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Abstract. Numerical simulations of coupled map lattices with various degree of nonlocality have

been performed. Quantitative characteristics of recently introduced for local coupling have been applied

in the nonlocal case. It has been attempted to draw qualitative conclusions about nonlocality from the

emerging pictures.
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1. Introduction

Coupled map lattices (CML) [1, 2] have long become a valuable theoretical tool to
investigate pattern formation effects, chaos in many-mode systems, cooperative effects
and synchronization [3, 4, 5, 6]. Some of them have proved to be a valuable tool in
modeling physical processes [7, 8, 9, 10, 11].

Some of the most characteristics introduced to study various CMLs are: co-moving
Lyapunov spectra, mutual information flow, spatiotemporal power spectra, Kolmogorov-
Sinai entropy density, pattern entropy [10]. Also, the detrended fluctuation analysis,
structure function analysis, local dimensions, embedding dimension and recurrence anal-
ysis have also been applied to CMLs [11].

More recently, research in the field of systems of coupled nonlinear oscillators (in-
cluding CML) have been, among other things, connected with the so-called chimera
states [12, 13, 14, 15], associated with nonlocality occurring in such systems.

In the work of two of us [16], some additional characteristics of CMLs have been
introduced. In particular, the reduced density matrix, the wave function of CML (being
the eigenvector corresponding to the dominant eigenvalue of the reduced density matrix),
which can serve as an order parameter and the number of particles which have been shown
to be useful quantitative properties of the system.

In this work we concentrate on the case of evolution of the coupled map lattices
with nonlocality in two spatial dimensions. Our main concern is to find qualitative
information about the system by studying its visualization. Therefore, we do not employ
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sophisticated measures. We rather concentrate upon the pictures and their properties
because they also reflect the properties of the reduced density matrices.

The main body of the paper is organized as follows. In Section 2 we describe our
model. In Section 3 the important parameters and characteristics are defined. The
Section 4 contains a series of figures which contain our basic results. Some concluding
remarks can be found in Section 5.

2. The model

Let f be a quadratic function which defines the logistic map

f(x) = cx(1− x) (1)

and let ξ and η be discrete spatial variables, ξ ∈ [0, N − 1], η ∈ [0, N − 1]. In this work
we shall consider a lattice of coupled maps with the following evolution in the discrete
time τ :

ψ(τ + 1, ξ, η) = (1− 4Pd)f(ψ(τ, ξ, η)) + d

P∑
k=−P

P∑
l=−P

f(ψ(τ, ξ + k, η + l)) , (2)

where the sums over k and l are taken mod N , so that periodic boundary conditions
are imposed. From the above definition of the dynamics of the field ψ in the discrete
time τ it follows immediately that P is a degree of nonlocality. The larger P , the more
maps contribute to the calculations of the next (in τ) value of a given ψ(ξ, η). On the
other hand, the parameter d measures the strength of the influence of neighboring maps.
It can be considered as a kind of a diffusion constant.

Our choice of the function f is, in a sense, the standard one. It is connected with
the very well known striking properties of the simple quadratic map which exhibits
qualitatively very different behavior for varying c. Here, we have chosen c = 3.8 (this
choice corresponds to the chaotic behavior of the single map in time) and three different
values for P and d. We have taken P = 4, 16 and 64. The values of d have been such
that the product 4Pd = 0.4 has been kept constant.

3. Quantitative characteristics of coupled map lattices

In this Section we introduce some quantitative characteristics of our CML: the re-
duced density matrix, and entropy. The latter, however, though interesting per se,
has a marginal meaning in this work.

Let us start with the definition of the reduced density matrix. We begin with the
quantity ρ̄(ξ, ξ′, τ, T ):

ρ̄(ξ, ξ′, τ, T ) = ⟨ψ(τ, ξ, η)ψ(τ, ξ′, η)⟩T , (3)
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where T is the time over which averaging is performed, and T ≤ τ . Then the reduced
density matrix is normalized to have trace equal to 1:

ρ(ξ, ξ′, τ, T ) = ρ̄(ξ, ξ′, τ, T )/
∑
ξ

ρ̄(ξ, ξ, τ, T ) . (4)

In the above equations the sharp bracket denotes averaging in the following sense:

⟨(·)⟩T =
1

T

τ∑
t=τ−T

(·) (5)

We define the (von Neumann) entropy of the CLS in the standard way:

S = −
∑
ξ

ρ(ξ, ξ, τ, T )log(ρ(ξ, ξ, τ, T )) .

The entropy, defined in this way, is apparently a function of τ and T . We shall comment
on this point below.

4. Numerical results

In all our numerical simulations the size N of the computational cell has been equal to
500. The initial conditions have been of the form:

ψ(ξ, η) = 0.5 · δξ,N/2, δη,N/2 .

We have conducted simulations for τ = 10, 100, 1000 and 10000. These values
have to be considered rather small, and our results show, in general, the transient, not
stationary, regime.

In Figures 1-3 we have shown the snapshots of the dependence of ψ on (ξ, η) for
several τ and P = 4, 16 and 64. Those figures have been produced from .ppm files. The
contents of the red (R), green (G) and blue (B) colors at each pixel (i, j) have been
computed as R = G = B = 256 − ⌊256 ψ(i, j)⌋ , where ⌊·⌋ is the floor function. Then
the resulting .ppm file has been converted to .png with the GIMP program.

Although the grayscale figures have their obvious advantages, giving immediate in-
dications, where a quantity is large and where it is small, more information about the
spatial structure of a solutions is provided by the colored figures. We have created the
following color figures as follows. Again, .ppm files have been first created with the help
of the following formulae for the contents of the three basic colors at the pixel (i, j):

R = ⌊256× 0.5(1 + sin(20ψ(i, j)))⌋ ,
G = ⌊256× 0.5(1 + cos(30ψ(i, j)))⌋ ,
B = ⌊256× 0.5(1− sin(25ψ(i, j)))⌋ .
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a b

c d

Fig. 1. Grayscale shaded graphics representing the field ψ for P = 4 (please see the the
main tekst). The quantity ψ is displayed as a function of ξ and η for several
τ . Brighter regions correspond to smaller values of ψ (a) τ = 10; (b) τ = 100;
(c) τ = 1000; (d) τ = 10000.

The results of such coloring are shown in Figures 4-6.

In Figures 7-9 the reduced density matrices as functions of (ξ, ξ′) for various τ have
been displayed. The averaging has been performed over time in [τ/2 + 1, τ ] (that is,
T = τ/2). The contents of the red (R), green (G) and blue (B) colors at each pixel (i, j)
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a b

c d

Fig. 2. The same as in 1 but for P = 16. (a) τ = 10; (b) τ = 100; (c) τ = 1000;
(d) τ = 10000.

have been computed as R = G = B = ⌊256 ρ(i, j)max(ρ)⌋. The GIMP has again been
used to transform .ppm to .png files.

Let us start a qualitative analysis of the pictorial representation of the results with
two trivial remarks. Firstly, all figures clearly reflect the symmetry of the computational
cell as well as the anisotropy of the system, with the horizontal and vertical directions
clearly distinguished. Secondly, the larger nonlinearity, the faster non-zero values of ψ
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a b

c d

Fig. 3. The same as in 1 but for P = 64. (a) τ = 10; (b) τ = 100; (c) τ = 1000;
(d) τ = 10000.

cover the computational cell. What we can also immediately guess from the pictures is
the number of nontrivial structures in system, which clearly evolve in a different way.
Again, that number is clearly associated with P . That is, just having a look at the
figure, one can guess, upon some experience, approximate magnitude of nonlinearity. It
is particularly interesting to observe a kind of a discontinuity in the pictures: the regions
with varying dynamical patterns break the symmetry.
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a b

c d

Fig. 4. Snapshots of the time evolution of the field ψ for P = 4 (please see the main
tekst). The quantity ψ is displayed as a function of ξ and η for several τ .

(a) τ = 10; (b) τ = 100; (c) τ = 1000; (d) τ = 10000.

As for the pictures illustrating the reduced density matrix let us observe the promi-
nent visibility of both main diagonals. This feature seems to disappear for larger values
of P . Square- and rectangle-like structure are clearly able to survive averaging even for
large values of τ and T .

While the concept of entropy has played a minor role in this work, we would like
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a b

c d

Fig. 5. Snapshots of the time evolution of the field ψ for P = 16 (please see the main
tekst). The quantity ψ is displayed as a function of ξ and η for several τ .

(a) τ = 10; (b) τ = 100; (c) τ = 1000; (d) τ = 10000.

to report that it appears to be independent of averaging time T for sufficiently large τ
(i.e., larger than a few hundreds). Also, it appears to become asymptotically constant in
τ , and independent of P . It is an interesting question to what extent it is independent
of the parameters of the system, the initial and boundary conditions, and a specific
function f used to define individual maps. Certainly it does depend on the size of the
system.
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c d

Fig. 6. Snapshots of the time evolution of the field ψ for P = 64 (please see the main
tekst). The quantity ψ is displayed as a function of ξ and η for several τ .

(a) τ = 10; (b) τ = 100; (c) τ = 1000; (d) τ = 10000.

5. Conclusion

To conclude, we have performed numerical simulations of nonlocal coupled map lattices.
We have demonstrated usefulness of visualization to draw qualitative conclusions about
the nonlocal nature of interactions in the system. In particular, it is to some extent
possible to guess the degree of nonlocality just by looking at the figures. The larger
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a b

c d

Fig. 7. Grayscale shaded graphics representing the reduced density matrix ρ for P = 4
(please see the main tekst). The quantity ρ is displayed as a function of ξ and ξ′

for several τ . Brighter regions correspond to larger values of ρ
(a) τ = 10; (b) τ = 100; (c) τ = 1000; (d) τ = 10000.

degree of nonlocality, the larger amount of interesting, spatially separated structures.
Let also mentioned aesthetic appeal of some of the color pictures obtained from the
nonlocal maps. Finally, remarkable asymptotic stability of entropy has been observed.
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c d

Fig. 8. The same as in Figure 7 but for P = 16
(a) τ = 10; (b) τ = 100; (c) τ = 1000; (d) τ = 10000.
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Fig. 9. The same as in Figure 7 but for P = 64.
(a) τ = 10; (b) τ = 100; (c) τ = 1000; (d) τ = 10000.
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