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Abstract. In this pandemic-prone era, health is of utmost concern for everyone and hence eating
good quality fruits is very much essential for sound health. Unfortunately, nowadays it is quite very
difficult to obtain naturally ripened fruits, due to existence of chemically ripened fruits being ripened
using hazardous chemicals such as calcium carbide. However, most of the state-of-the art techniques
are primarily focusing on identification of chemically ripened fruits with the help of computer vision-
based approaches, which are less effective towards quantification of chemical contaminations present
in the sample fruits. To solve these issues, a new framework for chemical ripening and contamination
detection is presented, which employs both visual and IR spectrometric signatures in two different
stages. The experiments conducted on both the GUI tool as well as hardware-based setups, clearly
demonstrate the efficiency of the proposed framework in terms of detection confidence levels followed
by the percentage of presence of chemicals in the sample fruit.
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1. Introduction

Nowadays health is of important concern for everyone, hence eating good quality fruits
is a primary requirement for sound health. The fruits in general are plant products
containing sugar, vitamin C and water along with minerals, cellulose, protein and photo
chemicals that protect human body against various diseases [6]. In general, fruits obtain
desirable flavor, quality, color and other textural changes during their natural ripening
process. Unfortunately, nowadays it is quite very difficult to obtain naturally ripened
fruits, due to existence of huge numbers of chemically ripened fruits in the markets,
which are being ripened using hazardous chemicals such as calcium carbide (CaC2). For
example, nearly 80% fruits such as mango, papaya and banana are artificially ripened
using different chemicals [16].

In general, though fruit ripening is a natural process, in order to speed up the rate
of fruit ripening, most of the farmers and vendors use artificial ripening agents like
calcium carbide. Specifically, calcium carbide is a dangerous, corrosive chemical and
regular consumption of it leads to vomiting, diarrhoea, eye damage, ulcers, hypoxia
and neurological disorders, and even to cancer due to the presence of arsenic as well as
phosphorous poisoning traces. Due to these reasons, as per PFA (Prevention of Food
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Adulteration) act in 1955, chemical ripening of fruits is strictly banned. Though calcium
carbide is banned, still some traders are employing chemical ripening for profit purposes.

Spacial care must be paid to climacteric fruits. Climacteric fruits are those which,
beginning from a certain developmental stage, continue to develop to full maturity,
even when harvested. Specifically, in India, most of climacteric fruits, such as mango,
banana and papaya are chemically ripened with industrial grade calcium carbide [16].
Specifically, in India, calcium carbide, a carcinogen, is widely used for artificial ripening of
fruits such as banana as well as mango, which is illegal and strictly banned. Therefore,
the identification of artificially ripened fruits followed by the quantification of CaC2

contamination in such fruits is very important in order to safeguard the consumers from
a series of health problems. Based on these aspects, a new framework is introduced in
this paper, which makes use of both computer vision as well as Near-Infrared (NIR)
spectrometric techniques for detecting the artificially ripened fruits, followed by the
computation of chemical contaminations present in the sample fruits.

2. Related Work

In the existing literature, computer vision-based techniques are popularly utilized for
quality determination and grading of fruits by means of automating the grading processes
as well as minimizing the monotonous inspection tasks. Further, computer vision is also
widely employed in the literature for defect detection, and classification of ripeness of
fruits based on their appearance. For example, a comparative study of vitamins A,
B, and C content in different types of tomatoes including ethylene and vine-ripened
tomatoes is presented in [6]. Ahmad et al. [1] analysed the effect of ethylene towards
the speed of ripening as well as the quality of banana fruit; however, they failed to
accurately discriminate between ethylene vs. non-ethylene treated bananas. In [4], the
authors employed acoustic responses, nuclear magnetic resonance and optical properties
in order to estimate the firmness of fruits; yet, the presented method failed to predict
the chemical ripening of fruits. In 2015, Bhosale et al. [3] presented a capacitive sensing
system using color indexing and echo measurements, which can detect different ripening
stages of papaya fruit. Recently, Pratim Ray et al. [15] introduced a monitoring tool for
finding the ripening stage of banana fruit using color indices, which can also send the
ripening information to the monitoring person present in a remote area with the help of
a GSM module.

In [7], the authors introduced threshold-based segmentation method using Haar fea-
tures, to detect chemical ripening of banana fruits. Though the authors employed the
third level of decompositions in wavelet domain for analysis of discriminatory behaviors,
the proposed method suffered due to the variations in the features of ripened bananas.
Thermal imaging framework for chemical ripening was proposed by Ansari in [2], which
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utilized infrared energy emitted by the sample fruit for pre-processing and segmenta-
tion followed by feature extraction stages. However, the performance of this method is
slightly lower when compared to other methods due to the complex nature of neural net-
work strategies used in the system. Further, Sukhesh et al. [9] introduced a cost effective
device using sensors, which was capable of detecting nutrients and chemical contents in
vegetables and fruits and of presenting it in the display on smart phones. Salunkhel
and Aniket [17] presented a computer vision-based system, which could detect various
ripening stages of Mango fruit using RGB and HSV features of images. The proposed
system classified only the ripening stages of mango.

Veena and Bhat [5] designed a simple portable instrument for the detection of chemi-
cally ripened banana fruits using color-based features, which can also find out the specific
ripening stage of the sample banana fruit. Therefore, this method performs better in
terms of detecting chemical ripening, yet it suffers in case of complex banana structures.
In [8], an IR-based sensor system was introduced, which can detect the presence of ethy-
lene, so that different fruit ripening stages are clearly classified. Specifically, the authors
used the thermal emission concept for estimating ethylene release during fruit ripen-
ing process. Although this method provides good reproducibility, yet it concentrates
primarily on discrimination of fruit ripening stages to ensure food safety.

In the existing literature, only few efforts are made towards identifying the chemically
ripened fruits by employing hybrid techniques including computer vision and sensor
techniques [14]. For instance, Verma and Hegadi [20] presented a remote monitoring
system for banana ripening process by employing wireless networks, which helps the
user to monitor the ripening from a remote place. Recently, Srividya et al. [18] proposed
an ethylene measurement system in order to predict correct stage of ripening of fruits
using image-based features. In [13], the authors developed a mobile-based interface for
detecting chemically ripened fruits, which performs histogram comparisons in order to
obtain detection results. Although this method is easy to use, it still performs slightly
low, due to the usage of mere surface features of the sample fruits. Recently, in [11]
and [10], the authors employed NIR spectroscopic method as well as gold nano particle-
based techniques in order to detect chemically ripened mango fruits. However, these
techniques fail to quantify the presence of arsenic in the chemically contaminated fruit,
which is yet to be explored in detail in the existing literature.

To summarize, most of the state-of-the art techniques are primarily focusing on de-
tecting the stages of fruit ripening, as well as on the identification of chemically ripened
fruits with the help of computer vision-based methods. From another perspective, image
features are less effective in quantification of the exact amount of chemical contamina-
tions present in the sample fruits. Due to these issues, promising frameworks are very
much essential, which employ both the image-based features and IR spectrometric signa-
tures in order to detect artificial ripening of fruits followed by computation of chemical
contaminations present in the sample fruits.
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3. Motivation and contributions

In this paper a new framework is introduced for detecting the man-made ripened fruits
followed by the computation of chemical contaminations present in the fruit by employing
both the spectrometric features as well as visual feature descriptors. Specifically, the new
framework named Chemical Ripening and Contamination Detection (CRCD)
is introduced, which first identifies the artificially ripened fruits and then quantifies
the presence of chemical contaminations (in terms of presence of arsenic) in the given
sample fruit. More specifically, the primary contributions of the proposed framework are
as follows.

•A new GUI-based Artificial ripening detector tool for banana fruit is developed which
is used to identify unnaturally ripened banana fruit by making use of edge and
histogram-based visual feature descriptors. Further, the prototype of this GUI tool is
also evaluated in a web-based portal and mobile-based interfaces in order to facilitate
remote access, which is illustrated in detail in Section 7.

•A novel arsenic contamination detection setup is introduced which makes use of IR
signature spectra of fruits for detecting chemically ripened fruits followed by Green
Fluorescent Protein-based turbidity measurements for accurately quantifying the ar-
senic content present in the sample fruit, which is detailed in Sections 6.1 and 7.4.

• Further, chemical contamination rate of the given sample fruit is clearly indicated
in terms of percentages in the specially designed display panel fitted with aqua fruit
chamber, which in future can be employed effectively to protect customers from haz-
ardous health issues. The setup of the aqua chamber and the panel is described in
Sections 6.2, 6.3 and the detection results are described in Sections 7.3 and 7.4.

4. Methodology of the proposed framework

The block diagram for the proposed Chemical Ripening and Contamination Detection
(CRCD) framework, is indicated in Fig. 1. It is implemented in two different mod-
ules, namely the image processing module and the arsenic detection module, which are
detailed as follows.

In the first module of the proposed CRCD framework the captured images of sam-
ple fruit undergo the first stages of processing. The Near Infra-Red (NIR) camera is
employed to capture the images of the sample fruits in different directions and views,
including front and top views. Specifically, in the first stage, convolutional neural net-
work (CNN) based classification algorithms are used to train both ripened and unripened
categories of input banana images. More specifically, visual feature descriptors of input
images including shape, edge and color features (weighted at the ratio 25:25:50) are
extracted and classified by employing Inception v3 algorithm [19], which is one of the
widely-used image recognition models. Initially, the pre-trained neural network extracts
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Fig. 1. Block diagram of the proposed CRCD framework.

the visual features using CNN including fully-connected and softmax layers. Then, the
resultant features are combined to form a feature database named the Visual Features
Database in order to proceed with testing stage.

In the testing stage, initially visual features of query banana image are compared
with the corresponding features of the training database. The results of the comparison
are represented in terms of confidence level metrics. In the proposed framework, 75%
of the samples are utilized for the training stage after random selection whereas the
remaining 25% of the samples are included in the testing part of the database.

In the second module, Green Fluorescent Protein (GFP) [12] based arsenic gas setup
incubated with a water sample is utilized, in which the fluorescence is detected optically
and quantified, so that the concentration of arsenic in the water samples can be measured.
Precisely, the intensity of the fluorescence is a function of the amount of bacteria present
in the water sample, which is further quantified to measure the turbidity of the water
sample. The turbidity measurement enables us to determine chemical contaminations
of the sample fruit in terms of arsenic gas contaminations. The resultant turbidity
values are mapped and analyzed with standard metric values of normal water, in order
to identify whether the fruit is a naturally or chemically ripened one. The comparison
results are combined using the machine learning model and displayed in the LCD display
panel mounted at the front display panel in the setup framework.

These processes are discussed in detail in the further Sections.
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(a)                                                                      (b) 

Fig. 2. (a) Sample snapshots of naturally ripened bananas and (b) sample snapshots of
artificially ripened bananas.

5. Data bases

5.1. Banana fruits database creation

For experimental purpose, 500 banana images from 10 bananas of type Elaichi (species
name: Musa acuminata) are captured under different scenarios including ripened, un-
ripened, individual and group basis of fruits. Specifically, the banana dataset includes
snapshot of bananas, which are captured using Canon 700D DSLR camera with the res-
olution of 4898×3265 pixels. Initially, few samples of unripened bananas are treated for
artificial ripening with the help of calcium carbide. Precisely, the sample bananas are
kept in an air tight container inside a dark room with the presence of calcium carbide
for 8-10 hours, in order to make them ripen at a faster rate. The rest of the bananas are
allowed to undergo natural ripening stages for a waiting period of 24 to 30 hours. Fig. 2a
represents the snapshots of bananas, which were allowed to complete their ripening stages
at normal conditions, whereas Fig. 2b indicates the sample snapshots of bananas, which
were treated with calcium carbide for completing their ripening stage, respectively.

5.2. Mango fruits database creation

To evaluate the performance of the proposed framework towards mango fruits, a mango
fruit dataset consisting of images was generated for both training and testing purposes.
Precisely, 60 mangoes belonging to four different varieties: Alphonso, Badam, Mallika
and Neelam are considered. One set of mango fruits are allowed to ripen naturally
while the other set of mangoes were artificially ripened using artificial ripening agents
like calcium carbide. Fig. 3 shows sample snapshots of mango images in various views.
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Fig. 3. Sample snapshots of mango images in various views.

Further, nearly 950 fruit images were generated for both training and testing datasets,
which were labeled separately as naturally ripened mango fruits as well as artificially
ripened fruits.

6. Experimental setup

6.1. Arsenic contamination detection setup

The basic principle of this setup is based on a fluorescent method, where GMO bacteria-
based Green Fluorescent Protein-based bacterial biosensor (GFP) [12] is used to detect
the presence of arsenic in the test water sample. Then the optical detection of fluores-
cence used to quantify the result in terms of the concentration of arsenic. Specifically,
a vial containing the test water sample is placed on a socket and a fluorescent excitation
LED light is passed through it, which also includes λ = 488 nm needed for enhanced GFP
(eGFP). More specifically, the GFP absorbs blue light (λ = 475 nm) and emits green light
(λ = 504 nm) which is detected by a photosensor in order to deal with the intensity loss.
Then the eGFP fluorescence signal reaches the photosensor with the help of a long-pass
filter. Precisely, the intensity of the fluorescence can be indicated as a function of the
number of bacteria present in the sample. More precisely, the number of bacteria can be
quantified indirectly by measuring the turbidity of the sample [12]. A red LED is placed
in-line with the photosensor so that the transmittance can be measured and converted
into turbidity. The measurement of turbidity makes it possible to normalize the results
with respect to the density of bacteria. Specifically, the measurement of turbidity can be
employed in order to determine the concentration of arsenic present in the water sample
and thereby chemical contaminations in the fruit can be detected. More specifically, the
transmission results are compared against a standard curve of water containing known
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(a)                                                                        (b) 

Fig. 4. (a) Snapshot of the GPF setup including sample water vial, lens and filters.
(b) Snapshot of the setup including the GFP and the Arduino board connectivity.

arsenic concentrations, in order to exactly determine the concentration of arsenic in the
sample. In Fig. 4a the GFP-based arsenic detection setup including sample water vial,
lens and filters are shown, whereas Fig. 4b illustrates the Arduino board connectivity at
the back side of the GFP setup.

6.2. Aqua-fruit chamber setup

In the proposed CRCD framework, in order to obtain a water sample of test fruit, the
aqua-fruit chamber setup is employed, which is shown in Fig. 5. Precisely, in this setup,
the sample fruit is dipped in water, which is circulated continuously with the help of
a water regulatory pump with a push button (On/Off switch) mount assembly. After
dipping the fruit in water for specific amount of time, the water samples of input fruit
is collected in the vial shown in Fig. 5 for further processing. More precisely, Fig. 5a
shows the water pump mount assembly and Fig. 5b indicates the push button setup in
the proposed framework.

6.3. Display panel setup

Fig. 6a shows the front view of the display panel setup, which is used to display the results
of the experiments in terms of chemical contamination measurements. Specifically, the
display panel is fixed inside a metallic compartment in order to avoid external damages
due to dust, heat and water. The display panel is also equipped with a power button,
pump regulatory switch and LED switches shown in Fig. 6a. Fig. 6b. indicates the side
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 Fig. 5. (a) Aqua-chamber setup with pump mount. (b) Push button assembly.

view of the display panel along with the aqua chamber setup mounted on it, in which
slight air ventilation is also provided for experimentation purpose. More specifically,
in the proposed framework, standard HD44780 LCD is used as the display panel for
displaying the outputs, which is 16 characters wide with 2 rows, and displays white text
on blue background. It includes a connection port of 0.1 inch pitch, single row for easy
bread-boarding and wiring and also all the pins are documented on the back of the LCD
to assist in wiring it up to other modules of the setup.

6.4. Main controller setup

The main controller of the experimental setup acts like a heart of the system and con-
sists of an Arduino board. This controller interacts with all the modules of the setup
including the display panel, the GFP setup, the aqua chamber and the sensor camera
module. Therefore, the connectivity of the Arduino plays a major role in determining
the performance of the proposed research work. Fig. 7 shows the main controller setup
including the connectivity of the Arduino board with the display panel, the aqua fruit
chamber and the GFP setup. Further, in the proposed CRCD framework, ArduCam
MT9 MP-CMOS infrared camera module with adapter board is utilized to capture the
images of sample fruits in terms of different views and various dimensions. Precisely,
this camera module is placed inside an outer cabinet in order to enable clear capturing.
The resolution of the camera is 1280×1024 SXGA at 30 fps, whereas the ADC is 10 bits.
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 Fig. 6. (a) Front view of the display panel. (b) Side view of the display panel along with
the aqua chamber setup.

7. Methods and results

7.1. Chemical ripening detection using visual features

In this section, the chemical ripening detection results computed using image processing
module of proposed CRCD framework are discussed in detail. Precisely, Fig. 8 shows
the snapshot of the GUI named Artificial Ripening Detector for Banana Fruit which
supports both the web portal interface as well as the mobile application interface for its
processing. More precisely, Fig. 8 shows the web portal, used in proposed system, for
uploading the banana pictures for processing.

Once the sample fruit image is uploaded in to the server, the proposed CRCD frame-
work proceeds with the next step, in which checking of the input image for ripened
banana/unripened banana is implemented. In the proposed framework, it employs an
Artificial Neural Network (ANN), trained with more than 600 images of ripened and
unripened bananas, in order to proceed with the decision process in terms of probability
scores. Specifically, if the probability score for ripened banana is more than 0.9, then
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Fig. 7. Connectivity of the Arduino with the display panel, the aqua chamber and the
GFP setup.

the system displays the result, as shown in Fig. 9, and proceeds for further processing.
Otherwise, it displays an error message.

Fig. 10 indicates the various steps involved in the proposed CRCD framework, includ-
ing gray scale conversion, noise reduction followed by the edge as well as shape detection
functionalities. Specifically, in the proposed CRCD framework, Canny edge detection
algorithm is employed for extracting the features. After this step, two histograms are
calculated from sample fruit image namely, luminance and RGB curves. More specifi-
cally, in Fig. 11 the first histogram corresponding to the luminance values as well as the
second histogram representing the RGB curves for the input image are shown. Then the
resultant histograms are compared along with the respective feature descriptors of input
images stored in the database. Precisely, in the proposed framework, after the forming
of the histograms, the resultant graphs of input fruit image are compared against the
database images. More precisely, an ANN, which is trained using the histograms having
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Detection o f Chemically Ripened Banana  Fruits Based on Image Features using Machine learning 2018-19 
 

 

Fig 7.2: Choosing a File for upload. 

 

Fig 7.3: Notification from the Portal after successful upload of the image. 
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Fig. 8. Snapshot of the web portal GUI for uploading the sample fruit image.
Detection o f Chemically Ripened Banana  Fruits Based on Image Features using Machine learning 2018-19 
 

 

Fig 7.5:  Error message for unripened banana. 

 

 

 

Fig 7.6:  Snapshot of Artificial Ripening Detector for Banana Fruit 

 

The system performs the grayscale pass, in order to reduce the workload for edge detection 

and shape detection. And grayscale image will be processed with noise reduction in order to 

lower the confusion for the training or testing phase.  
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Fig. 9. Ripened vs. unripened: detecting unripened fruits.
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Fig. 10. (a) Gray scale conversion, (b) edge and shape detection of the input fruit image.

data size of more than 600 banana images, determines the ripening category of the sam-
ple input image. The confidence level measurements are evaluated for both the naturally
ripened as well as chemically ripened categories, in order to predict exactly, whether the
sample fruit is artificially ripened or not.

7.2. Chemical ripening detection results

Fig. 12a shows the snapshot of output prediction results in terms of confidence levels
of 83.16% for artificially ripened banana fruit whereas Fig. 12b indicates the snapshot
of output results in terms of confidence levels of 81.14% for naturally ripened banana
fruit. After the completion of detection results, the back end results can be transferred
to the application front end, and also to the web portal, so that the end user can view
the results. Further, the mobile application interface version of the proposed CRCD
framework is shown in Fig. 13, which demonstrates the performance of the proposed
system in terms of displaying the results on the mobile application.
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 Fig 7.7:  Snapshot of Edge Detection of Input Fruit Sample 

 

Edge detection uses OpenCV based Canny edge detection algorithm for an acceptable level of              

accuracy for background removal and feature extraction. 

 

Fig 7.8:  Snapshot of Histograms of input Images 

 

The First Histogram shows the Luminance values. The Second histogram shows the RGB             

curves for the input image. The above histograms can be analyzed for further research or for                

feature-based detections. 

 Department of ISE, AIET, Mijar      5  

Fig. 11. Histogram graphs of the sample input fruit image.

7.3. Spectral analysis and chemical contamination computation

In the second module of the proposed CRCD framework, the NIR spectra of sample fruit
image is computed and prediction results are calculated by comparing against the pre-
processed spectra signatures. Specifically, for the purpose of NIR data analysis, a total
of 12 readings are considered for both naturally as well as artificially ripened mango
fruit samples. Further, as a preliminary classification step, principal component analy-
sis (PCA) is performed on the selected spectra and different principal components are
plotted in order to indicate the groups of samples based on their varieties. Specifically,
the signature spectrum of database fruits is computed using PCA approach, before the
analysis of samples, in order to reduce the noise effects as well as to obtain the better
representation of the data. Fig. 14 represents the pre-processed spectra considered in
the proposed framework in terms of the NIR analysis of sample mango fruits. Fig. 15
presents the signature spectra of naturally ripened mango fruit in which huge variations
can be observed in the range of 600-640 nm as well as 700-800 nm wavelength measure-
ments. In Fig. 16 the spectral signature of artificially ripened mango fruit is indicated,
in which more variations are visible in the range of 700-750 nm wavelengths and thereby
clear classification of ripening type of fruits can be achieved. The spectral results are
further analysed with PCA, which clearly indicates that the naturally and artificially
ripened mango samples spectra are falling in different wavelength segments. Further,
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Fig. 12. (a) Final detection results for artificially ripened banana fruit. (b) Detection
results for naturally ripened banana fruit.

Fig. 13. Snapshots of artificial vs. natural ripening detection results displayed on mobile
application interface.
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Fig. 14. Pre-processed spectral signature computed for a sample mango fruit.

Fig. 15. Spectral signature of a naturally ripened mango fruit.

Machine GRAPHICS & VISION 30(1/4):23–43, 2021. DOI: 10.22630/MGV.2021.30.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2021.30.1.2


R. Roopalakshmi 39

Fig. 16. Spectral signature of an artificially ripened mango fruit.

the resultant spectra graphs also indicate significant amount of variations in the spec-
tral signatures of both fruits and thereby demonstrate the performance of the proposed
CRCD framework in terms of achieving accurate prediction results for calcium carbide
based artificially ripened mango fruits.

7.4. Chemical contaminations quantification and results

In the proposed CRCD framework, in order to quantify the amount of chemical contam-
inations in terms of arsenic contents, five different datasets consisting each of 30 fruit
samples are considered as given below:

S1: Fruit samples treated with 2% calcium carbide,

S2: Fruit samples treated with 4% calcium carbide,

S3: Fruit samples stored in closed container with 1% calcium carbide,

S4: Fruit samples stored in closed container with 3% calcium carbide and

S5:Naturally ripened fruits.

Specifically, in order to confirm the presence of arsenic content in the artificially ripened
fruit samples, the datasets are analysed with turbidity measurements. More specifically,
Table 1 indicates the arsenic content present in chemically ripened fruits in terms of
measurements in ng/g. Specifically, ng/g is equivalent to 1 ppb (parts per billion). The
presence of arsenic content is ranging from 0 to 290 ng/g, in which naturally ripened
fruit samples show the maximum arsenic content of 8 ng/g, whereas the largest amount of
arsenic presence is observed in calcium carbide treated fruit samples, direct consumption
of which is highly dangerous to humans.
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Tab. 1. Presence of arsenic content in terms of levels in ng/g for different datasets: S1,
S2, S3, S4 and S5, respectively.

SET 0-30 ng/g 30-70 ng/g 70-290 ng/g
S1 27 3 -
S2 20 10 -
S3 4 24 2
S4 - - 30
S5 30 - -

 

 

Fig. 17. Result display showing arsenic chemical composition.

Fig. 17 shows the output in the front panel display of the proposed CRCD framework,
in which arsenic composition present in the input fruit is displayed. Specifically, arsenic
composition is 78.23% for the sample input fruit, as shown in Fig. 17, which is higher
than the prescribed threshold limits, hence it suggests that it is harmful to consume the
given sample fruit.

The performance of the proposed CRCD framework is also evaluated in terms of
sensitivity and specificity measures by means of comparisons with ground truth values.
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Precisely, the 200 sample fruits consisting of both natural and artificially ripened cate-
gories are considered for evaluating the performance of the proposed framework. More
precisely, sensitivity of the CRCD framework defining the probability of positive result
for the given set of artificially ripened fruits is indicated as 91.25%. Further, the speci-
ficity of the proposed CRCD framework is also computed as 80.25%, which defines the
probability of negative result for the given set of naturally ripened fruits. In this way, the
reasonable rates of sensitivity as well as specificity rates demonstrate that the proposed
CRCD framework is reliable and hence it can be employed in real-time chemical ripening
detection systems.

8. Conclusion and future work

In this paper, a new chemical ripening and contamination detection framework is in-
troduced, which utilizes both visual as well as infrared spectrometric features. The
experiments conducted on both the software-based and hardware-based setups clearly
demonstrate the efficiency of the proposed framework in terms of confidence levels fol-
lowed by the measurement of presence of arsenic in the sample fruit.

In future, the proposed framework can be extended as real-time detection tool for
analyzing other types of fruits including papaya, tomato and other species.
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Semwal, R. González-Crespo, and V. Bijalwan, editors, Proc. 2nd Int. Conf. Research in Intelli-
gent and Computing in Engineering RICE 2017, volume 10 of Annals of Computer Science and
Information Systems, pages 117–120, Gopeshwar, Uttrakhand, India, 24-26 Mar 2017. Polish In-
formation Processing Society, Warsaw. doi:10.15439/2017R111.

[3] A. A. Bhosale and K. K. Sundaram. Nondestructive method for ripening prediction of papaya.
Procedia Technology, 19:623–630, 2015. Part of special issue: L. Moldovan, editor, Proc. 8th Int.
Conf. Interdisciplinarity in Engineering, INTER-ENG 2014, 9-10 Oct 2014, Tirgu Mures, Romania.
doi:10.1016/j.protcy.2015.02.088.
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