that our
approach exhibits smaller error than standard MS in (1) two out of three cases using
average closest Euclidean distance, (2) all twelve cases using average distance between
corresponding points, and (3) all four cases using the contour length ratio measure. The
new algorithm also produces very small to no error when the angle of the sharp corner
is close to 90 degrees.

In future work, we hope to develop further extensions that can produce other contour
feature types.

Tab. 2. Processing times.

Processing times [ms] Processing times (in ms)
Dataset Std. MS Our alg. Overhead Dataset Std. MS Our alg. Overhead
Synthetic 0.132 0.143 7.7% Hook4 0.138 0.144 4.2%
Hook1 0.142 0.147 3.4% Needle 0.131 0.135 3.0%
Hook2 0.143 0.145 1.4% Scissors 0.138 0.141 2.1%
Hook3 0.142 0.144 1.4%

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

42 Isocontouring with sharp corner features

A. Grid Cell Group Topologies

Figs. 17 and 18 show the grid cell group topologies keyed to the Cases 1 to 14 for
Marching Squares.

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ���

��� ��� ��	 ��

�� �� �� �� �� �� �	 �

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��	 ��
���

��� ��� ��� ��� ��� ��� ��	 ��

Fig. 17. Grid cell group look-up table – part I.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 43

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��� ��� ��� ���

���� ���� ���� ���� ���� ���� ���	 ���

���� ���� ���� ����

���� ���� ���	 ���

���� ���� ���� ���� ���� ���� ���	 ���

���� ���� ���� ���� ���� ���� ���	 ���

Fig. 18. Grid cell group look-up table – part II.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

44 Isocontouring with sharp corner features

References

[1] M. Cammarano. Depicting terrain with shaded relief maps. Stanford Univ. Class Report, 2004.
http://graphics.stanford.edu/~mcammara/vis2004/paper.pdf. Accessed: Sept 22, 2015.

[2] P. B. Chamberlain and C. L. Thomas. Direct thick layer rapid prototyping from medical images.
In Proc. 10th Solid Freeform Fabrication Symp. SFF ’99, pages 599–605, Austin, TX, August 9-11,
1999. http://sffsymposium.engr.utexas.edu/Manuscripts/1999/1999-069-Chamberlain.pdf.

[3] M. P. Cipolletti, C. A. Delrieux, G Perillo, and M. C. Piccolo. Superresolution border segmentation
and measurement in remote sensing images. Computers & Geosciences, 40:87–96, March 2012.
doi:10.1016/j.cageo.2011.07.015.

[4] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set relations with isocontours over
existing visualizations. IEEE Trans. Vis. and Comp. Graphics, 15(6):1009–1016, November 2009.
doi:10.1109/TVCG.2009.122.

[5] Fishing accident. http://radiopaedia.org/cases/fishing-accident. Accessed: September 22,
2015.

[6] A. Fofonov, V. Molchanov, and L. Linsen. Visual analysis of multi-run spatio-temporal simulations
using isocontour similarity for projected views. to appear in IEEE Trans. Vis. and Comp. Graphics,
pages 2037–2050, 2016. doi:10.1109/TVCG.2015.2498554.

[7] H. Freeman. Computer processing of line-drawing images. ACM Comput. Surv., 6(1):57–97, March
1974. doi:10.1145/356625.356627.

[8] Q. Gao, S. M. Ali, and P. Edwards. Automated atlas-based pelvimetry using hybrid registration. In
Proc. IEEE 10th Int. Symp. Biomedical Imaging ISBI 2013, pages 1292–1295, San Francisco, USA,
April 2013. doi:10.1109/ISBI.2013.6556768.

[9] S. Gong and T. S. Newman. A corner feature sensitive marching squares. In Proc. IEEE Southeastcon
SECON 2013, pages 1–6, Jacksonville, USA, April 2013. doi:10.1109/SECON.2013.6567363.

[10] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall, 3 edition, 2007.

[11] T. Igarashi, T. Moscovich, and J. F. Hughes. As-rigid-as-possible shape manipulation. In ACM
SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 1134–1141, Los Angeles, CA, USA, 2005. ACM.
doi:10.1145/1186822.1073323.

[12] L. S. Johnson. Progressive transmission of surfaces with geometric constraints. Master’s thesis,
Univ. of South Carolina, 2004.

[13] T. Kaneko and Y. Yamamoto. Volume-preserving surface reconstruction from volume data. In Proc.
Int. Conf. Image Processing ICIP ’97, volume 1, pages 145–148, Santa Barbara, USA, October 1997.
doi:10.1109/ICIP.1997.647405.

[14] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H-P. Seidel. Feature sensitive surface extraction from
volume data. In Proc. 28th Ann. Conf. Computer Graphics and Interactive Techniques, SIGGRAPH
’01, pages 57–66, New York, NY, USA, 2001. ACM. doi:10.1145/383259.383265.

[15] K. R. Krishnan and S. Radhakrishnan. Focal and diffused liver disease classification from
ultrasound images based on isocontour segmentation. IET Image Proc., 9(4):261–270, 2015.
doi:10.1049/iet-ipr.2014.0202.

[16] H. Mantz, K. Jacobs, and K. Mecke. Utilizing Minkowski functionals for image analysis: A march-
ing square algorithm. J. Statistical Mechanics: Theory and Experiment, 2008(12):P12105, 2008.
doi:10.1088/1742-5468/2008/12/P12015.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

http://graphics.stanford.edu/~mcammara/vis2004/paper.pdf
http://sffsymposium.engr.utexas.edu/Manuscripts/1999/1999-069-Chamberlain.pdf
https://doi.org/10.1016/j.cageo.2011.07.015
https://doi.org/10.1109/TVCG.2009.122
http://radiopaedia.org/cases/fishing-accident
https://doi.org/10.1109/TVCG.2015.2498554
https://doi.org/10.1145/356625.356627
https://doi.org/10.1109/ISBI.2013.6556768
https://doi.org/10.1109/SECON.2013.6567363
https://doi.org/10.1145/1186822.1073323
https://doi.org/10.1109/ICIP.1997.647405
https://doi.org/10.1145/383259.383265
https://doi.org/10.1049/iet-ipr.2014.0202
https://doi.org/10.1088/1742-5468/2008/12/P12015
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 45

[17] C. Maple. Geometric design and space planning using the marching squares and marching cube
algorithms. In Proc. Int. Conf. Geometric Modeling and Graphics GMAG 2003, pages 90–95, July
2003. doi:10.1109/GMAG.2003.1219671.

[18] P. Moinier, J-D. Müller, and M. B. Giles. Edge-based multigrid and preconditioning for hybrid
grids. AIAA Journal, 40(10):1954–1960, 2002. doi:10.2514/2.1556.

[19] M. Müller. Fast and robust tracking of fluid surfaces. In Proc. 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’09, pages 237–245, New Orleans, Louisiana, USA, 2009.
ACM. doi:10.1145/1599470.1599501.

[20] A. Murthy, E. Bartocci, F. Fento, et al. Curvature analysis of cardiac excitation
wavefronts. IEEE Trans. Computational Biology and Bioinformatics, 10(2):323–336, 2013.
doi:10.1109/TCBB.2012.125.

[21] T. Newman and H. Yi. A survey of the marching cubes algorithm. Computers and Graphics,
30(5):854–879, 2006. doi:10.1016/j.cag.2006.07.021.

[22] G. M. Nielson. On marching cubes. IEEE Trans. Vis. and Comp. Graphics, 9(3):283–297, July
2003. doi:10.1109/TVCG.2003.1207437.

[23] Y. Omori, T. Murakami, and T. Ikeda. Color universal design without restricting colors and their
combinations using lightness contrast dithering. In Proc. 5th Int. Congress of Int. Assoc. of Societies
of Design Res. IASDR 2013, 2013. Paper No. 2227-1. http://design-cu.jp/iasdr2013/papers/
2227-1b.pdf.

[24] OSU (MSU/WSU) range image database. http://web.archive.org/web/19991008150305/http:

//eewww.eng.ohio-state.edu/~flynn/3DDB/RID/. Accessed: October 23, 2016.

[25] S. Roettger. The Volume Library. http://schorsch.efi.fh-nuernberg.de/data/volume/. Ac-
cessed: September 22, 2015.

[26] B. Schlei. A new computational framework for 2D shape-enclosing contours. Image and Vision
Computing, 27(6):637–647, May 2009. doi:10.1016/j.imavis.2008.06.014.

[27] D. Siedhoff, F. Weichert, P. Libuschewski, and C. Timm. Detection and classification of nano-objects
in biosensor data. In Proc. 6th Int. Workshop on Microscopic Image Analysis with Applications in
Biology MIAAB 2011, Heidelberg, Germany, September 2011.

[28] Z. Wang, J. K. Min, and G. Xiong. Robotics-driven printing of curved 3D structures for manufactur-
ing cardiac therapeutic devices. In Proc. IEEE Int. Conf. Robotics and Biomimetics ROBIO 2015,
pages 2318–2323, December 2015. doi:10.1109/ROBIO.2015.7419120.

[29] D. Wu, H. Tian, G. Hao, et al. Design and realization of an interactive medical images three
dimension visualization system. In Proc. 3rd Int. Conf. Biomedical Engineering and Informatics
BMEI 2010, volume 1, pages 189–193, Oct 2010. doi:10.1109/BMEI.2010.5639435.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://doi.org/10.1109/GMAG.2003.1219671
https://doi.org/10.2514/2.1556
https://doi.org/10.1145/1599470.1599501
https://doi.org/10.1109/TCBB.2012.125
https://doi.org/10.1016/j.cag.2006.07.021
https://doi.org/10.1109/TVCG.2003.1207437
http://design-cu.jp/iasdr2013/papers/2227-1b.pdf
http://design-cu.jp/iasdr2013/papers/2227-1b.pdf
http://web.archive.org/web/19991008150305/http://eewww.eng.ohio-state.edu/~flynn/3DDB/RID/
http://web.archive.org/web/19991008150305/http://eewww.eng.ohio-state.edu/~flynn/3DDB/RID/
http://schorsch.efi.fh-nuernberg.de/data/volume/
https://doi.org/10.1016/j.imavis.2008.06.014
https://doi.org/10.1109/ROBIO.2015.7419120
https://doi.org/10.1109/BMEI.2010.5639435
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

	Introduction
	Background
	Related work in feature preserving isocontouring
	Methods: Corner Feature Expressive Marching Squares
	Corner Feature Expressive Marching Squares: motivation
	Corner Feature Expressive Marching Squares: elaboration
	Corner Feature Expressive Marching Squares: algorithm

	Results and discussion
	Empirical Error Studies: Our Algorithm vs. Standard MS
	Average Closest Euclidean Distance Error Measure
	Corresponding Points Error Measure
	Contour Length Ratio Error Measure
	Error between Actual Corner Location and Recovered Corner Location

	Processing Time

	Conclusions
	Grid Cell Group Topologies

