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Abstract. The use of deep learning techniques for early and accurate medical image diagnosis

has grown significantly in recent years, with some encouraging results across many medical specialties,

pathologies, and image types. One of the most popular deep neural network architectures is the convo-

lutional neural network (CNN), widely used for medical image classification and segmentation, among

other tasks. One of the configuration parameters of a CNN is called stride and it regulates how sparsely

the image is sampled during the convolutional process. This paper explores the idea of applying a pat-

terned stride strategy: pixels closer to the center are processed with a smaller stride concentrating the

amount of information sampled, and pixels away from the center are processed with larger strides con-

sequently making those areas to be sampled more sparsely. We apply this method to different medical

image classification tasks and demonstrate experimentally how the proposed patterned stride mecha-

nism outperforms a baseline solution with the same computational cost (processing and memory). We

also discuss the relevance and potential future extensions of the proposed method.

Key words: convolutional neural networks, patterned stride, medical image classification, deep

learning.

1. Introduction

The use of deep learning architectures for medical image analysis has experienced sig-
nificant growth in recent years [12], with impressive success stories and claims of super-
human performance across many tasks, image modalities, and diseases.

Convolutional Neural Networks (CNNs) are the most popular architecture for medical
image classification tasks. CNN architectures have an end-to-end structure, which learn
high-level representations from raw data [11] without the need for pre-selecting features
relevant to that type of data. Ever since their initial success on ImageNet Large-Scale Vi-
sual Recognition Challenge (LSVRC) 2012 [10], CNNs have been extended to specialized
image classification tasks.

The performance of a CNN can be improved by fine-tuning some of its parame-
ters (e.g., number of layers, type of layers, weights, biases) and hyperparameters (e.g.,
learning rate, number of epochs, loss function, activation functions). One of the CNN pa-
rameters that can be specified by the designer of the network is called stride: it specifies
how the filters in a convolutional layer convolve around the input volume. Larger stride
values mean that the network will perform more sparse convolutions – and consequently
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a smaller number of them – throughout the processing of the image. Smaller stride val-
ues mean more concentrated sampling and consequently larger number of convolutions
performed. The majority of existing CNNs implement a fixed value of stride, usually
between 1 and 3. The minimum stride value of 1 means that all pixels are processed,
which sets an upper bound on the computational cost of the convolution operations.

This paper explores the idea of changing the stride value in CNNs depending on the
position of the pixel within the image: a smaller stride value is used when processing the
center of the image, while a larger one is used for pixels close to the edges, according to
a predefined sampling pattern.

Guo et al. [6] proposed another method where image classification benefits from using
a patterned stride. However, their algorithm addresses the image classification problem
in a different way, by judging the image complexity based on extracted features, and
using that result to decide the stride value, suggesting smaller stride values for complex
images and larger strides for simple ones.

The proposed method is experimentally evaluated on three medical image analysis
tasks – (i) skin lesion classification, (ii) brain tumor detection, and (iii) image modal-
ity classification – and compared against a baseline fixed stride approach that requires
similar computational power for both training and inference phases.

2. Materials and Methods

2.1. Datasets

In this study, we use three datasets: the HAM 10000 dataset used for skin lesion classifica-
tion tasks; the Brain Tumor dataset, which contains images with healthy and unhealthy
magnetic resonance imaging (MRI) brain slices; and the MedNIST dataset for image
modality classification.

2.1.1. The HAM 10000 Dataset

The HAM10000 (Human Against Machine with 10000 training images) dataset [15] is
a large collection of labeled multi-source dermatoscopic images in RGB color space,
manually classified into one of seven different classes: Melanocytic nevi, Melanoma,
Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions,
and Dermatofibroma (Figure 1).

Training, validation, and test sets are available at the 2018 International Skin Imaging
Collaboration (ISIC) challenge archive website [9] (see [2,15] for more information), which
also includes a live challenge submission option, for continuous evaluation of automated
classifiers using the dataset.
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(a) Melanocytic nevi (b) Melanoma

(c) Benign keratosis-like lesions (d) Actinic keratoses

(e) Vascular lesions (f) Dermatofibroma

(g) Basal cell carcinoma

Fig. 1: HAM 10000 dataset: examples of representative images for each class.
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Fig. 2: Examples of tumorous brains.

Fig. 3: Examples of healthy brains.

2.1.2. The Brain Tumor Dataset

The Brain Tumor dataset [1] contains a total of 253 grayscale Brain MRI slices: 155 im-
ages that exhibit tumor and 98 slices that do not (Figures 2 and 3).

This dataset has been published on Kaggle [5] (arguably the world’s most famous
machine learning and data science community) and used in several experiments using
different network architectures to test performance and accuracy in classification tasks.

2.1.3. The MedNIST Dataset

The MedNIST dataset [4] is a collection of grayscale medical images categorized into
six different classes: Abdomen computed tomography (CT), Chest CT, Head CT, Chest
X-ray, Brain magnetic resonance (MR), and Breast MR (Figure 4).

This dataset was created with the purpose of teaching basic deep learning concepts.
In a follow up work [3], the dataset was used to demonstrate how to optimize a simple
image classifier, thereby guiding researchers in the process of building an environment to
execute a complete deep learning application, understanding the deep learning workflow,
and focusing more specifically on parameters adjustments and their influence on the
overall performance.
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(a) Abdomen CT (b) Chest CT

(c) Head CT (d) Chest X-ray

(e) Brain MR (f) Breast MR

Fig. 4: MedNIST dataset: examples of representative images for each class.
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2.2. CNN Architectures

CNNs have demonstrated excellent performance in image classification tasks. Classi-
cal examples of successful networks include AlexNet [10] and VggNet [14]. Modern
CNN architectures are deeper and use more complex connections among layers, such as
ResNet [7] and DenseNet [8].

When an input image is processed at the convolutional layer, the image goes through
a series of convolution operations taking as input different pixels of the image. These
operations are performed using masks (usually 3×3 or 5×5) in a similar way to spatial
filters in classical image processing, except for two significant differences: (i) the masks’
coefficients (weights) are learned by training the CNN (rather than fixed by the specific
image processing technique); and (ii) the number of pixels (known as stride) by which
a mask is shifted after performing the convolution in a certain portion of the image can
be chosen by the CNN designer.

The choice of stride value in CNNs impacts the number of computations (additions
and multiplications) required to process each image: smaller strides require more com-
putation than larger strides. Typical stride values are 1, 2, and 3. A stride of 1 means
that all pixels form the input image will be processed, which sets an upper bound on
the computational cost of the convolution operations.

In this paper we extend the ideas first presented in [16] to explore and test the idea
of varying the stride between 1 and 3 depending on the relative position of the pixels
to be used in the convolution operation within the image: pixels that are closer to the
center of the image will be processed using a smaller stride whereas pixels closer to the
edges of the images are processed with a larger stride.

Figure 5 illustrates the process using a generic input image whose size is 15×151,
where the blue pixels are pre-selected for the convolution operation. The resulting effect
is the assignment of corresponding stride values as follows:

• pixels 1 to 5: stride 3,

• pixels 5 to 7: stride 2,

• pixels 7 to 9: stride 1,

• pixels 9 to 11: stride 2,

• pixels 11 to 15: stride 3.

Medical images sizes are usually larger, therefore the original strategy has to be
expanded to accommodate larger images. It is easy to imagine how the process would
scale up. The sampling process has to be done in a way where there is a given percentage
of the pixels that would be sampled with stride 1, and others with strides 2 and 3. This
has to be arranged in a way as to sample half of the pixels in each dimension. For

1In our experiments the same basic idea was adapted and implemented with different image sizes,
depending on the dataset used.
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Fig. 5: Simple example of the proposed patterned stride mechanism for a generic image
of 15×15 pixels.

example, in the MedNIST dataset all images are 64×64 pixels. The stride arrangement
used for both dimensions in this dataset was as follows:

• pixels 1 to 8: stride 3,

• pixels 8 to 30: stride 2,

• pixels 30 to 35: stride 1,

• pixels 35 to 57: stride 2,

• pixels 57 to 64: stride 3.

In [16], the authors formalized their assumptions about the advantages of the pat-
terned stride approach with two complementary testable hypotheses:

•H1: The use of patterned stride in images whose main contents are in the central
portion of the image will lead to improved performance (when compared to the
baseline case of comparable computational complexity, i.e., fixed stride = 2).
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•H2: The use of patterned stride in images whose main contents are not in the central
portion of the image will lead to decreased performance (when compared to the
baseline case of comparable computational complexity, i.e., fixed stride = 2).

In this paper we focus on new examples of successful use of patterned stride, introduce
and explain three new hyperparameters (P1, P2, P3), and present image score calculations
to provide a rough estimate of how effective the patterned stride mechanism can be in
different datasets.

2.3. Hyperparameters P1, P2, P3

One of the assumptions that are needed to compare this new method against fixed
stride 2 is to create a model which has similar computational and memory requirements.
In order for this to happen, the first layer has to reduce the sampling points by half. The
sampling points can be spread in different ways throughout the image. The proposed
method postulates a concentrated sampling in the center and sparse at the edges, varying
the stride from 1 to 3 in different parts of the images as seen in figure 5. However, the
number of pixels in each area (stride 1, 2 or 3) can vary while still keeping the same total
number of sampling points. Figure 6 shows an example where the stride 2 area is enlarged
compared to strides 1 and 3. We propose the introduction of three new hyperparameters,
that will define the percentage of sampling points in each stride region, P1, P2 and P3

which are the percentage of total sampling points in each corresponding stride region
(1, 2 and 3) respectively.

Since we still need to comply with the requirement of having half of the sampling
points in the first convectional layer, we have to guarantee that the number of sampling
points on stride regions 1 and 3 are the same. Another intuitive way to explain this is
that any increase in a more concentrated sampling area (stride 1) has to be compensated
by an increase of a sparse area (stride 3).

Therefore the choice of P1, P2, and P3 is bound by the following conditions:

P1 = P3 ,

and
P1 + P2 + P3 = 1 .

The optimal values used for P1, P2, and P3 for each experiment will be described in
Section 3.

2.4. Image Score

To guide the selection of hyperparameters P1, P2, and P3, we created a new method
to calculate the input images’ score. The objective of the score is to calculate how
the meaningful part of the image frame is concentrated in the center. Image scores
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Fig. 6: Simple example of variation of stride areas for a generic image of 21×21 pixels.

range between 0 and 1, where 0 is an image where all the information is completely
concentrated in the center and 1 means the opposite. Figure 7 shows an example of
image score calculation using a quadrilateral bounding polygon, where the meaningful
part of the image is shown in yellow.

The score is calculated as:

S =
1

2

(
xc + yc

2
+

s∑
k=1

xk + yk
2n

)
,

where n is the number of sides of the bounding polygon and xc, yc, xk, and yk are the
partial scores of each individual point calculated as follows:

xc =
|pcx − icx|

dx
,

yc =
|pcy − icy|

dy
,
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Fig. 7: Image score bounding box.

xk =
|pkx − icx|

dx
,

yk =
|pky − icy|

dy
,

where

pcx – x coordinate of bounding polygon center,

pcy – y coordinate of bounding polygon center,

pkx – x coordinate of kth point of the bounding polygon,

pky – y coordinate of kth point of the bounding polygon,

icx – x coordinate of frame center,

icy – y coordinate of frame center,

dX – image width in pixels,

dY – image height in pixels.

This method was used to calculate the scores for the datasets used in the experiments
and will be reported together with the results of each experiment in Section 3.
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3. Experiments and Results

This section describes in detail the experiments performed to test the performance of
the patterned stride mechanism in a simple CNN (Figure 8), whose layers are described
below:

1. Convolutional 2D layer: this is the layer in which we modify the stride parameter,

2. Batch Normalization layer,

3. ReLu layer,

4. Max Pooling layer,

5. Convolutional 2D layer,

6. Batch Normalization layer,

7. ReLu layer,

8. Max Pooling layer,

9. Convolutional 2D layer,

10. Batch Normalization layer,

11. ReLu layer,

12. Fully connected layer,

13. Softmax layer,

14. Classification layer2.

3.1. Experimental setups

All experiments were performed using MATLAB. Since MATLAB doesn’t provide an
option to select variable strides for convolutional layers, some modifications in the MAT-
LAB source code were needed in other to perform the desired operation.

The train/test split was 95/5, i.e., 95% of the images were used for training/validation
and 5% for tests. Categorical cross-entropy loss and stochastic gradient descent with
momentum (SGDM) optimizer were used.

Network parameter values were experimentally selected to achieve the best per-
formance for each task. For the HAM10000 dataset, the network was trained using
20 epochs and a decaying learning rate (LR), starting with 0.0003 and reducing it by
half every 2 epochs. For the Brain Tumor dataset, we used 40 epochs and a LR of 0.0003.
For the MedNIST dataset, we used 8 epochs and a fixed LR of 0.0003.

3.2. Results

Test runs were performed in four different network configurations, where the stride pa-
rameter was set to 1, 2, 3 or patterned, depending on the run. Final results for the

2The number of nodes in this layer will vary depending on the experiment according to the number
of classes.
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Fig. 8: CNN architecture used for the classification experiments.
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Tab. 1: Skin lesion classification using the HAM10000 dataset and patterned stride:
classification accuracy results and time measurements.

Stride Accuracy Training Time Inference Time

1 77.0 % 258 min 31.9 ms
2 76.4 % 105 min 10.9 ms
3 75.5 % 70 min 5.8 ms

Patterned 78.1 % 105 min 10.9 ms

Tab. 2: Brain tumor detection using the Brain Tumor dataset and patterned stride:
classification accuracy results and time measurements.

Stride Accuracy Training Time Inference Time

1 89.6 % 12.5 min 50.6 ms
2 84.0 % 4.2 min 15.3 ms
3 81.6 % 2.4 min 7.4 ms

Patterned 87.2 % 4.2 min 15.3 ms

HAM10000 dataset, Brain tumor dataset, and MedNIST dataset are shown in Tables 1, 2,
and 3, respectively. In each table the respective classifier’s accuracy and the elapsed time
for training and inference for each case are reported. The tables confirm the computa-
tional cost for patterned stride is comparable to the cost for stride 2.

We performed tests with different values of hyperparameters P1, P2, and P3 and
reported results for optimal parameter selection. The optimal values for each dataset
are shown in Table 4.

Tab. 3: Image modality classification using the MedNIST dataset and patterned stride:
classification accuracy results and time measurements.

Stride Accuracy Training Time Inference Time

1 99.8 % 16.5 min 18.6 ms
2 98.3 % 5.0 min 6.1 ms
3 95.9 % 2.4 min 3.5 ms

Patterned 98.9 % 5.0 min 6.1 ms
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Tab. 4: Optimal values for P1, P2, and P3 of each dataset.

Dataset P1 P2 P3

HAM10000 0.24 0.52 0.24
Brain Tumor 0.46 0.08 0.46
MedNIST 0.16 0.68 0.16

4. Discussion

Experimental results on three different classification tasks, in three different datasets,
have confirmed the hypothesis that the proposed patterned stride mechanism outper-
forms the fixed stride options (with stride equal to 2 or 3) in all test cases.

For the HAM10000 dataset, the results were even better, with an accuracy even
higher than the stride 1 configuration (at a fraction of the computational cost). This is
consistent with the fact that the most informative portion of the skin lesion images in
the HAM10000 dataset is usually centered (and the surrounding area contains very little
information), which is the optimal case for the proposed patterned stride scheme.

On a related note, figures 9 and 10 show the confusion matrices for the case of
patterned stride and stride 2 in the MedNIST classification task. In Figure 9, which
displays the results for patterned stride, one can see that two of the images from the
brain MR category were misclassified, one as head CT and the other as breast MR.
In Figure 10, which displays the confusion matrix for stride 2, one can observe that
there were two instances of misclassification between the CTHead and MRBrain classes,
which did not happen for the patterned stride case (Figure 9). This result is particularly
interesting because for these two classes, since the general brain shape is the same, the
differences had to be found in internal image elements. This confirms that the patterned
stride has a better performance when the central area of the image contains the most
informative pixels within the image.

Even though the patterned stride mechanism delivered a better classification accuracy
in the MedNIST classification task, there were some cases where it classified an image
incorrectly. One example is shown in figure 11, where an image from the brain magnetic
resonance class was classified as breast magnetic resonance. In this case, the input image
was very dark and the key to classify it correctly lies on the observation of the external
shape where the breast magnetic resonance has some distinguishing factors. Since the
patterned stride network concentrates its effort in central places, it wasn’t able to get
the necessary nuances of the image for a correct classification.

Another interesting observation is the relationship between image scores and hyper-
parameters P1, P2, P3. Table 5 shows the comparison of image scores for each dataset
with the optimal values used for the parameters and indicates that larger scores need
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Fig. 9: Confusion matrix for the patterned stride case using the MedNIST dataset.

Tab. 5: Comparison between image scores and hyperparameters P1, P2, and P3 for each
dataset.

Dataset Image Score P1 P2 P3

Brain Tumor 0.29 0.46 0.08 0.46
HAM10000 0.35 0.24 0.52 0.24
MedNIST 0.44 0.16 0.68 0.16

to use smaller values for P1 and P3 and larger values for P2. These results confirm
the usefulness of the image scores as a preliminary estimate of the effectiveness of the
patterned stride mechanism across different datasets.

The proposed method has its limitations, more notably: (i) it does not provide better
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Fig. 10: Confusion matrix for the stride 2 case using the MedNIST dataset.

results than the fixed stride 2 baseline in cases where the informational content of an
image is spread throughout the image (as opposed to concentrated on its center)3; and
(ii) it does not work for cases where most of the useful information is concentrated in a
small portion of the image, but away from its center.

To address (i), a simple two-class classifier could be used to determine if a dataset
(and associated classification problem) is suitable for the patterned stride mechanism
or not. Such classifier could use an easy-to-compute measure of image complexity or
homogeneity (e.g., entropy) as its main feature. In its simplest form, if the entropy is
higher than a certain threshold, the dataset is not a good candidate for the patterned
stride approach. More sophisticated features and classifiers, of course, could be used.

A potential solution to (ii) could be the use of alternative sampling patterns (see

3See counterexamples in [16] that support hypothesis H2.
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Fig. 11: Brain magnetic resonance classified as breast magnetic resonance by the pat-
terned stride network.

Figure 12 for examples of five different predefined patterns4 for centered as well as top-
right, top-left, bottom-right, and bottom-left cases) and a selector algorithm that could
be used to determine – for each individual image in the dataset – which of the (five)
patterns is most appropriate. Such algorithm could use any type of region-of-interest
(ROI) detection scheme, e.g., off-the-shelf face detectors for images involving a face, or
ROI computation using saliency maps [13] for cases where the object of interest is also
the most salient in the scene.

5. Conclusion

We have extended a method for implementing a patterned stride mechanism in CNNs
and successfully demonstrated experimentally that the use of patterned stride leads to
higher accuracy than a fixed stride baseline case of same computational complexity in
three different medical image classification tasks and datasets.

The proposed approach could be extended to other datasets, more complex CNN
architectures, and different tasks using CNNs, such as semantic segmentation and object
detection.

4The examples show the sampling distribution for a 15×15 image, but can be extrapolated to any
image size.
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Fig. 12: Adjustable patterned stride sampling patterns.
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