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Abstract. Initial-boundary value problem for linear acoustics has been solved in two spatial dimen-

sions. It has been assumed that the initial acoustic field consists of two Gaussian distributions. Dirichlet

boundary conditions with zero acoustic pressure at the boundaries have been imposed. The solution has

been obtained with the help of a split-operator technique which resulted in a cellular automaton with

uncountably many internal states. To visualize the results, the Python library matplotlib has been em-

ployed. It has been shown that attractive graphical output results in both the transient and stationary

regimes. The visualization effects are similar to, but different from, the well-known quantum-mechanical

carpets.
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1. Introduction

As is well known, interference effects omnipresent in the propagation of both linear
and non-linear physical fields, very often lead to formation of beautiful patterns. Let
us only mention here caustic patterns which can be in coffee cup due to the multiple
reflection of light rays with the cup serving as a kind of quasi-cylindrical mirror. Many
interesting and important physical effects are known in quantum mechanics due to the
interference of probability waves. This includes formation of sometimes spectacular
patterns emerging in the propagation of probability waves in an infinite potential well [2,
3, 4, 5]. Very interesting and beautiful images have been obtained by simulation of the
dynamics of quantum mechanical wavepackets provided that generic initial conditions
have been assumed. By generic initial conditions we mean those with many modes being
initially excited. Interesting revivals of patterns have been reported.

Needless to say, one can and should expect appearance of similarly interesting struc-
tures in other physical fields, for instance, electromagnetic or acoustic. The role of
quantum-mechanical infinite-well potential is naturally played by perfectly reflecting
walls. It is to be mentioned that such walls actually do not exist. Nevertheless, a model
with perfectly reflecting walls is a convenient starting point and can provide a reasonable
approximation if we do not consider the fields too close to such mirrors.

In this work we concentrate on the case of evolution of acoustic fields in two spatial
dimensions. The main body of the paper is organized as follows. In Section 2 we provide
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Euler’s partial differential equations which constitute the mathematical model of our
system. In Section 3 a simple but efficient algorithm to integrate those equations is
worked out. Section 4 contains a series of figures in which our results are illustrated.
Some concluding remarks can be found in Section 5.

2. The model

We are about to solve the following system of the partial differential equations [1]:

∂p

∂τ
+

∂vx
∂ξ

+
∂vy
∂η

= 0 , (1)

∂vx
∂τ

+
∂p

∂ξ
= 0 , (2)

∂vy
∂τ

+
∂p

∂η
= 0 . (3)

All quantities in the above system, including the independent variables, have been made
dimensionless. The quantity p has the physical meaning of the acoustic pressure while
vx and vy are two components of the field of velocity of particles. The variable τ is the
dimensionless time while ξ and η are dimensionless coordinates in the plane.

The above system describes propagation of the acoustic field in two spatial dimen-
sions. In this work we will employ the simple Dirichlet boundary conditions: p = 0 on
any boundary.

Equations (1)-(3) can be represented in a matrix form:

∂

∂τ

 p
vx
vy

 = M̂

 p
vx
vy

 , (4)

where the matrix operator M̂ is equal to

−

 0 ∂
∂ξ

∂
∂η

∂
∂ξ 0 0
∂
∂η 0 0

 . (5)

In the following section this matrix notation will be used to develop a split-operator
algorithm for numerical computations of (p, vx, vy).
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3. Split-operator algorithm

Equations (1)-(3) can be formally integrated to give:

 p(τ +∆τ, ξ, η)
vx(τ +∆τ, ξ, η)
vy(τ +∆τ, ξ, η)

 = exp(M̂∆τ)

 p(τ, ξ, η)
vx(τ, ξ, η)
vy(τ, ξ, η)

 . (6)

Let us write the matrix M̂ as a sum of four terms:

M̂ = M̂1 + M̂2 + M̂3 + M̂4 , (7)

where

M̂1 = M̂3 = −1

2

 0 ∂
∂ξ 0

∂
∂ξ 0 0

0 0 0

 , (8)

M̂2 = M̂4 = −1

2

 0 0 ∂
∂η

0 0 0
∂
∂η 0 0

 . (9)

Let us notice here that the matrices with even and odd indices do not commute.

For small ∆τ we can approximately “split” the matrix exponential exp(M̂∆τ) as
follows [6, 7, 8]

exp(M̂∆τ) ≈
4∏

n=1

exp(M̂n∆τ) . (10)

The following remark is necessary here. In our numerical simulations ∆τ is actually
not small: it is exactly equal to 2. However, it is sufficient to require that ∆τ be small
when compared to characteristic lengths introduced by the initial conditions (or bound-
ary conditions, or, in a more general settings, by frequencies of the external currents).
In our case ∆τ will be significantly smaller that the half-widths of Gaussians which form
the initial conditions.
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Taking into account that

exp(M̂1∆τ) =

1 0 0
0 1 0
0 0 0

 cosh

(
∆τ

2

∂

∂ξ

)
+

−

0 1 0
1 0 0
0 0 0

 sinh

(
∆τ

2

∂

∂ξ

)
+

0 0 0
0 0 0
0 0 1

 , (11)

exp(M̂2∆τ) =

1 0 0
0 0 0
0 0 1

 cosh

(
∆τ

2

∂

∂η

)
+

−

0 0 1
0 0 0
1 0 0

 sinh

(
∆τ

2

∂

∂η

)
+

0 0 0
0 1 0
0 0 0

 , (12)

as well as considering the simple action of hyperbolic sine and cosine functions of first-
order operators on any function f(ξ, η), e.g.:

cosh

(
∆τ

2

∂

∂η

)
f(ξ, η) =

1

2

[
f(ξ, η +

∆τ

2
) + f(ξ, η − ∆τ

2
)

]
, (13)

− sinh

(
∆τ

2

∂

∂η

)
f(ξ, η) =

1

2

[
f(ξ, η − ∆τ

2
)− f(ξ, η +

∆τ

2
)

]
, (14)

we end up with a simple four-step algorithm to integrate (1)-(3). For instance, the first

step is obtained upon using the exponential of M̂4:

p(1)(ξ, η) =
1

2

[
p(τ, ξ, η +

∆τ

2
) + p(τ, ξ, η − ∆τ

2
)

]
+

−1

2

[
vy(τ, ξ, η +

∆τ

2
)− vy(τ, ξ, η − ∆τ

2
)

]
, (15)

v(1)x (ξ, η) = vx(τ, ξ, η) , (16)

v(1)y (ξ, η) = −1

2

[
p(τ, ξ, η +

∆τ

2
)− p(τ, ξ, η − ∆τ

2
)

]
+

1

2

[
vy(τ, ξ, η +

∆τ

2
) + vy(τ, ξ, η − ∆τ

2
)

]
. (17)
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In the second step, using exponential of M̂3 we obtain:

p(2)(ξ, η) =
1

2

[
p(1)(ξ +

∆τ

2
, η) + p(1)(ξ − ∆τ

2
, η)

]
+

−1

2

[
v(1)x (ξ +

∆τ

2
, η)− v(1)x (ξ − ∆τ

2
, η)

]
, (18)

v(2)x (ξ, η) = −1

2

[
p(1)(ξ +

∆τ

2
, η)− p(1)(ξ − ∆τ

2
, η)

]
+

1

2

[
v(1)x (ξ +

∆τ

2
, η) + v(1)x (ξ − ∆τ

2
, η)

]
, (19)

v(2)y (ξ, η) = v(1)y (ξ, η) , (20)

and so on.

We have discretized our simulation cell, being a square, as ξ = m∆ξ, η = n∆η,
m,n = 0, 1, ..., N − 1, and set ∆ξ = ∆η = 1, ∆τ = 2. Thus, the fields p, vx, vy have
become functions of discrete variables m and n. The boundary conditions p = 0 result
in the following prescription for vx(0, n), vx(N − 1, n), vy(m, 0), vy(m,N − 1):

vx(0, n) = −p(1, n) + vx(1, n) ,

vx(N − 1, n) = p(N − 2, n) + vx(N − 2, n) ,

vy(m, 0) = −p(m, 1) + vy(m, 1) ,

vy(m,N − 1) = p(m,N − 2) + vy(m,N − 2) .

Let us notice that the algorithm per se is unitary and it preserves the energy exactly.
However, the numerical boundary conditions slightly spoil the energy conservation so
that it exhibits oscillations with amplitudes up to 0.5%.

The above algorithm while being simply a particular version of finite-difference
method, also forms a kind of cellular automaton with uncountably many states. Similar
automata have also been constructed e.g. in [9, 10, 11].

4. Numerical results

In all our numerical simulations the size N of the computational cell has been equal to
1000. The initial conditions have been of the form:

p(m,n) = 10

1∑
i=0

exp(−((m−mi)
2 + (n− ni)

2)/(2σ2))/(2πσ2)

with m0 = n0 = N/4, m1 = n1 = 3N/4. The initial velocity has been assumed to vanish
everywhere. We have performed simulations for several values of σ.
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The the dependence of |p| on (ξ, η) for various τ and for σ = 20 has been shown in
Figure 1, and further on, in Figure 2 for σ = 60.

In addition, we have also performed simulations with vanishing initial conditions but
with point-like external current in the form of an additional boundary condition

p(m0, n0) = p0 sin(ντ),

with p0 = 1 and ν = 0.01 (thus, ∆τ ≪ 1/ν). The results are shown in Figure 3.

Let us ask an important question whether we can draw any conclusions from the
images in Figures 1-3. The answer is, naturally, affirmative. Just by looking at these
images we may infer that any “geometrooptical”, i.e. ray-tracing approach to the system
must immediately result in a failure. The interference effects kill the well-defined wave
packets and the “carpet” structure arises. On the other hand, the initial presence of
small-width wavepackets leads to a fine, granular structure of the carpet. Larger widths
provide larger and better visible structures in the square.

5. Conclusion

In this paper we have provided a simple yet efficient cellular-automaton-like, unitary
algorithm to integrate Euler’s equations of linear acoustics. Numerical simulations of the
dynamics of acoustic fields starting with two Gaussian wavepackets have been carried
out inside a square with perfectly reflecting walls. What is more, similar simulations
have been performed for the fields with zeroth initial condition but under the presence
of an external source with sinusoidal time variation. Our results have been illustrated
with the help of the Python library matplotlib. We believe they form a valuable
supplement to what is known about interference in linear field structures evolving inside
very high-quality resonators.

Let us notice that visualization has, of course, already become a standard tool of
acoustic analysis. Let us quote only recent papers [12, 13, 14] in this connection.

We plan to investigate further similar systems with special emphasis on the presence
of vortices and other topological structures in the field.
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Fig. 1. Snapshots of the time evolution of acoustic field from two Gaussian wavepackets
for σ = 20.0 (see text). The quantity |p|1/4 is plotted as a function of ξ and η
for several τ . (a) τ = 1; (b) τ = 100; (c) τ = 500; (d) τ = 5000; (e) same as d
but at a different projection.
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a b
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Fig. 2. Snapshots of the time evolution of acoustic field from two Gaussian wavepackets
for σ = 60.0 (see text). The quantity |p|1/4 is plotted as a function of ξ and η
for several τ : (a) τ = 1, (b) τ = 100, (c) τ = 500, (d) τ = 5000. (e) Same as d
but at a different projection.
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Fig. 3. Snapshots of the time evolution of acoustic field with zeroth initial conditions
but in the presence of external current (see text). The quantity |p|1/4 is plotted
as a function of ξ and η for several τ : (a) τ = 1, (b) τ = 100, (c) τ = 500,
(d) τ = 5000. (e) Same as d but at a different projection.
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