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Abstract. This study used stick model augmentation on single-camera motion video to create a mark-
erless motion classification model of manual operations. All videos were augmented with a stick model
composed of keypoints and lines by using the programming model, which later incorporated the COCO
dataset, OpenCV and OpenPose modules to estimate the coordinates and body joints. The stick model
data included the initial velocity, cumulative velocity, and acceleration for each body joint. The ex-
tracted motion vector data were normalized using three different techniques, and the resulting datasets
were subjected to eight classifiers. The experiment involved four distinct motion sequences performed
by eight participants. The random forest classifier performed the best in terms of accuracy in recorded
data classification in its min-max normalized dataset. This classifier also obtained a score of 81.80% for
the dataset before random subsampling and a score of 92.37% for the resampled dataset. Meanwhile, the
random subsampling method dramatically improved classification accuracy by removing noise data and
replacing them with replicated instances to balance the class. This research advances methodological
and applied knowledge on the capture and classification of human motion using a single camera view.

Key words: vision, single camera, markerless, stick model, human motion, motion classification,
data mining.

1. Introduction

Human motion analysis entails sensing the human body and extracting static or dynamic
data from it in the form of gestures, behaviors, and actions [34]. It emerges as a critical
component in operation studies to evaluate performance, such as in sports performance
analysis [16], medical rehabilitation [61], video surveillance [18], and virtual reality gam-
ing [28]. In industrial engineering, motion classification aids in verifying the presence
of operator action, and the absence of specific actions can lead to process defects and
incompletion [1], as well as safety concerns [22].

Fixed-axis and parallel projection are used in vision-based motion classification mod-
els to calibrate feature points relative to the previous position of human body parts [53].
The general framework of a vision-based motion classification model includes movement
scene capture, human tracking, humans and motion representation, motion recognition,
and classification into its respective class [37]. In general, the model processes each frame
of the motion video in accordance with its frame sequences. When a human is detected
in a video frame, the frame image is segmented to obtain the region of interest [41]. The
motion can then be visualized by combining a stick-figure model, a volumetric model, 2D
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4 Vision-based biomechanical markerless motion classification

blobs, and a geometric drawing [2]. Among these methods, the stick-figure model pro-
vides a simple but effective solution for estimating a human posture at a specific frame.
The stick-figure model is a skeleton-like model composed of several keypoints, each of
which represents a coordinate of a body part. These body parts function as moving
joints, and their motion vectors are compared with those of the previous frame [10]. The
motion is classified by comparing the movement of the person between frames [52].

Most motion capture methods place markers on the body parts of the subject to
track the change in motion. However, such a setting necessitates a planned experiment
environment with informed subjects, which makes it impractical in a real-life scenario
where preparation or interference with the observed activity is not permitted. Several
studies used multi-camera recording to reconstruct the 3D view of moving human bodies
in the absence of motion capture markers. Nakano et al. [38] used multiple video cam-
eras from different angles to capture frames from various perspectives, which they then
merged into 3D visualization using the direct linear transformation method. Meanwhile,
Hasler et al. [23] used audio synchronization to conventional video camera recordings
and then 3D mesh reconstruction using a feature-based approach.

Kanko et al. [26] used a single 2D camera view to perform gait analysis and move-
ment estimation using a deep learning approach. Tsuji et al. [49] used a single camera
to capture video of general movements of infants and identify abnormalities in those
movements. Then, they utilized a framework that begins with feature extraction using
computer vision and progresses to movement analysis using formula calculations. Fi-
nally, they conducted movement classification using a feedforward-type network known
as a log-linearized Gaussian mixture network. Zult et al. [63] demonstrated that a con-
ventional video camera could extract the valid keypoints of body parts in the video
frame based on the markers using a low-cost 2D camera system. Using a computer vi-
sion module such as OpenPose [6], the markers could be replaced by virtual coordinate
points [57]. For example, Kim et al. [27] used the OpenPose module to predict knee and
hip movement angles in a video captured with a smartphone camera. The validity of
this OpenPose-based system with the automated post-processing algorithm has shown
early promise, but it may require further verification.

This study investigated the markerless motion classification approach, with motion
video captured using a single 2D camera view. The markerless motion classification
model classified manual operations extracted from motion video by using the stick model
augmentation. This study has two objectives. The first objective is to develop a descrip-
tive model for motion classification based on the overlay of a stick-figure model onto
the motion of the operator in video frames. The second objective is to determine the
best motion classification strategy by assessing the accuracy of the motion classification
model using data mining classifier algorithms. The research advances methodological
and applied knowledge on the capture and classification of human motion using a single
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camera view. The use of a single camera has cost, configuration, and maintenance ben-
efits. The method can be used in real-world industry applications, such as in analyzing
operator performance during a repetitive manufacturing process.

The structure of the manuscript is provided. It begins with an overview of the
research context, followed by a brief review of the literature on human motion segmenta-
tion, stick-figure models, and motion classification. The following section 3 describes the
research methodology, which includes the experiment setup, motion data extraction and
computation, and motion classification. Section 4 contains the results and discussion.
The final section 5 elaborates the conclusion.

2. Literature review

Motion segmentation is a preprocessing stage of motion analysis that is used to cluster
long frame sequences depicting human actions into several shorter, non-overlapping video
segments. Subspace clustering and temporal data clustering are two popular clustering
methods in the literature. Subspace clustering works by searching a dataset for subspaces
and clusters and categorizing data into new distinct spaces based on similar features.
For example, Xia et al. [55] combined sparse subspace clustering and a robust kernel low-
rank representation method for motion recognition. However, the method ignores the
temporal correlation between successive frames. Temporal data clustering divides large
amounts of sequential data into non-overlapping chunks. Wang et al. [51] highlighted the
importance of temporal information in achieving accurate model performance. However,
transfer learning is required to overcome the unpredictability of the results because the
temporal clustering method is unsupervised.

Several recent studies used transfer learning to visualize object motion using existing
datasets, which is due to that prior knowledge from related source data improves feature
identification. Several works partially, such as [62] or fully adapted transfer learning
by using deep neural network classifier parameters. They are useful, particularly for
detecting multiple people in the same image frame [45].

Rubino et al. [42] proposed semantic motion detection, which uses semantic informa-
tion to identify object matches between two views. Its underlying principle is similar to
that of the convolutional neural network model, which uses patterns from training data
to identify features in target data. Simonyan and Zisserman [46] proposed a two-stream
convolutional network model with spatial and temporal networks. With prior knowledge
of training data from the optical flow model, this model identifies the moving action in
the testing video. Meanwhile, Zhou and He [60] used the recurrent network model to
estimate the human body region in the image by transforming the image into a pose
heatmap. The heatmap would be used to evaluate the coordinates of body joints, and
these coordinates are critical for building the stick-figure model.

A stick-figure model is a skeleton-like structure used to represent important body
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6 Vision-based biomechanical markerless motion classification

joints and track body motion patterns [21]. Annotations of keypoints from the body
pose estimation are used to accomplish this model. Handcrafted features, such as his-
togram of oriented gradient, are used in the previous stick model. However, the accuracy
of the identified keypoints is below the acceptable range [13]. Single-person or multi-
body human body position estimations are used in modern times. The single-person
approaches locate body parts through direct regression and heatmap conversion [14].
Chan et al. [9] used a mathematical regression coefficient model to simplify the 2D stick
model of human motion for direct regression. Figure 1 depicts the construction of the
2D stick model, which is composed of several points of body parts and lines. The model
presents a more straightforward interpretation by using joints as calculation points.

However, the regression-based stick model construction always necessitates additional
procedures to accurately map the feature points onto the subject in an image. Carreira
et al. [8] added a corrective measure to the neural network model structure by including
a simple error feedback connection. The predicted error was fed back into the network in

Fig. 1. A simple two-dimensional stick model.

Machine GRAPHICS & VISION 32(1):3–24, 2023. DOI: 10.22630/MGV.2023.32.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.1.1


Y. L. Liew, J. F. Chin 7

the form of backpropagation to gradually improve keypoint location prediction. Luvizon
et al. [35] presented the soft-argmax operation, which is an improved method. After
this operation is integrated into the deep convolutional neural network, it can convert
the feature maps directly to joint coordinates by finding the maximum values from the
target functions. This new method produces results that are comparable to those of the
heatmap-based framework. However, unlike the heatmap-based approach, expanding
this method into multi-person cases is problematic.

The detection-based framework is typically built on deep learning datasets that have
been pre-trained using thousands of human images. Sun et al. [47] used a convolutional
neural network with two-stride convolutions to reduce resolution and a main body that
outputs feature maps to implement their approach. At the network’s end, the regressor
estimates the keypoint positions by evaluating the loss function of the heatmap using
comparisons between predicted and ground-truth heatmaps.

Various motion classification techniques have been proposed. Switonski et al. [48]
investigated data mining for markerless motion extraction in motion capture data. They
used dynamic time warping (DTW) technique to classify the human motion data into gait
patterns. In time-series data, the model identifies variations in the orientation of motion
capture and subject for motion recognition. It calculates the angles in the joint data
and the classification probability with the minimum distance classifiers (MDC). MDC is
combined with k-nearest neighbor classifiers to maximize the accuracy and consistency of
both types of classifiers. Schneider et al. [44] used the DTW approach to evaluate warping
distance after annotating the skeleton model using the OpenPose module dataset. Prior
to applying the classifier, the image data in coordinates were normalized to condense the
data range into a smaller number. Thereafter, nearest neighbor classifiers were used to
classify the warping distance of time-series data. The results still have some limitations,
such as reliance on the representativeness of the dataset, poor recognition precision when
noise reduction is required, and the need for motion capture marker setup.

Qian et al. [40] evaluated multi-class support vector machine (SVM) classifiers by
removing the background and extracting the centroids and instantaneous speed of hu-
man motion. The frame sequence comparison produces a contour coding of motion
energy image with a square-to-circular coordinate transformation, which converts plane
coordinates to polar coordinates. SVMs were also used as classifiers in the study by
Choi et al. [11] study to classify the gait motion pattern. The joint angle and distances
between body parts are among the parameters used. SVM is an excellent option for
accurately recognizing motion, but many more classifiers have yet to be tested in motion
classification.

Yang and Zhao [58] used decision tree classifiers to determine the motion class of
firefighters, but string-type descriptions rather than numbers were utilized as attributes.
Zhang et al. [59] employed an interactive system to classify six different motions using
three classifiers: näıve Bayes, SVM, and random forest. The results showed that the
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Tab. 1. Descriptions for experimental motion activities.

Motion Activity Description
Moving box Bend down the body, lift the box with two hands, stand upright,

walk a few steps, bend down the body, put down the box, resume
to a standing position.

Moving pail Bend down the body, lift pail by its handle with one hand, stand
upright, walk a few steps, bend down the body, put down the
pail, resume to a standing position.

Sweeping Grasp a broom with one hand, move the broom down until its
brush touching the floor, pull the broom to sweep the dirt, lift
the broom up.

Mopping Bend down the body, lift the box with two hands, stand upright,
walk a few steps, bend down the body, place the box down,
and resume standing. Bend down the body, lift the pail by the
handle with one hand, stand upright, walk a few steps, bend
down the body, set the pail down, and resume standing. Grasp
a broom with one hand, lower the broom until the brush touches
the floor, pull the broom to sweep the dirt, and then raise the
broom. Grasp a mop with two hands, slightly bend the body,
move the mop in one direction until it touches the floor, then
reverse the mop movement.

random forest classifier has the highest classification accuracy when using position and
vector data. Li et al. [31] investigated the motion recognition model using the random
forest algorithm and the difference in normalized joint coordinates between keyframes.
Fong et al. [17] agreed that the random forest classifier performs the best using position
and vector data from the skeleton model. It outperforms the neural network approach
and other traditional classifiers in terms of classification accuracy.

3. Methodology

3.1. Experimental motion selection

The experiment was designed to involve activities observable in common full body op-
erations. As described in Table 1, the motion activities featured in the experiment are
moving carton box, moving pail, sweeping floor, and mopping floor. Moving carton box
and moving pail are highly similar operations, as well as sweeping and mopping floor.
The intention is to create complexity in learning when the system is being presented
with highly similar datasets.
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The variation in human action influences pose recognition. Eight participants be-
tween the ages of 23 and 24 volunteered for the motion video collection to account for
the abovementioned effect. Each participant was required to complete a series of afore-
mentioned activities in various settings. Different backgrounds (outdoor and indoor) and
light conditions were used in the video sample collection given that video backgrounds
affected motion recognition using a markerless system [5]. The outdoor used natural
light, whereas the indoor light conditions could be bright or dim.

The motion classification samples were collected at the university student hostels.
The motion recording was conducted with a digital single-lens reflex (DSLR) camera,
specifically a Nikon DSLR D3200 model, with a frame rate of 60 frames per second and
a video frame size of 7201080 pixels in three color channels. During video capture, a
camera tripod stand supports the camera and fixes its position. Figure 2 depicts and
labels the camera setup parallel to the motion activity. During video capture, each
participant was required to face the camera parallelly.

A participant repeated each motion activity 10 times, which were recorded all in the
same video. All sample videos were manually trimmed into individual activity videos
by using video editing software. The first three segmented videos of each sample video
were considered motion warm-up and were excluded from the subsequent processing
stage. A total of 100 videos from each motion class were chosen at random for further
processing. All 400 videos were uploaded to Google Drive in folders named after the
motion class to be processed by programming.

The stick model augmentation estimates body part position using the COCO da-
taset [33]. By associating joint coordinates with individuals, the COCO dataset has
been used in multi-person tracking and keypoint annotations [30]. The COCO dataset
contains over 200,000 labeled object instances and at least 250,000 human samples. The
dataset includes annotations and information for all body part instances, which aid in
segmentation and estimation of keypoint coordinates. The COCO dataset was used to
train the model for object detection and estimation using transfer learning. As shown
in Table 2, 18 points per person had to be recognized from the COCO dataset onto each
human image. Python was used to annotate the stick model keypoints and lines onto
the human body in the video frames for the stick model overlay. The body joint position
was estimated using OpenPose [24], which has been integrated with OpenCV [36].

With 4D blobs, the image was converted into image data. The blobs were fed into
the trained neural network, which identified the maximum points in the object area and
detected the objects. The architecture of the pre-trained network was divided into two
branches: the top branch, which predicts the confidence map, and the bottom branch,
which estimates the affinity field. Affinity field refers to the storage of unstructured
pairwise relationships between body parts in a field [7].

The code was written in Python and executed in Google Colab [20] using the Python 3
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Fig. 2. Motion video capturing scene setup.

Tab. 2. Representation of each number for body joints.

Number Body Joint Number Body Joint
0 Nose 9 Right knee
1 Neck 10 Right ankle
2 Right shoulder 11 Left hip
3 Right elbow 12 Left knee
4 Right wrist 13 Left ankle
5 Left shoulder 14 Right eye
6 Left elbow 15 Left eye
7 Left wrist 16 Right ear
8 Right hip 17 Left ear

Google Compute Engine Tensor processing unit backend [19] with 35.25 GB of high-
RAM. All videos were saved in Google Drive folders. The COCO dataset was imported,
and the keypoints were sequentially paired (Table 3) with a different number to represent
the various body joints identified in Table 2.

The flowchart (Figure 3) summarized the algorithm for overlaying the stick figure. To
save computation power, all experimental motion videos were annotated with keypoints
and line connections based on specified body part pairings every half a second.
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Fig. 3. Flowchart for programming model augmentation using stick figures.

3.2. Data collection and calculation for motion

Keypoint estimation in the stick model overlay was used to calculate the position coor-
dinates for each body joint in a frame. Positions, velocity, and acceleration were among
the data extracted from the stick-figure model. Eyes and ears were irrelevant to motion
evaluation. Thus, only the first 14 body joints were counted in the extracted data. Ow-
ing to the single 2D view of the video, the initial velocities of body parts were calculated
for the x- and y-axes only in the motion classification model. Meanwhile, the cumula-
tive velocity and acceleration were used to account for the time-series effect of the video.
Table 4 lists the extracted motion variables with n, which indicates the representation
number of body joint plus one. The representation number of body joint can be found in
Table 2. The initial velocities of body joints were calculated using Equations (1) and (2)
for x- and y axes, respectively.
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uxn
=

x1n− x0n

t
, (1)

uyn
=

y1n− y0n
t

, (2)

where:
x1n – x-axis coordinate at the first instance for body joint n,
x0n – x-axis coordinate at the start for body joint n,
y1n – y-axis coordinate at the first instance for body joint n,
y0n – y-axis coordinate at the start for body joint n,
t – time interval, here equal to 0.5.

Equations (3) and (4) were used to calculate the cumulative velocity of a body part
in the x and y directions, respectively. Meanwhile, (5) and (6) defined the equations for
calculating the cumulative acceleration of body parts in the x and y-axes, respectively.

Tab. 3. Body joints pairing with the number indication.

Number
Pair

Body Joints Pairing Number
Pair

Body Joints Pairing

1,2 Neck – Right shoulder 11,12 Left hip – Left knee
1,5 Neck – Left shoulder 12,13 Left knee – Left ankle
2,3 Right shoulder – Right elbow 1,0 Neck – Nose
3,4 Right elbow – Right wrist 0,14 Nose – Right eye
5,6 Left shoulder – Left elbow 14,16 Right eye – Right ear
6,7 Left elbow – Left wrist 0,15 Nose – Left eye
1,8 Neck – Right hip 15,17 Left eye – Left ear
8,9 Right hip – Right knee 2,17 Right shoulder – Left ear
9,10 Right knee – Right ankle 5,16 Left shoulder – Right ear
1,11 Neck – Left hip

Tab. 4. Initial variables and vector variables for motion data extraction.

Initial
Velocity
Variables

Description Vector
Variables

Description

uxn Initial velocity of nth body
part at x-axis.

vxn Cumulative velocity in the x-
direction of nth body part.

uyn Initial velocity of nth body
part at y-axis.

vyn Cumulative velocity in the y-
direction of nth body part.

axn Cumulative acceleration in the
x-direction of nth body part.

ayn Cumulative acceleration in the
y-direction of nth body part.
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vxn =

m∑
i=1

xin− x(i−1)n

ti − ti−1
ti , (3)

vyn
=

m∑
i=1

yin− y(i−1)n

ti − ti−1
ti , (4)

axn
=

m∑
i=1

xin− x(i−1)n

(ti − ti−1)2
ti , (5)

ayn =

m∑
i=1

yin− y(i−1)n

(ti − ti−1)2
ti , (6)

where:
i – the instance index,
m – total number of frames in the video divided by 30,
t – time interval, here equal to 0.5,
n – body joint number (0 to 13) + 1,
xin – x-axis coordinate at ith instance for body joint n,
x(i−1)n – x-axis coordinate at the previous instance for body joint n,

yin – y-axis coordinate at ith instance for body joint n,
y(i−1)n – y-axis coordinate at the previous instance for body joint n.

These formulas were then incorporated into the programming algorithm. Each posi-
tion and vector variable had 14 attributes to represent different body joints. Thus, the
total number of attributes was 84, and a motion type class attribute was added at the
end. All attributes were extracted and saved in a comma-separated values (CSV) file for
use in data preprocessing and mining.

Several issues contribute to value errors from the annotation of the stick model,
and they would be addressed differently. One of the issues in estimating coordinates
is the inability to detect body parts due to a blocked view. Motion videos feature
human subjects interacting with objects to perform the required activity. As a result,
the interacted object is likely to become an impediment to viewing body parts from
the motion video. An example is undetected feet by the programming algorithm due
to the carton box obscuring its view. Aside from being blocked by objects, some body
parts for keypoint detection are kept out of camera view by the pother body parts of
the participant. The most notable occurrences involve sweeping and mopping, in which
some participants choose to turn their bodies in different directions while performing the
action. In both cases, missing coordinate data were replaced with estimated vector data.
The COCO keypoint dataset uses a large amount of image data to detect human body
part positions and estimate missing keypoints by comparison with other body parts [32].
This estimation method is valid only for common gestures like parallel standing and
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lifting objects. The reason is that the dataset only has a few images for each pose. The
issues were resolved by assuming that body part movement momentum continued from
the previous frame to the current frame. The position of an undetected body part was
estimated using the coordinates of the previous frame plus the instantaneous velocity of
that body part.

Another error is mistaking unrelated objects for body part keypoints. These objects
are identified as human body parts by Setjo et al. [45]. Using the multi-person dataset
for keypoint estimation, multiple sets of keypoints are detected. However, separating
humans from false positives is required. Thus, the bottom-up approach [6] of associating
joints to people was used to reduce misidentification.

3.3. Data preprocessing

Data preprocessing steps are critical for preparing data for an effective data mining
process. Several techniques were used to normalize the data extracted from the stick
model. Then, the outliers and extreme values of normalized data were calculated before
reacting. Duplicate instances were also identified in the preprocessing stage.

Motion data are normalized to standardize the range of different units or scales in
the attributes. It simplifies large-number numeric attributes and improves data quality
without affecting the final data classification result [25]. Three popular normalization
techniques were used in this study: min-max normalization (MMN), Z-score normaliza-
tion (ZSN), and decimal scaling normalization (DSN). MMN reduces the un-normalized
data to a specific lower and upper boundary, which is typically 0 to 1 or -1 to 1. The
formula in Equation (7) was used to calculate MMN [43].

v′i,n =
vi,n −min(vn)

max(vn)−min(vn)
(maxnew −minnew) + minnew , (7)

where:
v′i,n – new normalized variable data at ith instance,
vi,n – original variable data at ith instance,
min (vn) – minimum value of variable data in the nth attribute,
max (vn) – maximum value of variable data in the nth attribute,
minnew – new minimum value, usually -1 or 0,
maxnew – new maximum value, usually 1.

The ZSN method uses mean and standard deviation to normalize data into a scaled
value ranging from -1 to 1, with zero mean and unit variance. ZSN is expressed by (8).

v′i,n =
vi,n − µn

σn
, (8)
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where:
v′i,n – new normalized variable data at ith instance,
vi,n – original variable data at ith instance,
µn – mean of all data in the nth attribute,
σn – standard deviation of all data in the nth attribute.

DSN measures the maximum values of an attribute and rescales them by moving the
decimal point of instance values. This method of normalization is useful for data with
logarithmic variation in the attribute. In (9), the DSN formula is written as follows.

v′i,n =
vi,n

10j
(9)

where:
v′i,n – new normalized variable data at ith instance,
vi,n – original variable data at ith instance,
j = log10 (max(vn)).

Google Colab was loaded with the CSV file containing the extracted motion data
from the stick-figure model. The three normalization methods were applied using the
Python Scikit-learn (Sklearn) module [12], which resulted in three different normalized
CSV dataset files.

The normalized datasets were then resampled in the WEKA interface [54] (version
3.8.5) under the supervised instance filter section using a random subsampling method.
Its goal was to improve the instances by removing noise from the motion data. The imbal-
anced result from different subsets created during cross-validation could be due to noise
instances. With or without replacement, the random subsampling method generated
a random subsample of a dataset. The data were balanced with replicated instances
from the remaining data to maintain the same class bias as the original unprocessed
dataset without compromising the total sampling number for the experiment. The three
datasets were preprocessed and saved to new CSV files before the motion classification
experiment was started.

3.4. Motion classification

The WEKA Experimenter was used to run the motion classification experiment, which
included all three normalized datasets and eight different classifiers (Table 5). The
default WEKA settings were used except for the options in brackets that required manual
input. Each classifier was run 10 times. The 10-fold cross-validation option was used to
divide the training and validation data into 10 sets, with each set serving as the testing
set iteratively in 10 rounds of validation. For each data preprocessing technique, the
experiment was repeated with resampled datasets. A total of 4800 experimental trials
were conducted.
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Tab. 5. Classifiers used in the experiment.

Classifier Description
ZeroR The most basic rule-based classifiers predict the majority class

while ignoring all predictors or attributes [15].
OneR Selects the single most informative attribute and classifies in-

stances solely on the basis of this attribute’s criteria [39].
J48 Decision
Tree (pruned)

Produces pruned trees that begin at the root node and classify
instances into branches by sorting them according to attribute
values [29].

Random
forest

Building many individual decision trees with each random forest
tree results in a class prediction, and the class with the most votes
becomes the final model’s prediction.

Random tree The decision tree and Random Forest approaches are combined
to predict the class by fitting several decision tree classifiers on
different sub-samples of the dataset and averaging to improve pre-
diction accuracy and avoid over-fitting.

k-Nearest
neighbors
(k = 5)

A lazy learner method that classifies instances based on evaluated
Euclidean distances that define the closeness to each class, where
k represents the number of neighbours considered to find the ma-
jority of a class label [29].

Näıve Bayes Calculates the conditional probability of the classes based on the
assumption that each attribute is independent of the others [56].

Multilayer
perceptron

It is made up of neural network layers, which include input, hid-
den, and output layers. Back-propagation is used to train neurons
to process data and recognize patterns [50].

4. Results and discussion

4.1. Stick model overlay

The stick model was used to annotate all 400 videos, and body part keypoints and lines
indicated the connection between body joints. Figure 4 depicts video frames with human
body parts augmented by the stick model when moving a carton box, moving a pail,
sweeping, and mopping, in that order.

A set of 100 videos from the same motion class took an average of 27min to com-
plete the stick model overlay process. A motion video contains 8 to 10 frames that are
designated for stick model processing and data extraction. As a result, a single frame
took between 1.62 and 2.03 s to complete the stick model augmentation process.
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Fig. 4. Sample video frame with stick model overlay.

Fig. 5. Graph of average accuracy for all motion classification experimental trials.

4.2. Motion classification

A total of 4800 data mining experimental trials were conducted, which involved variable
permutations of eight classifiers, three normalization techniques, and the use of resam-
pling prior to classification. The average accuracies for each classifier and normalization
technique permutation, with or without resampling, were evaluated. They are recorded
in Table 6 and plotted as a graph in Figure 5.

Except for the ZeroR classifier, the average classification accuracy for the datasets
after resampling is higher than that for the datasets before resampling. ZeroR classifier
maintains an accuracy of 25% regardless of normalization methods or resampling. The
reason is that the ZeroR classifier frequently identifies the majority class. However, the
majority class does not exist in these datasets because of the motion data distribution.
As a result, the accuracy for all normalized datasets with a ZeroR classifier is the same.
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Tab. 6. Classification accuracy of different classifiers and normalization technique used before and after
the resampling.

Classifier
Normalization
Technique

Average Accuracy with-
out Resampling (%)

Average Accuracy with
Resampling (%)

ZeroR Decimal scaling 25.00 25.00
Min-Max 25.00 25.00
Z-score 25.00 25.00

OneR Decimal scaling 47.15 63.45
Min-Max 47.13 63.70
Z-score 46.97 63.70

J48 Decision
Tree (pruned)

Decimal scaling 72.38 85.52
Min-Max 72.47 85.62
Z-score 72.57 85.65

Random
forest

Decimal scaling 81.25 92.10
Min-Max 81.80 92.37
Z-score 81.40 92.15

Random
tree

Decimal scaling 67.78 85.20
Min-Max 67.00 86.80
Z-score 66.08 85.55

k-Nearest
neighbors
(k = 5)

Decimal scaling 64.53 67.30
Min-Max 64.53 67.30
Z-score 64.53 67.30

Näıve
Bayes

Decimal scaling 70.30 77.20
Min-Max 70.52 77.05
Z-score 70.62 76.55

Multilayer per-
ceptron

Decimal scaling 54.58 62.32
Min-Max 54.58 62.32
Z-score 54.58 62.32

Figure 5 shows that the random forest classifier method achieves the highest accu-
racy in the datasets before and after resampling categories. The random forest classifier
with MMN and resampling has the best performance of the knowledge discovery method
combination, with an average accuracy of 92.37%. The finding echoes previous studies
on movement or gait analysis [17, 59]. The random forest classifier avoids overfitting
in large datasets like the motion dataset. The motion dataset has 84 attributes, which
can easily cause overfitting using other classifiers. The normalization techniques pro-
duce insignificant differences in classification accuracy while using the same classifiers.
Thus, the normalization scale difference insignificantly affects the classification result.
Nevertheless, the random forest classifier performs best with the min-max normalized
dataset.

The resampling method increases classification accuracy by removing noise or mis-
classified data and replicating the remaining data to fill the void [4]. Confusion matrices
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Fig. 6. Confusion matrix for classification result of the min-max normalized dataset using Random
Forest classifier.

for classification results of datasets with and without resampling confirm this explana-
tion. As shown in Figure 6a, the random forest classifier and MMN produce a confusing
confusion matrix for the dataset. Figure 6b shows the classification result of the same
data mining technique for resampled data, which has a higher accuracy.

According to confusion matrices, sweeping and mopping are more likely to be mis-
classified due to their high similarity. The experimental motion capture does not impede
movement execution. It affects the classification accuracy, especially for motions with
similar characteristics. Resampling increases correctly classified instances in mopping
and sweeping. The resampling method replaces incorrectly classified instances with
replicated instances from correctly classified instances. Arbelaitz et al. [3] agreed that
random subsampling improves accuracy. However, they recommended using synthetic
minority oversampling technique (SMOTE) to obtain significant statistical differences
between class instances. Future research should examine the effect of the SMOTE tech-
nique on the dataset.

5. Conclusion

This study develops a descriptive model for markerless motion classification using a single
camera view. The stick model overlay uses OpenCV and OpenPose modules as well as
COCO datasets. In motion classification, the best data mining strategy is determined by
classifier and normalization accuracy. The best classifier is the random forest classifier,
which achieves an accuracy of 81%-82% without resampling and an accuracy of 92%-
93% with resampling. Using the same classifier, normalization techniques have little
to no effect on classification accuracy. The developed algorithm of stick-figure model
augmentation and data mining strategy complete the markerless motion classification
model. This study can be extended to more complex and variable motion activities in
manufacturing, such as manual operations.
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