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Abstract. A novel hybrid structural-parametric model for ECG diagnostic justification is presented
in the paper. In order to distinguish between specific subclasses of heart dysfunction phenomena both
grammars and automata are enhanced with a formalism of dynamic programming. It allows one to
construct a system, which is feasible for aiding a process of teaching and evaluating medical students’
diagnostic reasoning in the area of electrocardiography.
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1. Introduction

Computers have been already aided ECG diagnosing for more than fifty years [1]. In the
area of computer ECG analysis both decision-theoretic approach [10, 16, 20, 21, 23, 24,
26, 30, 32, 33] and syntactic pattern recognition methods [3, 6, 7, 11, 13, 15, 17, 25] have
been commonly used. In syntactic pattern recognition a pattern is treated as a complex
structure, which is decomposed into subpatterns that in turn are decomposed into sim-
pler subpatterns, etc [4, 5, 8, 14]. In cardiology an ECG signal pattern is also treated as a
linear structure, which consists of separable substructures describing the different phases
of human heart’s beating (e.g. P wave, T wave, ST segment, QRS complex). Accord-
ing to the syntactic pattern recognition paradigm a set of various structures is treated
as a formal language. Words (structural patterns) of such a language can be analyzed
by formal automata [4, 5, 8, 14], which not only are able to identify proper categories
(diseases) for patterns, but also can characterize their structural features. Therefore,
syntactic pattern recognition seems to be convenient, if a descriptive structural charac-
terization is a goal of ECG analysis rather than only its classification (i.e. assigning an
ECG signal to one of classes of heart dysfunction phenomena).

Providing an adequate diagnostic justification is a basic skill that is required during
medical studies as well as at early stages of a physician professional development [12].
A diagnostic justification consists in explaining how key findings identified by a physi-
cian have allowed him/her to formulate initial hypotheses in order to achieve a final
diagnosis [34]. Unfortunately, although this skill is crucial for improving diagnostic
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Fig. 1. A class of AV (atrioventricular) blocks and its subclasses.

competencies, medical students frequently exhibit a poor diagnostic justification perfor-
mance [36]. The skill is especially important, if an interpretation of charts like ECG,
EEG is concerned [18, 19]. Such an interpretation is made on the basis of structural
features of the charts, as well as parametric values (frequencies of waves, lengths of
segments, etc). Therefore, a research into constructing a syntactic pattern recognition-
based system for teaching and evaluating students’ diagnostic reasoning in the area of
electrocardiography has been led since 2012 at the IT Systems Department, Jagiellonian
University in Cracow.

Firstly, a set of structural primitives, which is feasible for the purpose of an ECG di-
agnostic justification has been identified in [35]. Then, a class of programmed attributed
regular grammars, PARG has been defined as a tool for generating ECG patterns. Sys-
tem for Teaching ElectroCardioGraphy, STECG has been constructed as a syntax an-
alyzer based on a class of programmed attributed finite-state automata, PAFSA [35].
During the use of the STECG system it has turned out that although the system dis-
tinguishes main classes of ECG abnormalities (e.g. various AV (atrioventricular) blocks,
various branch blocks) it cannot differentiate between some of their specific subclasses
in certain cases (e.g. between Mobitz I and Mobitz II subclasses of the Second-degree AV
(atrioventricular) block class – cf. Fig. 1). It results from a too weak generative power of
PARG grammars, and in consequence too weak discriminative power of corresponding
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PAFSA automata. The results of a research into enhancing a generative/discriminative
power of the model are presented in the paper.

In the section 2 preliminary definitions of programmed grammars and automata
introduced in [35] are presented and reasons of a necessity of their enhancement are
discussed. Enhanced dynamically programmed attributed regular grammars, DPARG
are defined in section 3 for the purpose of generating patterns of specific subclasses
of AV (atrioventricular) blocks. In section 4 a dynamically programmed attributed
finite-state automaton, DPAFSA, which is an enhanced model of PAFSA automaton, is
constructed. Its big discriminative power is discussed with the help of an example of
recognizing Mobitz I and Mobitz II subclasses of the Second-degree AV (atrioventricular)
block class. Concluding remarks concerning the second version of System for Teaching
ElectroCardioGraphy, STECG v.2 and its role in teaching and verifying ECG diagnosis
justification are contained in the section 5.

2. Preliminaries

As we have mentioned it above, the model proposed in [35] is based on the syntactic
pattern recognition paradigm. It means that ECG charts are considered as defined with
a set of structural primitives. For example, a subset of primitives used for a description
of Mobitz I and Mobitz II subclasses of the Second-degree AV block class, which are
discussed in this paper are shown in Fig. 2. On the other hand, during modeling and
recognizing ECG charts for a purpose of a diagnostic justification parametric values of
structural primitives (frequencies of waves, lengths of segments, etc) should be taken
into account. Therefore, we have defined attributed grammars and automata and we
have enhanced them by a programming formalism allowing us to make both production
applications and transitions in automata conditional on values of primitive parameters.

In the succeeding two subsections (2.1, 2.2) we present definitions of programmed
attributed regular grammar, PARG and programmed attributed finite-state automaton,
PAFSA, which are characterized in a detailed way in [35].

2.1. Programmed attributed regular grammar

Let us introduce a definition of a programmed attributed regular grammar, PARG [35].
Definition 1. A programmed attributed regular grammar, PARG is a quadruple

G = (V,Σ, P, S), where
V is a finite set of symbols,
Σ ⊂ V is a set of terminal symbols, N = V \ Σ is a set of nonterminal symbols,
P is a finite set of productions of the form:

(π : X −→ α), in which

Machine GRAPHICS & VISION 24(3/4):43–55, 2014. DOI: 10.22630/MGV.2014.24.3.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2014.24.3.4


46 Syntactic pattern recognition of ECG. . .

Fig. 2. A set of primitives used for a description of Mobitz I and Mobitz II subclasses of the Second-
degree AV block class.

π : A −→ {TRUE,FALSE} is the predicate of the production applicability, A is a finite
set of attributes, X ∈ N ,α ∈ Σ ∪ ΣN ,
S ∈ N is the starting symbol.

As we have already mentioned it, PARG is strong enough to model/describe struc-
tural patterns of general classes of phenomena observed in electrocardiography and their
subclasses. It results from the use of the predicate of the production applicability, which
tests whether primitive parameters fulfill certain predefined conditions.

However, during the use of the STECG system (System for Teaching Electrocardio-
graphy), it has turned out that in order to distinguish between specific classes of ECG
phenomena, like Mobitz I and Mobitz II (see Fig. 1), in some cases parameters of primi-
tives should be compared not with predefined constants, but with certain parameters of
primitives analyzed previously. Therefore, in section 3 we will define an enhanced PARG
with a programming formalism, which enables such comparisons.

2.2. Programmed attributed finite-state automaton

For a language of ECG patterns generated with the help of a programmed attributed
regular grammar, a programmed attributed finite-state automaton, PAFSA as a tool for
a syntax analysis has been defined in [35].

Definition 2. A programmed attributed finite-state automaton, PAFSA is a quintuple
A = (Q, I, δ, q0, F ), where

Q is a finite nonempty set of states,
I is a finite set of input symbols,
δ is the transition function of the form:

δ : Q× I ×Π −→ Q , in which
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Π : A −→ {TRUE,FALSE} is the predicate of the transition permission, A is a set of
attributes,
q0 ∈ Q is the initial state,
F ⊆ Q is a set of final states.

Similarly as in case of a programmed attributed regular grammar, the predicate of
the transition permission in PAFSA should be predefined. It means that only a static
parametrization of a transition is possible. Therefore, in section 4 we will define an
enhanced PAFSA with a programming formalism, which allows one to make transitions
in the automaton conditional on comparisons between (changing) parameters of various
structural primitives processed till a current step of the automaton analysis.

3. Dynamically programmed attributed regular grammar

In order to show a necessity of introducing a dynamic programming mechanism to our
PARG grammar/PAFSA automaton model, let us consider the following example of two
specific subclasses of the Second-degree AV blocks class, namely: Mobitz I and Mobitz II
(see Fig. 1). Their structural patterns are shown in Figure 3 (a) and (b), respectively.
In both classes an occasional lack of a QRS complex occurs as it is shown in Fig. 3.
However, whereas in Mobitz II a PR segment is of a constant length, in Mobitz I the first
PR segment after the QRS complex lack is shorter than the last one before this lack.
It means that in order to identify Mobitz I we should compare both PR segments. As
a result, both a grammar and an automaton should remember the length of a previous
PR segment and in case of the QRS complex lack the lengths of the corresponding PR
segments should be compared.

Let us define a dynamically programmed attributed regular grammar, DPARG in
the following way.

Definition 3. A dynamically programmed attributed regular grammar, DPARG is
a quadruple

G = (V,Σ, P, S), where
V is a finite set of symbols,
Σ ⊂ V is a set of terminal symbols, N = V \ Σ is a set of nonterminal symbols,
P is a finite set of productions of the form:

(π : X −→ α, CM), in which
π : AΣ ∪ VA −→ {TRUE,FALSE} is the predicate of the production applicability, AΣ

is a finite set of attributes of terminal symbols, VA is a finite set of auxiliary variables,
X −→ α, X ∈ N ,α ∈ Σ ∪ ΣN is called the core,
CM : VA −→ VALA is the control mapping ascribing values to auxiliary variables, VALA

is a set of admissible values,
S ∈ N is the starting symbol.

Now, we define DPARG productions for the the subclass Mobitz I. We will use
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Fig. 3. Second-degree AV blocks of: (a) Mobitz I type, (b) Mobitz II type.
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two auxiliary variables: the Boolean qrs_lack that will be set to TRUE each time
a lack of a QRS complex occurs, and the real potent_last_before_qrs_lack used
for storing the length of the last PR segment. We denote the length of a PR seg-
ment with lPR. The structural primitives used for defining Mobitz I are denoted with:
PR, rs,ST+,T+,TP,PP (cf. Figures 2 and 3).

Firstly, the auxiliary variables are set to their initial values:
qrs_lack := FALSE,
potent_last_before_qrs_lack := 0.
The DPARG productions are defined in the following way.

1. π = (qrs_lack =⇒ lPR < potent_last_before_qrs_lack) :
X(0) −→ PRX(1),
CM : potent_last_before_qrs_lack := lPR; qrs_lack := FALSE,

2. π = TRUE : X(1) −→ rsX(2), CM : none,

3. π = TRUE : X(2) −→ ST+X(3), CM : none,

4. π = TRUE : X(3) −→ T+X(4), CM : none,

5. π = TRUE : X(4) −→ TPX(5), CM : none,

6. π = TRUE : X(5) −→ PPX(6), CM : qrs_lack := TRUE,

7. π = TRUE :
X(5) −→ PRX(7),
CM : potent_last_before_qrs_lack := lPR; qrs_lack := FALSE,

8. π = (qrs_lack =⇒ lPR < potent_last_before_qrs_lack) :
X(6) −→ PRX(7),
CM : potent_last_before_qrs_lack := lPR; qrs_lack := FALSE,

9. π = TRUE : X(7) −→ rsX(2), CM : none.

As one can easily see, the productions defined above allow us to model Second-degree
AV block of the Mobitz I type (see Fig. 3a).

4. Dynamically programmed attributed finite-state automaton

After defining a dynamically programmed grammar, we can construct a dynamically pro-
grammed attributed finite-state automaton, DPAFSA, which is based on the PAFSA [35]
presented in section 2.2. In a DPAFSA automaton a mechanism of a transition control
is strengthened by adding a set of working memory objects allowing the automaton to
store the values of those attributes, which occur in one of the predicates of the transition
permission.
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Fig. 4. A part of a dynamically programmed attributed finite-state automaton for a class Second-degree
AV block of the Mobitz I type.
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Let us introduce the following definition of a dynamically programmed attributed
finite-state automaton, DPAFSA.

Definition 4. A dynamically programmed attributed finite-state automaton, DPAFSA
is a sextuple

A = (Q, I,M, δ, q0, F ), where
Q is a finite nonempty set of states,
I is a finite set of input symbols,
M is a finite set of working memory objects,
δ is the transition function of the form:

δ : Q× I ×Π −→ Q× CM , in which
Π : AI ∪AM −→ {TRUE,FALSE} is the predicate of the transition permission, AI is
a set of attributes of input symbols, AM is a set of attributes of working memory objects,
CM = {cmqi,qj : AM −→ VALM , qi, qj ∈ Q} is a set of control mappings ascribing
values to attributes of working memory objects, VALM is a set of admissible values,
q0 ∈ Q is the initial state,
F ⊆ Q is a set of final states.

An example of a part of a dynamically programmed attributed finite-state automaton
for a class Second-degree AV block of the Mobitz I type is shown in Fig. 4. As we can
see there is a one-to-one correspondence between transitions of the DPAFSA automaton
and the productions of the DPARG grammar defined in section 3.

5. Conclusions

As we have mentioned it in the introduction, providing an adequate diagnostic justifica-
tion is a basic skill that is required during medical studies and first years of a physician
professional development. On the other hand, medical students and novice physicians
frequently exhibit a poor performance in this area. There are two types of informa-
tion processing in medicine: analytic and automatic [31]. During automatic processing
a diagnostic justification is made with the help of a pattern recognition-like mechanism,
i.e. an unknown case to be diagnosed is unconsciously compared with known cases from
the past [31]. Thus, this pattern recognition-like mechanism is analogous to (standard)
pattern recognition scheme used in computer science. This kind of achieving a diagnosis
is typical for experienced physicians. On the other hand, analytic processing consists
in analyzing, synthesizing and interpreting the case itself on the basis on a biomedical
knowledge (not the clinical one) [31]. This kind of diagnosing is, thus, based on gen-
eral models learnt during a medical education and it is typical for students and novice
physicians. In case of an interpretation of ECG, a structure of a chart and its generic
parametrization is analyzed during a diagnosing process. It in turn is analogous to syn-
tactic pattern recognition scheme in computer science. Therefore, this approach seems
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Fig. 5. An example of testing a diagnostic justification of Second-degree AV (atrioventricular) block of
the Mobitz I type by the STECG v.2 system.

to be more feasible for designing systems for aiding medical students in achieving the
ECG diagnostic skill via testing their diagnostic justification.

The System for Teaching ElectroCardioGraphy, STECG has been implemented on
the basis of programmed attributed regular grammars and programmed attributed finite-
state automata [35]. During its use it has turned out that although STECG distinguishes
main classes of ECG abnormalities, some specific ECG types, like Mobitz I and Mobitz II
are hardly distinguishable, because of a too weak discriminative power of the automaton
mentioned above and used as a syntax analyzer. Therefore, the formal model introduced
in [35] had to be enhanced. The dynamically programmed grammars and automata
presented in this paper have helped to solve this problem.

The STECG v.2 system allows us to analyze ECG signals, in which current and
previous values of primitives’ parameters are to be compared. This way the system is able
to differentiate between Mobitz I and Mobitz II types of Second-degree atrioventricular
blocks. An example of testing a medical student diagnostic justification for Mobitz I is
shown in Fig. 5.
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