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Abstract. The research on the 3D scene reconstruction on the basis of its images and video recordings
has been in progress for many years. As a result there is a number of methods concerning how to
manage the reconstruction problem. This article’s goal is to present the most important methods of
reconstruction including stereo vision, shape from motion, shape from defocus, shape form silhouettes.
shape from photo-consistency. All the algorithms explained in this article can be used on images taken
with casual cameras in an ordinary illuminated scene (passive methods).

Key words: 3D reconstruction, stereo vision, shape from motion, shape from defocus, shape from
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1. Introduction

One of the key trends in research on machine vision is 3D scene reconstruction on the
basis of typical, digital images and videos. There is a huge interest in this field, because
the number of possible applications is immense. To name but a few, which seem to
be the most obvious: in medicine, helping visually impaired, robotics, navigation, the
film industry, video games, 3D reality and augmented reality. 3D object models can
be obtained by using devices based on active methods, that is, methods which control
the illumination of the scene (such as Kinect). The reconstruction of the scene can be
obtained be measuring the return time of reflected waves or measuring their shift in the
phase (laser scanner). Active methods do not perform as effectively in sunlight or in
a poorly controlled environment. Usually, specialist scanning devices are expensive and
only but a few experts have access to them. Digital cameras are generally available,
miniature CCD/CMOS converters can be found in nearly every mobile phone. A cheap
digital video camera connected with a 3D reconstruction algorithm can be a satisfac-
tory alternative to expensive specialist equipment. Passive reconstruction algorithms
are advantageous, because they may help create 3D models of objects, which no longer
exist, but which can be seen only on archive images and recordings, such as the recon-
struction of Warsaw from 1935. Widespread availability of cheap video cameras may be
of huge significance when thinking of the visually impaired. The mobile phone could
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create a map of the surroundings and inform with sounds about the distance of nearby
obstacles. The passive reconstruction methods also give the opportunity to use mas-
sive amounts of visual information available on the web. To give an example, there is
a project, “Building Rome in a Day” in which basing on a collection of thousands of
images of Rome, they made a visual reconstruction of one of the city’s main parts. Un-
fortunately passive 3D methods also have limitations. Even though there has been over
50 years of intensive research there is still not a single universal and faultless passive 3D
reconstruction method.

Digital images are a recorded projection of the three-dimensional scene on a two-
dimensional CCD/CMOS matrix’s surface. By projecting the three-dimensional object
on the two-dimensional surface we lose the information about the third dimension. One
point on the image plane may be a projection of infinite number of 3D points. Without
additional knowlage about the scene, basing on the analysis of geometrical relations in
one image it is not possible to measure the distance of scene points from the image plane.
The information about the third dimension is present in image but not directly (for ex-
ample,in the relationship between the surface radiation and the angle between the source
of light and the main point of the video camera; the blurring depends on the distance
from the place of its main focus; the perspective phenomenon). The reconstruction of
the 3D scene’s shape on the basis of one image is difficult and most often does not give
satisfactory results. We can obtain much better results with video camera recordings
from different angles or from many video cameras recording at the same time and given
that one can analyze the geometrical dependencies between the projections of the same
points on different captions. One of most crucial as well as the most difficult steps in
multi-image methods are camera pose estimation and matching of corresponding pairs of
points. The matter is complicated by the fact that these both tasks are interdependent.
Making an error when matching the points leads to an incorrectly determined position
of the camera and the other way around, the errors made while positioning the cameras
lead to faulty determination of the 3D points’ position (leading to mismatch points).
The reason why there is a difficulty in finding the suitable pairs comes from the fact
that the decision in matching the right pixels in pairs has to be made only on the basis
of the brightness function. One should remember that the acquisition of images may
happen in different illumination, that there are occlusions in images or that there may
be reflections of the light, or that there might be acquisition when the objects or the
video camera are in motion. The fundamental significance for the passive methods lies
in the quality of the analyzed image. Unfortunately the digital image drastically differs
from the ideal optical image.

The digital image is an approximation of the optical image given by sampling bright-
ness function and by attributing values to the areas, called pixels. The rectangular shape
of the pixel does not reflect the photo-optical element’s real shape, which in addition
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does not cover the whole area represented by the pixel. The brightness value of a single
pixel additionally cumulates in itself the errors coming from the motion blur, multi-
plicative and additive distortions, noises, quantizations, spatial reallocation of the colors
and errors coming from the use of Bayer filter. The optical system generates additional
problems in mapping the scene. Spherical distortions (the tangent and radial), chro-
matic aberrations, effects connected with depth of focus (blurring outside of the focus
area), end up in loss or deformation of the information about the source image. The last
element which we would like to mention is the loss of information connected to faulty
image compression. The elimination of higher frequencies, averaging the brightness of
image areas and other artifacts connected with the compression may lead to additional
errors. The final source of information about the shape of the scene for the passive meth-
ods are whirred, distorted and discrete in space and values two-dimensional brightness
functions.

The passive methods of reconstruction differ in required means of image acquisition
(the number and arrangement of cameras), the method of calibration of the mutual cam-
era location, the method of matching points and also differ in the source of information
about the scene’s shape. For some number of methods the camera position calibration
may be an independent process, but for other methods it their integral part. The meth-
ods are to a different degree resistant to the errors in mapping the real image, mostly if
it comes to noises, faulty point matching and wrong calibration. It is assumed that the
methods (or the group of methods) are called “shapes from X”, where “X” is the main
source of information about shape of the scene, such as the shape from photo-consistency.
The following chapters contain descriptions of the most important passive methods in
3D reconstruction. It is not the full list of methods mentioned in the literature, however,
the chosen methods represent the key ideas in 3D reconstruction. First, we would like
to explain the method of obtaining the shape from stereo-vision.

2. The reconstruction methods

2.1. The shape from stereo-vision

Stereo-vision may be defined as the method of calculating the depth map from two images
obtained from two camera system. It is characteristic for stereo-vision that the distance
of the cameras is relatively small and constant (the cameras are connected together by
a stiff construction). It is assumed that, the image acquisition takes place in the same
time for both cameras. One can distinguish the following stereo-vision arrangements [61]:

• side-camera canonical (parallel optical axes)
• side-camera with intersecting optical axes
• axis-motion
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The mostly common in the literature is the canonical arrangement, as can be seen in
Fig. 1. This arrangement consists of two identical video cameras that have CCD/CMOS
converters on the same surface, the appropriate matrix edges are parallel to each other
and the optical means are only moved on the X axis.

Fig. 1. Canonical stereo-vision arrangement [52].

With knowledge of the distance between cameras and the location of the same points
in the image from the left and the right camera, we can determine the location of 3D
points using the triangulation method. Unfortunately, one can never observe the canon-
ical arrangement in practice. It is due to the fact, the stereo-vision arrangements consist
of two, independently produced digital cameras, the optical axes are not ideally coaxial,
CCD matrices are not ideally parallel and Y and Z axes are reallocated. Additionally,
every optical system causes distortions in the image. The optical distortions parameters
are usually different for both video cameras. To able to use one of the triangular meth-
ods, one should change the real arrangement into the canonical arrangement. All the
stereo-vision algorithms steps could be differentiated as follows:
• camera calibration
• images standardization
• stereo matching
• triangulation

Stereo-vision may be the source of a dense, but also of a sparse depth map. The
difference in implementation lies in the way of choosing the appropriate pairs of points.
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Most commonly used methods to obtain sparse map are based on image local feature
descriptors (such as SIFT, SURF). Unfortunately dense maps are much more difficult
to obtain because it requires unambiguously matching for every pair of pixels. In the
further part of the article, we will discuss the algorithms which allow us to create a dense
map.

2.1.1. Stereo calibration

Calibration of camera set is a process of estimating the parameters of image formation
equations and mutual rotation and translation of cameras. Calculating the matrices of
inner parameters of single camera and vector’s distortion parameters may be conducted
separately for every camera. The topic of single camera calibration is another mat-
ter, widely described in the literature. It is characteristic for stereo-vision to calculate
the mutual rotation and translation of the cameras. When one knows the parameters,
its possible to calculate an essential matrix, using the rules of epipolar geometry. An
essential matrix is created by multiplying an anti-symmetrical matrix (obtained from
a translation vector) by a rotation matrix. An essential matrix has to comply with the
equation (1):

(x′)
T
Ex = (x′)

T
[T ]×Rx = 0 (1)

where:
x, x′ ∈ P2(R) – homogeneous coordinates of the same 3D point projection

on the left and right image plane
E ∈ R3×3 – essential matrix
[T ]× ∈ R3×3 – anti-symmetric translation matrix is such that for every vec-

tor [T ]×v = T × v
R ∈ SO(3) – rotation matrix

By multiplying the point’s coordinates on the first image plane by an essential matrix
we calculate, so called, epipolar line. It is a line on the image plane of the second
camera on which there has to lie corresponding point. Information about the essential
matrix allows to reduce the complexity of point matching. Instead of analyzing the
two-dimensional spaces one can analyze the one-dimensional (only points which create
epipolar lines). The most popular algorithm of calculating an essential matrix is the
eight-point algorithm [13]. By singular value decomposition and choosing from four
possible solutions to the system of equations one may obtain the translation and rotation
matrices. Direct use of essential matrices is unhandy, because it is necessary to use image
plane coordinates . This problem may be solved, using a fundamental matrix instead of
an essential matrix. A fundamental matrix can be calculated by multiplying an essential
matrix (E) by matrices of internal parameters (K1,K2 ∈ R3×3), fulfills the equation (2):

F =
(
K2

−1
)T

EK1
−1 (2)
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Fundamental matrix allows one to calculate the position of epipolar lines in pixel co-
ordinates system. Calculating a fundamental matrix is possible using one of the known
algorithms [24, 20, 47]. Due to the fact that the pairs of points location is uncertain
(it results from noises and limited possibility of describing characteristic points), robust
algorithms have huge impact on their practical implementation. A well known algo-
rithm, improving the resistance to faulty point matching is RANSAC (random sample
consensus) [3].

2.1.2. The standardization of images

The standardization is the transformation of images which enables them to be effectively
processed by algorithms. Standardized images allows for use of fast algorithms for pixel
matching. The first task of standardization is to transform the image and by that correct
the differences in the internal camera parameters, such as scaling, rotation and realloca-
tion of the image’s centre. The next important step is to erase the distortion effect. The
correction algorithm consists of two phases. First of all, one needs to calculate the cor-
rect distance of the points from the optical image center and the distortion coordinates’
vector. The second phase is called resampling. When fundamental matrix is known it
is possible to find the corresponding pixel, going through the set of pixels which build
the epipolar line. Improve of algorithms speed is achieved by the next step called recti-
fication. Rectification is an affine image transformation in which corresponding epipolar
lines are horizontal, parallel and have the same y coordinate. Rectification effects can
be seen in the Fig. 2.

An infinite number of affine transformations fulfills the rectification conditions. From
the space of possible solutions is chosen solution that minimize image deformation.
A number of rectification algorithms were developed [25, 26, 28, 34, 50, 54, 68, 72].
As a side effect of correcting distorsion and rectification there are blank spots in the im-
age. Last step in the image standardization is to seperate those unused image fragments
and standardization its size.

2.1.3. Stereo matching

The most popular subject in the literature about stereo-vision is the problem of finding
the appropriate pixel pairs. The aim is to calculate the shift between pixel pairs on the x
axis between images. This reallocation is called horrizontal parallax or most commonly,
disparity. Even for standardized images the problem of calculating the appropriate
pixel pairs is difficult. It is mostly due to the noises in the images, occlusion, loss of
a significant amount of visual information through quantification of brightness levels.
The classification of matching stereoscopic pairs methods [87]:

⋄ pixel matching
◦ regions matching (local)
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Fig. 2. The upper line – the images before rectification, the bottom line – the images after rectifica-
tion [50].

- cooperational
- window matching
◦ image matching (global)
- dynamic programming
- graph cut
- relaxation
- genetic algorithms
- non-linear diffusion

⋄ image features matching
◦ edges
◦ corners
◦ tensors
◦ edgels
It would take far too long to describe every group, so we will concentrate only on the

two most popular approaches: windows matching and graphs cut.
Matching windows is so called a local method because decision of choosing the appro-

priate pixel is based solely on the pixels local neighborhood. Cost function of matching
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is defined as sum of brightness difference in the analysis window around the pixel in the
first image and for the second image. The functions minimal value is set by the pixel
which surroundings are the most similar and on this basis it is chosen as the best fitting
pixel. Matching pixels aims to determine the disparity (3)

d∗ij = argmin
d
{C(i, j, d)} (3)

where:
C – matching cost function
i, j – the pixel’s coordinates in the first image
d – disparity

Matching cost function has many forms in the literature. As the most popular we
can consider:
• sum of absolute differences (SAD):

CSAD(i, j, d) =
∑

{m,n}∈W

|I1(i+m, j + n)− I2(i+m+ d, j + n)| (4)

• sum of squared differences (SSD):

CSSD(i, j, d) =
∑

{m,n}∈W

(I1(i+m, j + n)− I2(i+m+ d, j + n))
2 (5)

• normalized cross correlation (NCC):

CNCC(i, j, d) =

∑
{m,n}∈W

I1(i+m, j + n) · I2(i+m+ d, j + n)√ ∑
{m,n}∈W

I21 (i+m, j + n) ·
∑

{m,n}∈W

I22 (i+m+ d, j + n)
(6)

where:
W – analysis window
I1, I2 – brightness functions of, correspondingly, the first and the

second image
The method of matching windows is easy in implementation and allows the image to

be processed in real time. Unfortunately, the local methods tend not to give satisfactory
results. One of the reasons why they are rather ineffective is that the pixels are analysed
separately. Moreover, some of the pixels from the first image may be connected with
the same pixels from the second image. Due to the fact that only the difference in
pixels brightness is analyzed, this method is highly sensitive to all types of noise in the
brightness function.
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Significant progress in the field of matching stereo-vision images was made by using
graph cuts methods [32, 62, 81]. The task of matching a stereoscopic pair could be defined
as a task of attributing every pixel p from a set of image pixels P = {0, .., xmax} ×
{0, .., ymax} to a disparity value from the set ζ = {dmin, .., dmax}. In the language of
graph theory it is the problem of labeling the vertices of the graph. Problem of labeling
could be described as the task of finding such a set of pixel labels L = {dp : p ∈ P, d ∈ ζ}
for which the function cost is minimal (7):

E(L) =
∑
p∈P

C (dp)︸ ︷︷ ︸
data component

+
∑

p,q∈N(p)

K(dp, dq)︸ ︷︷ ︸
smoothness component

(7)

where:
C (dp) – cost function of assign pixel p an label dp
N(p) – set of neighborhood pixels of pixel p
K(dp, dq) – cost function of assigning pixel p a label dp and pixel q a la-

bel dq
In the literature exists many forms of function C including previously described

CSAD. The function K(dp, dq) defines the fee (the additional cost) in a case when dp ̸=
dq. Finding global minimum of function’s E(L) is in general case an NP problem.
The acceptable minimization times can be obtained by looking for a close solution by
calculating the minimal s/t cuts in a specially constructed graph [32]. The algorithm
begins with construction of graphs G = ⟨V, ξ⟩, where V is a set of vertices and ξ is
a set of edges. The set of vertices consists all elements of Cartesian product of pixels set
and the labels set U = P × ζ. Additionally, all of the first image’s pixels (referential)
are added to the set of vertices, defining them as “sources” s and pixels of the second
image, defining them as “sinks” t. At the end the set of all the vertices is V = s∪U ∪ t.
For every pair of adjacent vertices from the set U , so called, n-edge is added N ={
⟨p, q⟩ ∈ U2 : ∥p− q∥ = 1

}
. For every vertex of minimal and maximal disparity a t-edge

is built which conjoins them with corresponding vertices of the appropriate set s and t;
hence Θ = {⟨⟨p, q⟩ , ⟨p, q, d⟩⟩ ∈ s× U : d = dmin}∪{⟨⟨p, q, d⟩ , ⟨p, q⟩⟩ ∈ U × t : d = dmax}.
Finally, the set of edges is ξ = N∪Θ. The illustration of such a graph has been presented
in Fig. 3 (middle).

Then, the weight function w : ξ → R which represent the cost assignment to the
edges is defined. The n-edge’s weight represents the fee for lack of smoothness, however,
t-edges’ weight is the value of cost function for a single pixel. S/T graph cut is defined as
a division of a set of graph’s G vertices V on subsets and such, in which every “sinks” are
in set T and every “sources” are in set S. An example of s/t cuts can be seen in 3 (left)
and (right). The solution to the task of labeling pixels is done by iterative algorithms
based on αβ-swap or α-expansion. The second algorithm give slightly better results [58].
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Fig. 3. A cut of one of the 3D graph’s surfaces (left), the graphical graph’s representation (middle) ,
the surface obtained in the result of cutting the graph (right) [50].

The α-expansion algorithm for every iteration in every label l ∈ ζ finds the s/t cut that
separates the pixels which an label is attributed to l and the other ones. If the new cut
lowered the cost function’s value, it is accepted and a subset of the pixels obtain a new
label. New labeling which did not lower value of global cost function are discarded. Stop
condition is no change of the cost function. The result of the algorithm is such an s/t
cut of G graph that all the set S elements which edge was cut are wanted set of labels
(Fig. 3 right). The defined algorithm is only one of the possible variants of using the
minimal cut described in the literature. The examples of the disparity map, obtained
by using the graphs cut method can be see in the Fig. 4b and c.

The result of the matching algorithms is a two-dimensional disparity function called
a disparity map. In most cases algorithms fail to get the full map (some of the pixels
do not have an attributed value of disparity) or noise level in disparity function is high.
One of the popular methods to improve the quality of obtained results is to apply filters
which reduces noise, such as a bilateral filter [22].

2.1.4. Triangulation

The last stage of stereo-vision is to calculate the 3D coordinates of the scene’s points.The
metrical reconstruction of the approximated shape of the scene is possible only for a cal-
ibrated set of video cameras. For the most popular in the literature set of side video
cameras there is a simple triangulation algorithm for the 3D points’ location. The dis-
parity map may be defined as a set of ordered triple ⟨x, y, d⟩, where x, y are pixel’s
coordinates of the referential image and d is disparity value. The corresponding pixels in
the second image are located on the same line as in the first image y′ = y. This is why
the coordinate of the pixel in the second image equals x′ = x+ d. By entering a desig-
nation for the central point x0, the focal distance f , the base distance B, a geometrical
stereoscopic set my be presented Fig. 5

Using rule of similarity of triangles it is possible to derive formulas which enable to
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(a) (b)

(c) (d)

Fig. 4. One of the two stereo-vision images (a), ground truth disparity (b), disparity map obtained by
αβ-swap (c), disparity map obtained by α-expansion (d) [32].

calculate the 3D point’s coordinates:

X =
B(x+ x′ − 2x0)

2d
, Y =

B · y
d

, Z =
B · f
d

(8)

The stereo-vision is a fast and universal method to obtain information about the 3D
structure of the scene. Unfortunately it has faults which limit its range of application.
First of all the requirement of image acquisition, using a special set of video cameras. The
second significant fault is the need of highly intensive scene texturing. When the scene’s
colour is homogeneous with a small amount of characteristic points then no matter which
algorithm of matching images will be used, the disparity map’s quality is usually low.

2.2. Shape from motion

A group of methods which enable to reconstruct the scene’s 3D shape with simultaneous
calculating the camera’s location are called “shape from motion” (SfM) or “visual simul-
taneous localisation and mapping”. As the names of these methods suggest that they
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work on the basis of images obtained from different video camera positions. All the SfM
methods are based on the analysis of relations between the position of pixels, rotation,
translation of camera and the position of points on the 3D surface. SfM methods form
a numerous group which can be divided into a few categories, depending on:
◦ the number of simultaneously processed images of the scene
◦ two images methods
◦ three images methods
◦multiple images methods
◦ camera model
◦ orthogonal
◦ quasi-perspective
◦ perspective
◦ the type of the scene
◦ subject to rules of rigid bodies’ movement
◦ not subject to rules of rigid bodies’ movement

◦ analyzed objects of the image
◦ points
◦ lines

◦methods of analyzing data

Fig. 5. Geometrical canonical model of the stereo-vision set [52].
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◦ deterministic
◦ probabilistic
We will explain the three main methods, which are the basis for other methods or

which are used for practical implementations. The first one is based on the results of
work done by Kruppa [1], Longuet-Higgins [4] and Hartey [13, 44]. The first author
proved that when you have two different images of five distinguishable 3D points, it is
possible to calculate the position of cameras and 3D points (with unknown scale fac-
tors). Longuet-Higgins’s work described the algorithm of calculation a essential matrix
and its decomposition into rotation matrix and translation vector. Harley developed the
method by adding operations which improve the algorithm’s numerical stability and also
he proposed triangulation methods. With the assumption that the internal parameters
K,K ′ ∈ R3×3 of cameras are known, it is possible to write down the reconstruction algo-
rithm. Characteristic points of pictures as well as the corresponding pixel pairs are found
for each of the two images M =

{
⟨pi, pi′⟩ ∈ P × P ′ : ∥d(xi)− d(xi

′)∥ ⩽ ξ, i = 1, n
}
. The

function d(·) depends on local features descriptor. The constant ξ is threshold. The
algorithm in the presented form will work if n ⩾ 8 (eigth-point algorithm). All the pixel
coordinates are transformed into homogenic normalised coordinates.

M̂ =

{
⟨p̂i, p̂′i⟩ ∈ P2(R)× P2(R) :
p̂i = K−1[pi

T , 1]T , p̂′i = (K ′)
−1

[p′i
T
, 1]T , ⟨pi, p′i⟩ ∈M, i = 1, n

}
(9)

Shifting and rescaling the coordinates in order to position the centroid in the middle
of the set of coordinates and also adjusting the variation to one, improves the stability
of the numerical algorithm. For M̂ ϶ ⟨p̂i, p̂′i⟩ =

〈
[x̂i, ŷi, 1]

T
, [x̂′

i, ŷ
′
i, 1]

T
〉

new coordinates
are:

x̃i = s(x̂i − µx), ỹi = s(ŷi − µy)
x̃′
i = s(x̂′

i − µ′
x), ỹi = s(ŷ′i − µ′

y)
(10)

It can be written in a form of a matrix:

p̃i =

 x̃i

ỹi
1

 =

 s 0 −s · µx

0 s −s · µy

0 0 1

 x̂i

ŷi
1

 = Np̂i and by analogy p̃′i = N′p̂′i (11)

s, s′, µx, µ
′
x, µy, µ

′
x are chosen, so that the equations (12)(13) are satisfied:∑

i
x̃i =

∑
i
x̃′
i =

∑
i
ỹi =

∑
i
ỹ′i = 0 (12)

∑
i
x̃2
i +

∑
i
ỹ2i =

∑
i
(x̃′

i)
2
+
∑

i
(ỹ′i)

2
= 2n where n =

∣∣∣M̂∣∣∣ (13)
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hence

M̃ =

{
⟨p̃i, p̃′i⟩ ∈ P2(R)× P2(R) :
p̃i = Np̂i, p̃

′
i = N ′p̂′i, ⟨p̂i, p̂′i⟩ ∈ M̂, i = 1, n

}
(14)

On the basis of the set M̃ we may approximate the essential matrix, using its features,
that ∀ ⟨p̃, p̃′⟩ ∈ M̃ has to occur (p̃′)T Ẽp̃ = 0, a system of equations may be built in which
every line takes a form:

x̃ix̃i
′ẽ00+x̃i

′ỹiẽ01+x̃i
′ẽ02+x̃iỹi

′ẽ10+ỹiỹi
′ẽ11+ỹi

′ẽ12+x̃iẽ20 + ỹiẽ21+ẽ22= 0 (15)

for
〈
[x̃i, ỹi, 1]

T
, [x̃′

i, ỹ
′
i, 1]

T
〉
∈ M̃, i = 1, n

After converting to the matrix form:

Aẽ= 0 (16)

where:
A ∈ Rn×9 – matrix which only depends on the pixels coordinates
ẽ = [ẽ00, ẽ01, ẽ02, ẽ10, ẽ11, ẽ12, ẽ20, ẽ21, ẽ22]

T – vector built on the basis of the
aproximated essential matrix’s elements

The elements of the matrix A kernel are the the vectors ẽ. The result is obtained
by solving the linear equation of the least squares using SVD decomposition. Because
scale’s factor is unknown solution that fulfills constraint ∥ẽ∥ = 1 is chosen.

The approximated essential matrix can be obtained using the transformation of initial
normalized coordinates.

Ê = (N ′)
T
ẼN (17)

Next step is SVD decomposition of E

Ê = UΣV T (18)

where:
Σ = diag(λ1, λ2, λ3), λ1 ≥ λ2 ≥ λ3, λ1, λ2, λ3 ∈ R
U, V ∈ SO(3) =

{
R ∈ R3×3 : RTR = I, det(R) = 1

}
According to Huang’s and Faugeras’ theorem, a essential matrix has to have such

an SVD decomposition that Σ = diag(σ, σ, 0). and U, V ∈ SO(3). To satisfy those
requirements an approximated essential matrix is projected on nearest E matrix from
essential matrix space. Due to the fact that a matrix may be approximated up to the
scale’s factor E = Udiag {1, 1, 0}V T

From known matrix E it is possible to calculate rotation, translation and projec-
tion matrices. There are four alternative solutions for a SVD in form E = UΣV T =
Udiag {1, 1, 0}V T = [T ]×R:
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R
(
±π

2

)
= URT

Z

(
±π

2

)
V T

[T ]×
(
±π

2

)
= URZ

(
±π

2

)
ΣUT (19)

where:

RZ

(
±π

2

)
=

 0 ∓1 0
±1 0 0
0 0 1


For each alternative solution we may build a rotation (20), translation (21), and

projection (22) matrices in reference to external coordinates system.

R± = R
(
±π

2

)
R(t−1) (20)

T± = T (t−1) −RT
(
±π

2

)
T
(
±π

2

)
(21)

P±± =
[
R± −R±T±

]
(22)

where:
R(t−1) ∈ SO(3) – camera’s rotation matrix at frame t − 1 from previous

iteration step (for first frame R(0) = I)
T (t−1) ∈ R3 – camera’s translation vector at frame t − 1 from previous

iteration step (for first frame T (0) = 0)
T(·) ∈ R3 – translation vector built from the elements of the ma-

trix [T ]×
Projection matrix at frame t− 1:

P (t−1) =
[
R(t−1) −R(t−1)T (t−1)

]
(23)

For every variant of the camera’s location and orientation a triangulation of 3D
points’ coordinates is performed. By using the relations xi = P t−1Xi, x′

i = P±±Xi and
xi × PXi = 0 for M̂ ϶ ⟨p̂i, p̂′i⟩ =

〈
[x̂i, ŷi, 1]

T
, [x̂′

i, ŷ
′
i, 1]

T
〉

a system of equations (24) is
built

A±±iXi = 0 (24)

where:

A±±i =


x̂ip

3T − p1T

ŷip
3T − p2T

x̂′
ip

′3T − p′1T

ŷ′ip
′3T − p′2T


p1, p2, p3 – rows of matrix P (t−1)

p′1, p′2, p′3 – rows of matrix P(·)
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The system of equations is calculated using least squares method by implementating
the SVD decomposition with ∥Xj∥ = 1. Triangulation result for every element of M̂ is
the set of 3D points’ coordinates:

S±± =
{
Xi ∈ P3(R) : A±±iXi = 0, i = 1, n

}
(25)

The set of four alternative results has the following form:

Q = {⟨R−, T−, S−−⟩ , ⟨R−, T+, S−+⟩ , ⟨R+, T−, S+−⟩ , ⟨R+, T+, S++⟩} (26)

Function f : Q → N which describes each element of Q as number of points located
in front of cameras image plane, allows to select one result from four. Element from the
set Q is selected for which the number of 3D points with positive value of coordinates
on the Z axis:

⟨R∗, T ∗, S∗⟩ = argmax
⟨R,T,S⟩∈Q

(f(⟨R, T, S⟩)) (27)

Finally:
R(t) = R∗, T (t) = T ∗, S(t) = S(t−1) ∪ S∗ (28)

The described algorithm requires having knowledge of the camera’s internal parame-
ters. If the parameters are unknown, the obtained is only projective reconstruction. The
problem is solved by extending the SfM method using autocalibration algorithms, that
is, the methods of automatically calculating internal parameters without a calibration
pattern. The autocalibration methods are a widely described in the literature (a review
may be found in [45]). Another fault of the presented algorithm is that in the result one
may obtain a set of points of rather low cardinality. An improvement in reconstruction
was gained by using the methods of matching images and triangulation used in stereo-
vision [29]. Scheme of algorithms pipeline with autocalibration and dense matching can
be seen in Fig. 6.

An alternative solution could be to calculate the position changes for all the pixels
in both images (an optical flow). When we know the optical flow vector field, camera
internal parameters and the fundamental matrix we may aproximate dense scene’s shape.
The main problem is to calculate the vector field of the optical flow. The main trend of
research in this field is to use variation methods [35, 48, 63, 80] (a more extended review
may be found in [59]). An example of dense scene reconstruction which may be obtained
on the basis of an optical flow and epipolar geometry rules can be seen in Fig. 7.

Characteristic for the described two-image algorithms are such that with increasing
number of frames positioning error rises. It is a result of propagating errors in every
iteration of the algorithm. A considerable error reduction can be achieved by using
the three-image methods (tensor based methods), however, it does not eliminate the
problem of error propagation. A better solution is to use multi-image methods, so
called, factorisation methods.
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Fig. 6. A pipeline of 3D reconstruction algorithms, using a two-image SfM method, camera autocali-
bration and dense matching of images [29].

2.2.1. Factorisation

The first SfM algorithm which allowed to calculate the location of the camera and scene’s
structure by simultaneously analyzing all of the available scene’s images was proposed
by Tomasi and Kanade [8, 7]. The fulfillment of four assumptions are crucial in order to
algorithm work correctly:
• the distance between the camera and the scene’s objects is large, which allows to use

an affine camera model with parallel projection (an orthogonal camera model)
• absence of pixels screw
• fixed and known internal parameters of camera
• all of the tracked points have to be visible in the whole sequence of images
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Fig. 7. An example of using two-image algorithm of dense reconstruction on the basis of an optical flow.
At the top – a pair of input images with shown epipolar lines. At the bottom – a vector field of
optical flow (left) and a dense reconstruction of the scene’s shape (right) [84].

The orthogonal camera model without a pixel’s screw:

M =

 α 0 ox
0 β oy
0 0 1

 rT1 −rT1 T
rT2 −rT2 T
0 1

 (29)

where:
M ∈ R3×4 – camera projection matrix
r1, r2 ∈ R3 – rows of rotation matrix
T ∈ R3 – camera translation vector
α, β ∈ R – pixel scaling factors
ox, oy ∈ R – offsets of pixel coordinates system center

The point projection on the orthogonal cameras image plane:

p =

[
α 0
0 β

]([
rT1
rT2

]
P +

[
−rT1 T
−rT2 T

])
+

[
ox
oy

]
(30)

where:
P ∈ R3 – 3D point coordinates
p ∈ R2 – pixel’s coordinates
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When the internal parameters of the camera are known, the point coordinates can be
converted from the pixel coordinates into the image plane (normalized coordinates):

p
′
=

(
p−

[
ox
oy

])[
1/α 0
0 1/β

]
(31)

Due to the fact that many images and points are analyzed, we use indexation:

p
(j)
i =

[
x
(j)
i y

(j)
i

]T
(32)

where:
p ∈ R2 – normalized pixel’s coordinates
j ∈ {1, 2, ..,m} – image number
i ∈ {1, 2, .., n} – point number

Taking into consideration the change of coordinates and indexation we obtain:

p
(j)
i =

[
r
(j)T
1

r
(j)T
2

]
Pi +

[
−r1(j)TT (j)

i

−r2(j)TT (j)
i

]
(33)

Putting together the characteristic points coordinates and the equations of their projec-
tions into one matrix:[

p
(j)
1 ... p

(j)
n

]
=

[
r
(j)T
1

r
(j)T
2

] [
P1 ... Pn

]
i
+

[
−r1(j)TT (j)

i

−r2(j)TT (j)
i

]
(34)

Subsequently, we calculate all of the points’ coordinates in a matrix in such a way so
that the center of coordinates system is the centroid:

p̄ =

[
r
(j)T
1

r
(j)T
2

]
P̄ +

[
−r1(j)TT (j)

i

−r2(j)TT (j)
i

]
(35)

where:
p̄ – centroid’s coordinates in the image plane
P̄ – centroid’s 3D coordinates in the external coordinates system

The centroid for the points in the image plane may be calculated using the formula:

p̄(j) =

n∑
i=1

p
(j)
i

n
(36)

The equation gets the following form:[
p
(j)
1 − p̄(j) ... p

(j)
M − p̄(j)

]
=

[
r
(j)T
1

r
(j)T
2

] [
P1 − P̄ ... PM − P̄

]
(37)
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For n points in m images we build a registered measurement matrix:

W =

 p
(1)
1 − p̄(1) ... p

(1)
n − p̄(1)

...

p
(m)
1 − p̄(m) ... p

(m)
n − p̄(m)

 =


r
(1)T
1

r
(1)T
2

...

r
(m)T
1

r
(m)T
2


[
P1 − P̄ ... Pn − P̄

]
= RS

(38)
The authors of the method formulated a theorem that if there isn’t any noise in

measurements of points position then the matrix of registered measurements W has
rank not greater than three. This is due to the fact that the ranks of the rotation matrix
R and the structure matrix S is not greater than three. The presence of noise in the
matrix W , built on the basis of real images, could cause the rank of W to be greater
than three. The matrix rank reduction to three may be done by decomposing the matrix
on the basis of Singular Value Decomposition.

W = UΣV T (39)

where:
W ∈ R2m×n – registered measurements’ matrix

Σ =


λ1

λ2

..
λn

0

, λ1 ⩾ λ2 ⩾ ... ⩾ λn,λ1, ..., λn ∈ R

U ∈ R2m×2m,V ∈ Rn×n – orthonormal matrices
From all values, the first three (the largest) are chosen with the corresponding left

and right vectors and on their basis, a matrix is built which rank value is not greater
than three.

W
′
=
[
U1 U2 U3

]  λ1

λ2

λ3

 V T
1

V T
2

V T
3

 = U
′
Σ

′
V

′T (40)

We may factorize the W matrix into a camera rotation matrix and a scene structure
matrix

W
′
= R

′
S

′
(41)

where:
R

′
= U

′
Σ

′

S
′

= V
′T

Machine GRAPHICS & VISION 23(3/4):57–117, 2014. DOI: 10.22630/MGV.2014.23.3.5 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2014.23.3.5


M. Siudak, P. Rokita 77

The matrix R
′
should be a rotation matrix; unfortunately, the solution above guaran-

tees only that the matrix will be a linear transformation of the rotation matrix, because
there is a matrix which R

′
S

′
= R

′
QQ−1S

′
=
(
R

′
Q
)(

Q−1S
′
)
= R̂Ŝ. Due to this fact to

calculate the rotation matrix which makes an Euclidean transformation, it is necessary
to calculate the correcting matrix. Since the matrix R̂ has to be orthonormal, we can
define the following system of equations:

r̂T2j−1r̂2j−1 = 1 = r
′T
2j−1QQT r

′

2j−1

r̂T2j r̂2j = 1 = r
′T
2jQQT r

′

2j

r̂T2j r̂2j−1 = 0 = r
′T
2jQQT r

′

2j−1

(42)

where:
j = 1,m

r̂k – k-th row of the matrix R̂

r
′

k – k-th row of the matrix R
′

The matrix Q can be found by replacing matrix QQT with B and using Cholesky-
Banachiewicz factorization. Non-linear method of least squares also could be used. After
calculating the correcting matrix we obtain an Euclidean reconstruction and a rotation
matrix. The solution is ambiguous because every initial matrix R0 fulfills the equations:

R̂
′
= R̂R0

Ŝ
′
= RT

0 Ŝ
(43)

It is arbitrarily selected that the initial rotation equals 0, so the first position of
camera determine center and orientation of the coordinates system. Therefore:[

r̂
′(1)T
1

r̂
′(1)T
2

]
=

[
1 0 0
0 1 0

]
(44)

R0 =
[
r̂
′(1)T
1 r̂

′(1)T
2 r̂

′(1)T
1 × r̂

′(1)T
2

]
(45)

Finally the results are:

Ŝ
′
= RT

0 Ŝ

R(j) =
[
r̂
′(j)
1 r̂

′(j)
2 r̂

′(j)
3

]
T (j) =

[
r̂
′(j)
1 r̂

′(j)
2 r̂

′(j)
3

] [
p̄(j)

α

] (46)
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where:
Ŝ

′
– the matrix of 3D points’ coordinates in the centroid coordi-

nates system
R(j) – camera’s rotation matrix for image j, where j = 1,m
T (j) – camera’s translation vector for image j, where j = 1,m
α ∈ R – arbitrarily selected number

Results of the factorisation algorithm are shown in Fig. 8

Fig. 8. The final results of the factorization algorithm’s, (b) and (c) images show artificially generated
3D models, obtained on the basis of a sequence (a) of input images [8].

The algorithm in the presented form is much less complex than the two-image algo-
rithm described before. The simplicity of this algorithm lies, however, in considerable
simplification of camera model. The inadequacy problem about the whole range of the
scene’s objects distance has been solved in the next modifications of the method, sub-
sequently introducing the following models: the paraperspective [9] and the perspective
one [16, 17]. The number of 3D points which location can be determined considerably
decreases during longer sequences, because it is required to possess the knowledge of
the location of all the characteristic points in the entire sequence. There has been an
attempt to solve the problem by approximating the points’ location on the basis of the
neighbouring points’ location [8]. The factorization algorithm allows to make a 3D scene
reconstruction and determine the location of cameras without the errors accumulation,
however, as every linear method it is not greatly resistant to the errors resulting from
the spatial image discretization and incorrect point matching. Unfortunately, on the
grounds of the necessity of SVD of the huge matrix of registered measurements and the
necessity to monitor all the points is not the optimal solution in most practical applica-
tions. The state of art in the field of accurate multi-image sparse SfM methods is the
bundle adjustment algorithm. The method is base on a non-linear optimization method
set in order to find a minimal error in adjusting the parameters of the 3D world model
and cameras model to observations.
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2.2.2. Bundle adjustment

The bundle adjustment is an iterative method of optimization, which minimizes the cost
function in the shape of a square error between the observations and the theoretical
camera and the 3D world models. Bundle adjustment is about using specific for SfM
assumptions in order to effectively solve the optimization task. In contrast to the previ-
ously described methods, SfM does not introduce any limitations concerning the number
or visibility of characteristic points. Below, we will describe an algorithm which requires
known and fixed internal camera’s parameters. By using bundle adjustment its possible
to calculate all of the internal and external camera’s parameters, however, in such a case,
solutions space has more dimensions, which considerably reduces the speed of processing
data by the algorithm.

The algorithm’s input data:
p
(j)
i ∈ R2 – coordinates of i-th point in j-th image, where j ∈ {1, .., n} , i ∈ {1, ..,m}

z ∈ R5 – vector of constant and known internal camera parameters
The theoretical pixel coordinates of characteristic points may be calculated using the

following algorithm:

Pi 7−→ P̃i

p̃
(j)
i = M(z, Cj)P̃i

p̃
(j)
i 7−→ p̄

(j)
i

(47)

where:
Pi ∈ R3 – Cartesian coordinates of i-th 3D point in external coor-

dinates system
P̃i ∈ P3 (R) – homogeneous coordinates of i-th 3D point in external co-

ordinates system
p̃
(j)
i ∈ P2 (R) – expected homogeneous coordinates of i-th pixel corre-

sponding to point Pi in j-th image
p̄
(j)
i ∈ R2 – expected Cartesian coordinates of i-th pixel correspond-

ing to point Pi in j-th image
Cj ∈ R6 – external camera parameters’ vector (of rotation and

translation) for j-th image
M(z, Cj) ∈ R3×4 – camera projection matrix for j-th image

The algorithm above can be expressed as function h : R6×R3 → R2 defined by p̄
(j)
i =

h(Cj , Pi). When Cj , Pi are element of models parameters vector x = [CT
1 , .., C

T
n , P

T
1 , ..., PT

m]T ∈
R6n+3m mapping can be written as h

′
: R6n+3m × {1, .., n} × {1, ..,m} → R2 and

p̄
(j)
i (x) = h

′
(x, i, j) = h(Cj , Pi). The error between the observation and the model

can be defined as:

e
(j)
i (x) = p

(j)
i − p̄

(j)
i (x) (48)
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Next, a global error function may be introduced:

f(x) =

n∑
j=1

∑
i∈Wj

(
e
(j)
i (x)

)T
e
(j)
i (x) (49)

where:
x = [CT

1 , .., C
T
n , P

T
1 , ..., PT

m]T ∈ R6n+3m – vector of model’s parameters
Wj – set of indexes of points seen in the i-image

The algorithm’s result is the solution to the minimization task:

x∗ = argmin
x

f(x) (50)

By linearization of error function in point x using Taylor’s formula and omitting the
rest of the second order and higher, we obtain:

e
(j)
i (x+∆x) ≃ e

(j)
i (x) + J

(j)
i (x)∆x (51)

where:
∆x ∈ R6n+3m

J
(j)
i (x) =

[
∂e

(j)
i (x)

∂C1
, ...,

∂e
(j)
i (x)

∂Cn
,
∂e

(j)
i (x)

∂P1
, ...,

∂e
(j)
i (x)

∂Pm

]
∈ R2×(6n+3m) – Jacobian

Due to the fact that partial derivatives are non-zero only for j-th camera and for
j-th point (the error function depends on these vectors), the Jacobian matrix has the
following form:

J
(j)
i (x) =

[
0, ..., 0,

∂e
(j)
i (x)

∂Cj
, 0, ..., 0,

∂e
(j)
i (x)

∂Pi
, 0..., 0

]
∈ R2×(6n+3m) (52)

The structure of the matrix created from all of the Jacobian matrices allows it to be
split into two parts, one dependent only on parameters of the cameras and the second
one on 3D points’ coordinates.

J (x) = [JC (x) |JP (x)] ∈ R2nm×(6n+3m) (53)

The iterative algorithm of searching for the global minimum of error function de-
pends on calculating a direction in which the error function decreases the fastest ∆x∗ =
argmin∆x ∥f(x) + J∆x∥2. In every iteration the vector is updated x ← x + ∆x∗ if
f(x+∆x∗) < f(x). The stop condition is when the change in the values of the function
is lower than the threshold ∥f(x)− f(x+∆x∗)∥ < ξ. Levenberg and Marquardt have
developed the method of control the step length ∥∆x∗∥ in every iteration, thanks to
which, the number of iterations decreased considerably. In Levenberg and Marquardt’s
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method, the length of steps is controlled by element λ∥D(x)∆x∥2, which is calculated
for every iteration, therefore:

∆x∗ = argmin
∆x
∥f(x) + J (x)∆x∥2 + λ∥D (x)∆x∥2 (54)

where:
D (x) ∈ R(6n+3m)×(6n+3m) – positive-semidefinite diagonal matrix
λ ∈ R – nonnegative coefficient

The optimal iterative step is the solution to the system of linear equations (the
dependency from x has been omitted in order to simplify the notation):(

JTJ + λDTD
)
∆x = −JT f (55)

Basing on the known structure of the Jacobian matrix J = [JC |JP ] we may write
down the equation in an alternative way:[

HλCC JT
CJP

JT
P JC HλPP

] [
∆xc

∆xP

]
=

[
−JT

C f
−JT

P f

]
(56)

where:
HλCC = JT

CJC + λDT
CDC – block-diagonal autocorrelation matrix of cameras

HλPP = JT
P JP + λDT

PDP – block-diagonal autocorrelation matrix of points
We may use the untypical structure of Hessian matrix in which the biggest element

HλPP ∈ Rn×n is the block-diagonal matrix with block size 3×3. Using Schur complement
we obtain: (

HλCC − JT
CJPH

−1
λPPJ

T
P JC

)
∆xC = −JT

C f + JT
CJPH

−1
λPPJ

T
P f

∆xP = −H−1
λPP

(
JT
P f + JT

P JC∆xC

) (57)

Block-diagonal structure of matrix allows to use algorithm of matrix inverse with
linear computational complexity. Thanks to that we may calculate the vectors −JT

C f +
JT
CJPH

−1
λPPJ

T
P f , −H−1

λPP

(
JT
P f + JT

P JC∆xC

)
and matrix

(
HλCC − JT

CJPH
−1
λPPJ

T
P JC

)
in an effective way. Unfortunately last matrix is an element of system of equations which
solution is ∆xC . For a large number of images the matrix’s size is large and typical
methods for solving system of linear equations (for example, Cholesky-Banachiewicz
decomposition) take too much time. The solution to this problem is using the iterative
method of conjugated gradients. The method of conjugated gradients is based on the
assumption that the solution to every system of linear equations Ax = b can be presented
in a form of a sum x =

∑k
i=1 αiεi, while the vectors εi on which space of the solutions is

expanded are conjugated with respect to matrix A. The initial conditioning of matrices
aims to improve convergence and numerical stability of the algorithm. Multiplying both
sides by the matrix S−1 we obtain S−1Ax = S−1b, however, condition κ(S−1A) < κ(A)
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has to be fulfilled. For the bundle adjustment method, because its ease to inverse S =
HλCC . For initial values r0 = b, z0 = S−1r0, ε0 = z0 in each algorithm’s iteration we
calculate:

αk =
rTk zk
εTk Aεk

rk+1 = rk −Aεk
zk+1 = S−1rk+1

εk+1 = zk+1 +
zT
k+1rk+1

zT
k rk

εk

(58)

and the result:
xk+1 = xk + αkεk (59)

The stop condition is rk+1 < ξ where ξ is an acceptable error threshold. Performance of
the algorithm comes from the fact that multiplication can be done without storing the
whole matrix in memory, because when performing the operations in a correct order we
multiply only vectors by vectors. For bundle adjustment algorithm:

Aεk =
(
HλCC − JT

CJPH
−1
λPPJ

T
P JC

)
εk (60)

This equation can be transformed by expanding HλCC and putting the brackets which
force a specific order of calculations:

Aεk = JT
C

(
JCpk − JP

(
H−1

λPP

(
JT
P (JCεk)

)))
+ λDT

CDCεk (61)

Operation on vector elements can be done in parallel; this allows to develop high
performance implementations for GPU [82]. The main disadvantage of the described
algorithm is that it does not guarantee finding the global minimum for the cost function.
The result of the algorithm is the first found local minimum. The bundle adjustment
algorithm is usually initiated by the result of one of the described two-image, three-
image or factorization methods, thanks to which the probability of finding the global
minimum increases considerably. High accuracy results obtained by method of adjusting
parameters was motivation to use this method in many scientific as well as commercial
projects. Spectacular examples of using the described algorithm are “Photo tourism” [57]
and “Building Rome in a day” [78]. The example of reconstruction (di Trevi’s fountain)
on the basis of a web collection of pictures can be seen in fig 9.

Unfortunately, like with other methods based on the characteristic points and local
feature descriptors with bundle adjustment we obtain only a sparse cloud of points.
The literature about SfM is very exhaustive. This article presents only the key ideas
which were most intensively studied and developed by researchers. A completely different
source of information about structure of 3D scene’s objects is the shape of their contours.
The analysis methods of objects’ contours in order to reconstruct their 3D shape are
called “shape from silhouette”.
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Fig. 9. Cloud of points “Fontanna di Trevi” obtained using the bundle adjustment algorithm [57].

2.3. Shape from silhouette

The group of methods which allow to obtain a 3D shape of an object on the basis of
their profiles, gained from moving the camera is called “shape from silhouette”(SfS) or
“shape from profiles”. The development of methods which base on the analysis of the
silhouette’s shape began in 1974 with publication of Baumgart [2]. He proposed a method
of constructing an 3D model as an intersection of polyhedrons generated by the object’s
silhouette. Subsequent works from this field have input to SfS paradigm the definition
of visual hull. According to [11, 42] the visual hull Hj for a consistent set of silhouette
images

{
S
(k)
j : k = 1,K

}
is intersection of K visual cones in which every one of them

is formed by projecting the silhouette Sk
j into a 3D space from the central point of the

camera Ck through the image plane Πk. There is also an alternative definition [36],
according to which Hj it is a figure of the largest possible capacity, explaining the shape
of all the Sk

j where k = 1,K. Formation principle of visual hull is shown in Fig. 10.
Respectively to the definition we may distinguish two main methods of constructing

the visual hull:
• surface-based
• volume-based
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Fig. 10. The visual hull’s shape is a result of intersecting the visual cones generated by the silhouettes
and central points of cameras[42].

Regardless of the chosen method of constructing the visual hull, the error with which
the real shape of the object approximates is highly dependent on the number of sil-
houettes. The reconstruction is possible when for every silhouette image a camera is
calibrated. In most cases, the images of the objects are made without changing the
internal camera’s parameters. Therefore, it is assumed that the matrix of internal pa-
rameters is constant and known. The calibration of camera external parameters in case
of SfS is aimed at calculating the rotation matrix and the translation vector in relation
to the 3D object’s coordinates system. Cameras’ calibration methods depend on the
used set of image acquisition in which we may determine:
•moving camera and static object

• static camera and the object placed on turntable

• object placed between static set of cameras
In case of a turntable, it is most commonly equipped with the calibration pattern facili-
tating precise calibration. When it comes to the static set of cameras, we use generally
the disposable manual calibration procedure. When it comes to the mobile camera,
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which moves along any trajectory around the object, we use the methods which are de-
scribed in point “Shape from motion”, mostly based on the epipolar geometry and bundle
adjustment.

Another important SfS aspect for the final result is extraction of the silhouette.
Separating the object’s silhouette from the background is called segmentation and this
problem is widely described in the literature and is too broad to be thoroughly explained
in this article. The most frequent way to segment silhouettes is to use robust methods,
such as active contours [5] and graph-cut [31, 73] (a review of different segmentation
methods can be found in publications [85, 88, 89]). Segmentation is one of the most
computationally expensive element of SfS. A particular case is an static set of cameras,
because, in this case the background is constant. Automatic segmentation becomes then
just background subtraction and binarization.

If we have a set of silhouettes and the corresponding internal and external cameras’
parameteres, we may use one of the methods of visual hull construction.

2.3.1. Volume-based methods of visual hull construction

In terms of conception the most simple approach to SfS is subdivide of the 3D space on
equivalence classes, called voxels and binary labeling each voxel. Labeling goal is to split
voxels on those belonging to the visual hull and the other. The simplest volume-based
SfS algorithm can be written as alg. 2.1.

The algorithm 2.1 is simple to implement, however, in general, it is rarely used. The
problem lies in determining the minimal size of the voxel, because when there is a large
number of voxels, the calculation time is unacceptable. When we enlarge the size of the
voxel, the reconstruction quality drastically decreases, which is in part the result of the
artifacts caused by aliasing. A sample reconstruction made using a method of filling the
visual hull can be seen in Fig. 11

The basic improvement to this method is using octrees [10]. The structure of these

Fig. 11. A reconstruction of 3D object(a) obtained using a volume-based SfS (b)(c). The impact of the
voxels’ size on the quality of reconstruction is visible [33].
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Algorithm 2.1 Volume-based SfS
1: Obtain set of silhouettes and camera’s parameters{〈

S(k),K(k), R(k), T (k)
〉
∈ {0, 1}A×B × R3×3 × SO(3)× R3 : k = 1,K

}
where:
S(k) – k-th silhouette image of sizes A,B ∈ N+

K(k) – internal camera parameters matrix for k-th silhouette
R(k) – camera rotation matrix for k-th silhouette
T (k) – camera translation vector for k-th silhouette

2: Subdivide 3D space into voxels of size r[1, 1, 1]T ,r > 0 hence ϑ = {0, 1}X×Y×Z

where:
ϑ – voxels space
X,Y, Z ∈ N+ – size of voxels space

3: for all ⟨x, y, z⟩ ∈ {1, .., X} × {1, .., Y } × {1, .., Z} do
4: νxyz ← 1 where νxyz ∈ ϑ /* initial value of voxel is 1 (full) */
5: for k ← 1 to K do
6: Calculate the position of voxel’s projection in k-th image (silhouette) αa

αb
α

 = K(k)
[
R(k)| −R(k)T (k)

] 
x− 1

2
y − 1

2
z − 1

2
1
r


7: if < ⌈a ⌉, ⌈b⌉ >/∈ {1, .., A} × {1, .., B} then νxyz ← 0 /* out of image */
8: if S(k) ∋ s

(k)
⌈a ⌉⌈b⌉ = 0 then νxyz ← 0 /* out of silhouette */

9: end for
10: end for
11: Result: Visual Hull is created by all voxels ν ∈ ϑ with assigned value (label) 1
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trees allows size of voxels to be adjusted to the local number of details. The acceleration
of the algorithm’s operation is obtained using the fact that etiquetting voxels can be
done completely parallely. Unfortunately, the Visual Hull (VH) representation, using
voxels, does not allow one to generate photo-realistic images, which significantly limits
its range of applications. The problem is solved by algorithms which transforms mod-
els from voxels into mesh or another form of object’s surface representation (such as
isosurface) [56, 66, 76]. An example of results of the the algorithm [66] can be seen in
Fig. 12.

Fig. 12. The isosurface (on the right) generated on the basis of the model built from voxels (the object
on the left) [66].

According to the basic definition, VH is an intersection of sets generated by silhou-
ette’s preimage in relation to the projection function. This is why an error in segmen-
tation, even with just one silhouette, drastically affects the final result. An important
field in the works on SfS is the improvement of the reconstruction quality by increasing
the resistance to faulty segmentation. Most frequently used are probabilistic methods
based on the analysis of cohesion with the image of neighbouring silhouettes [75, 83]. An
important issue analyzed in publications [53, 55] is the poblem of partial object visibility
and the possibility of using even a part of a silhouette as the information source about
its 3D shape. An interesting field of the research is using probability theories in VH
construction [43, 49, 86]. An example is the publication [49] in which an approach to the
SfS problem is described as fussion of data from sensors. The authors proposed a prob-
ability sensor model known from robotics, corresponding to the set of video cameras in
connection with SfS algorithm. The voxel’s probability of belonging to VH is calculated
as the conditional probability, dependent on the silhouettes, images (brightness, color
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and pixels’ color saturation) and the background images. Labeling is reduced to assign-
ing label 1 for every voxel which has the probability of belonging to VH higher than the
threshold. The effect of using the algorithm [49] can be seen in Fig. 13.

Fig. 13. The VH constrction on the basis of probability of voxel’s occupancy, (a) – a view of one layer of
the probability grid, (b) – a side view, (c) the visual hull obtained by binarizing the probability
grid [49].

An alternative for methods based on building volume of the visual hull are surface-
based methods of calculating its shape.

2.3.2. Surface-based methods

Surface-based SfS methods uses the information about contours of silhouette to calculate
the approximated surface of VH. The surfaces are created from intersections of visual
cones side surfaces (defined by the silhouettes outline and cameras central points). With
regard to the way of calculating the intersections, we may introduce the division on:
• algorithms with calculating the intersection points in 3D
• algorithms with calculating the intersection points in 2D

The first group of methods derives from an idea proposed by Baumgart [2] of gener-
ating the visual hull’s surface by calculating the primitives’ intersections which form the
visual cone in the 3D. Currently, one of the best algorithms regarding this field is the
EPVH algorithm of Franko and Boyer [71]. The authors assume that the algorithm’s
input set is the set of silhouettes obtained from the calibrated cameras:{〈

S(k),K(k), R(k), T (k)
〉
∈ {0, 1}A×B × R3×3 × SO(3)× R3 : k = 1,K

}
Just as with all the surface-based SfS methods, the silhouette is represented only by its
contours. It is important for the described algorithm that the contours have an assigned
direction. The contours direction inside the silhouette is opposite to that are outside.
Therefore, the silhouette is represented by set S(k) =

{
O(k), I(k)

}
where O(k) is the set of

outer edges and I(k) is the set of inner edges. The authors assume that a closed contour
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is used to describe the silhouette. It can be described as a set of normalized points on
the image plane

{
p̂i ∈ R2 : i = 1, N

}
, which generates a set of 2D edges in the form

of
{
⟨p̂1, p̂2⟩ , ...,

〈
p̂N−1, p̂N

〉
, ⟨p̂N , p̂1⟩

}
. Having the knowledge of internal and external

camera parameters, we may convert the points’ coordinates on the image plane to 3D
points’ coordinates in the object’s coordinates system. Every two points, which form
the 2D edge on the image plane, linked with the camera’s central point p

′

i, p
′

(i mod N)+1,
T defines the plane in 3D space (n(i) means the next after i). For an ideally calibrated
camera this plane is tangent in at least one point to the visual hull. Every 2D edge is
the result of projecting tangent plane to object on the image’s plane. In accordance with
the rules of projective geometry, the 2D edges form half-plane limited by rays Tp

′

i

→
,

Tp
′

n(i)

→
, called the strip. The surface of visual hull is created from segment of strips

limited by the intersection edges with other strips. The main problem of SfS, based on
the VH surface construction, is the effective calculating of planes intersections in the
3D space. The main idea of the described algorithm’s is building VH surfaces, basing
on the points which determine the beginnings and endings of viewing edges. Viewing
edges are half lines Tp

′

i

→
, Tp

′

n(i)

→
belonging to the VH surface. After calculating the

3D location and the length of the viewing edges, there is the heuristic procedure of
calculating intersection of three strips (the triple points) and then of the edges and the
VH surface. The key steps of the algorithm can be seen in Fig. 14.

Fig. 14. The key steps of EPVH algorithm: (a) compute the viewing edges, (b) cones intersections and
triple points, (c) faces [71].

The first step is to calculate the length and direction of the viewing VH edges. Each
normalised point p̂(s)i which belongs to the closed contour of the silhouette O(s) and the
camera’s central points T (s) forms a projection line ℓ

(s)
i in the 3D space. Projection

of the lines in the other silhouettes’ images are epipolar lines which form the following
set:

{
l̂
(s,k)
i ∈ R3 : l̂

(s,k)
i = E(s,k)p̂

(s)
i , p̂

(s)
i ∈ O(s), E(s,k) ∈ R3×3, k ∈ {1, ..,K}\s

}
, where

E(s,k) is the fundamental matrix describing the relation between the silhouettes image s

and k. Epipolar line l̂(s,k)i which goes through the silhouette’s interior creates intersection
points with contours O(k) and I(k) which determines line segments that do not belong
to ℓ

(s)
i . At the end, the 3D points’ coordinates of the beginning and end of every line
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segment are calculated. The result of the first step of the algorithm is a 3D VH skeleton
composed of unlinked viewing edges E =

{
⟨v2t−1, v2t⟩ ∈ R3 × R3 : t ∈ N+

}
. The next

step of the algorithm is to calculate the missing edges which determine the intersection
with the visual cones. Each of the initial and final points of the viewing edges forms
a polygon’s vertex vi ∈ R3, forming the VH surface. The vertices which belong to the
viewing edges are not sufficient enough to describe the VH surface. The other vertices
(called triple points) are placed where more than two strips intersect. Each vertex vi
generates a left and right edge. The direction of the edges are calculated on the basis
of the normal vectors of strips. The sense of vectors is known, because its formed on
the basis of contours with specified direction. For an edge which starts in vertex vi,
we calculate its maximal length, limited by the nearest vertex through which it passes.
Afterwards, edge ⟨vi, vj⟩ is projected on all silhouettes S(k) for k = 1,K, calculating
the closest point in which the silhouette’s edge intersects the contour vi. If such point
exists, then, to the set of triple points vertex vk is added and ⟨vi, vk⟩ is added to the
set of edges. Otherwise, if such a point does not exist, ⟨vi, vj⟩ is added to the set of
edges. Edges are generated for all of the vertices and triple points, and in result a three-
dimensional grid of VH edges is formed. The last step of the algorithm is generating
surfaces. For the surfaces limited by the previously calculated edges normal vectors of
planes are determined. The planes orientation is calculated on the basis of the direction
of the contours edges. The result of the algorithm can be seen in Fig. 15.

Fig. 15. The results of the EPVH algorithm [71].

The algorithm described above is highly robust to faults in the cameras calibration.
The main computational cost of the algorithms is calculating intersections of the visual
cones in the 3D space. An important innovation which allows to reduce the compu-
tational complexity is calculating the intersections in the 2D space, instead of the 3D
space. The description of an effective algorithm which uses the epipolar geometry rules
to simplify the problem of calculating the intersection points can be found in [39].

An important hybrid solution, linking the volume-based and surface-based SfS is
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presented under the name of marching intersections [40] and marching cubes [51]. Instead
of straightforward calculation of points in which the visual cones intersect, we calculate
the points in which the cones intersect with the 3D homogeneous grid. The grid lines
are parallel to the coordinates axes and equidistant. Just as with previously described
SfS algorithms, it is assumed that internal and external cameras parameters are known
for every silhouette. The marching intersections algorithm can be split into two stages.
The first stage is calculating intersection coordinates of silhouettes visual cones and grid
lines, subsequently intersection coordinates are stored in a special data structure – MI.
The projection of the grid lines on the silhouette image is done using camera projection
matrix, formed on the basis of known internal and external parameters. The rule of
determination the points in which the silhouette intersects with the grid lines can be
seen in Fig. 16.

Fig. 16. The marching intersections: upper row – rule of determination the points in which the silhouette
intersects with the grid lines (an example of a 2D grid), the bottom row – projection of the 3D
grid’s line on the silhouettes images[40].

MI structure stores information for every node (a point in which the grid’s line is
intersected) binary label (inside or outside VH) and the distance of the intersection
point for each of coordinate axes. The information is only saved in nodes in which the
intersection took place between the directly adjacent nodes. The points in which they
intersect are determined, by projecting the grid’s line on the silhouette. Subsequently
moving along the line, for every intersection the distance between intersection and node
is calculated (after perspective projection correction). The second step of the algorithm
is the analysis of data stored in MI structures. For every node in which the information
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Fig. 17. For black nodes (which are placed inside the VH) with direct neighbour of white nodes (outside
the VH) undergo a procedure of surface construction [40].

about the intersection points is saved, on base of heuristic rules surface is constructed
from triangles (Fig. 17).

As result of the analysis of whole MI structure we obtain the visual hull’s mesh. The
algorithm is relatively simple in implementation and may be parallelized. Unfortunately,
like in the case of the volume-based SfS, the problem in choosing the right size of the
grid is a compromise between the reconstruction’s quality and the computational time.
The MI algorithm’s effect can be seen in Fig. 18.

The “shape from silhouette” methods are a numerous group of reconstruction methods
of the 3D scene. Apart from the basis methods there exists a substantial number of
hybrid methods with connect SfS with many other methods, in particular with the
stereo-vision [42, 46, 69, 70]. The described SfS methods all have a common fault, they

Fig. 18. Example of results obtained from marching intersections algorithm [40].
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only allow to obtain the object’s model and not the whole scene. Reconstructed object
should be placed in center of the scene and additionally it should be a convex object.
The “shape from photo-consistency” methods is the SfS generalisation, which allows to
reconstruct the scene’s image of every shape.

2.4. Shape from photo-consistency

The basis of described SfS methods is the analysis of the binary images coherence (con-
sistent) with the generated VH. If even one projection on the image plane of “potentially
full” voxel does not belong to the silhouette what means that is inconsistent with the
silhouette’s image. An incoherent voxel cannot belong to the VH, therefore it is la-
beled as “empty”. Exactly the same reasoning is basis for the SfPC method (Shape
from Photo-Consistency). The color of every images pixels has to be consistent with the
shape and color (radiance) of the scene. The key concept that lays the foundations for
the method is the notion of photo-consistency. We may define three different types of
photo-consistency [30].
Definition 1. (Point Photo-Consistency) Let S be an arbitrary subset of R3. A point
p ∈ S that is visible from c is photo-consistent with photograph at c if p does not project
to a background pixel, and the color at p’s projection is equal to radp(

−→pc). If p is not
visible from c, it is trivially photo-consistent with the photography at c.
Definition 2. (Shape-Radiance Photo-Consistency) A shape-radiance scene descrip-
tion is photo-consistent with the photograph at c if all points visible from c are photo-
consistent and every non-background pixel is the projection of a point in V .
Definition 3. (Shape Photo-Consistency) A shape V is photo-consistent with a set of
photographs if there is an assignment of radiance functions to the visible points of V that
makes the resulting shape-radiance description photo-consistent with all photographs.

On the basis of the definitions above, the notion of the test of fulfilling the consistency
criterion is introduced. Test is done using the function consistK() : ColK ×

{
R3
}K →

{0, 1} which parameters are composed of the pixels’ colors col1, .., colK ∈ Col and the
vectors pointing the location of the camera ξ1, .., ξK ∈ R3. In case of more accurate
models of light reflection parameters set contains light’s sources’ position. The maximum
K index is not greater than the number of input images. The function returns value 1
only in case when it is possible for a point on the surface to reflect light of color coli
in the direction ξi simultaneously for every i = 1,K. The last element needed to write
down the reconstruction algorithm is definition of set of images’ for which a point is
visible. If p is point on shape surface V , then p ∈ Surf(V ). Set VisV (p) is the subset of
input images in which V does not occlude p. On the basis of the definitions above, we
may write down the general algorithm of 3D scene’s shape reconstruction, called Space
Carving.

The practical implementation of the Space Carving algorithm requires solving the
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Algorithm 2.2 Space Carving

1: Initialize space V = {0, .., X} × {0, .., Y } × {0, .., Z} containing the whole recon-
structed scene

2: Initialize found← 1
3: while found = 1 /* Found voxel v ∈ V non shape photo-consistent with

projections of Surf(V ) */ do
4: found← 0
5: for all v ∈ V do
6: p← coordinates of center of v
7: for j ← 1,K do
8: ξj ← ⃗pCj , where Cj is center of camera j
9: if j ∈ VisV (p) then

10: colj ← Col(p, j), where Col(p, j) is color of the projection of point p
on the image plane of camera j

11: else
12: colj ← none
13: end if
14: end for
15: if consistK(col1, ..., colK , ξ1, ..., ξK) ̸= 1 then
16: found← 1
17: V ← V \{v}
18: end if
19: end for
20: end while
21: Result: Set of photo-consistent voxels V
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problem of effective calculating set VisV (p) for every voxel. The solution is to force the
sequence of processing voxels in accordance with the “plane sweep” algorithm [15, 19] or
its extension “multi plane sweep” [30]. They key idea of the plane sweep algorithm (see
alg. 2.3) is to divide the analysed space into parallel slices, which are intersections of
plane and the voxels grid. The plane is perpendicular to one of the axes of coordinate
system, for example, to X. The analysis starts from the marginal slice and by increasing
value of one coordinate (such as X) it moves inside the scene. When we know the video
camera’s location and their orientation we may calculate which video camera can see
a specific voxel (Fig. 19).

Fig. 19. Plane sweep algorithm. When voxels slice moves from the initial positon (the image on the left)
inside the scene (the image on the right) the number of cameras (which take part in determining
photo-consistency with scenes shape) increases [40].

The multi-sweep space carving algorithm is different from the plane sweep one, be-
cause instead of moving in one direction, the surface moves in six different directions
(increasing and decreasing the values in X, Y, Z). The multi plane sweep algorithm can
be written as alg. 2.4 [30].

Algorithm 2.3 Plane Sweep
Step 1: Get an initial volume V , initialize the sweep plane Π such that V lies
below Π (ie. swept towards V )
Step 2: Interesect Π with the current shape V
Step 3: For each surface voxel v on Π :

a. let C1, .., Cj be the cameras above Π for which v projects to an unmarked
pixel;
b. determine the photo-consistency of v using consistK(col1, ..., colj , ξ1, ..., ξj);
c. if v is inconsistent then set V ← V \{v}, otherwise mark the pixels to with
v projects.

Step 4: Move Π downward one voxel width and repeat Step 2 until V lies above Π.
Result: Set of photo-consistent voxels V
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Algorithm 2.4 Multi-Sweep Space Carving
Step 1: Initialize V to be a superset of the true scene
Step 2: Apply the Plane Sweep Algorithm in each of the six principle directions
and update V accordingly.
Step 3: For every voxel in V whose consistency was evaluated in more than one
plane sweep:

a. let C1, .., Cj be the cameras that participated in the consistency check of
v in some plane sweep during Step 2;
b. determine the photo-consistency of v using consistK(col1, ..., colj , ξ1, ..., ξj);

Step 4: If no voxels were removed from V in Step 2 and Step 3, set V ∗ ← V and
terminate; otherwise, repeat Step 2.
Result: Set of photo-consistent voxels V ∗

The reconstruction time of the scene’s 3D shape, on the basis of the algorithm de-
scribed above depends mainly on the voxels’ grid size. Similarily to the volume-based
SfS and Space Carving methods described earlier it is based on a full review of voxels.
Their size and quantity are a compromise between reconstruction time and reconstruc-
tion quality. Run time of the multi-sweep algorithm may be considerably reduced by
using parallel processing and hardware acceleration of mapping textures on graphic cards.
Sample results of the multi-sweep space carving algorithm’s can be seen in Fig. 20

Fig. 20. The results of SfPC multi-sweep algorithm (middle, right) for a sequence of a hundred input
images (left) [30].

The quality of the reconstruction depends significantly on the algorithm of deter-
mining value of the function consistK . Most frequently the algorithm uses simple model
of the image formation. Simple models do not takes into account phenomena such as
specular highlight, mirror reflections or glass transparency. As in the case of SfS, lack of
precision in calibration of even one camera has a significant impact on the reconstruction
quality. Every pixel which was wrongly verified as inconsistent removes the voxel. It
is the main disadvantage of this method. Because of noise in brightness function and
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calibration errors, with the increase of the number of images increases risk of erroneous
voxel removal.

2.4.1. Shape from photo-consistency and stereovision

There is a very interesting solution to the problem of finding the photo-consistent 3D
shape and its images proposed in the hybrid solution linking SfPC with stereovision [65].
The key idea of the described algorithm is to determine photo-consistent voxels by voting
of cameras. The proposed measure of the points photo-consistency is defined in the
following way:

ρ (x) = exp

(
−µ

K∑
i=1

votei (x)

)
(62)

where:
x ∈ R3 -point in 3D space
µ ∈ R+ -constant
K ∈ N -number of input images
votei : R3 → R -voting function of i-th camera

It is assumed that for every input image the internal and external camera’s param-
eters are known (projection function Π() for each camera is defined). The algorithm
of calculating the function’s votei(x) value was described as alg. 2.6 and subalgoritm
alg. 2.5.

Algorithm 2.5 Function scorei

Input: x – point position in 3D space
Input: d – distance from point x

1: scorei ← 0
2: Calculate the function oi : R → R3 which determines point lying on straight line

passing through the point x and the i-th camera central point ci: oi(d) = x+(ci−x)d
3: pi ← Πi(x) /* where Πi – projection function of i-th camera*/
4: for all j ∈ N(i) /* where N(i) – set of nearest cameras*/ do
5: pj ← Πj(oi(d))
6: scorei ← scorei +

1
|N(i)|NCCij(pi, pj) /* where NCCij(pi, pj) – Normalized

Cross Correlation of i-th images brightness function Ii() in window
surrounding pixel pi and j-th images brightness function Ij() in
window surrounding pixel pj */

7: end for
Result: scorei
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Algorithm 2.6 Function votei

Input: x – point position in 3D space
1: Initialize V to be a superset of the true scene
2: votei ← scorei(x, 0)
3: Calculate the parameters of the function oi : R → R3 which determines point lying

on straight line passing through the point x and the i-th camera central point ci:
oi(d) = x+ (ci − x)d

4: for all d ∈ {d : oi(d) ∈ V } do
5: if scorei(x, 0) < scorei(x, d) then
6: votei ← 0 /*only if scorei has global maximum in d=0 function

returns scorei(x, 0) otherwise 0*/
7: end if
8: end for

Result: votei

Key equation of alg. 2.5 can be written in another notation as:

scorei(d) =
1

|N(i)|
∑

j∈N(i)

NCCij (d) (63)

This simple solution is not much immune to the errors in determining the correla-
tion, resulting from occlusion and noises. A much better solution is to calculate the
local maxima of the Normalized Cross Correlation function, according to universal rule
∂NCCij

∂d (dk) = 0 and ∂2NCCij

∂d2 (dk) > 0. Afterwards, using Parzen window method with
the kernel W calculate correlation score function as:

scorei(d) =
∑

j∈N(i)

∑
k

NCCij (dk)W (d− dk) (64)

The practical implementation of the alg. 2.6 requires discretization of the 3D space
V , using a homogeneous grid of voxels. The result of undergoing the voting procedure is
assigning every voxel a measure of photo-consistency (exactly photo-inconsistency). The
obtained grid is the starting point of the shape’s approximation of the scene’s surface.
The shape of the scene S should minimise the functional:

E (S) =

∫∫
S

ρ (x) dA− λ

∫∫∫
V (S)

dV (65)

where:
V (S) – volume enclosed by the surface S
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The negative coefficient −λ causes with an unchanged consistency cost, such a scene’s
shape is favored which encloses largest possible volume (so called, ballooning effect).The
authors proposed a method of optimization the energy E(S), based on the minimal
graphs cut. The graphs construction consists in forming an vertex for every voxel and
linking the vertex with edges in such a way so that the vertex (voxel) is connected
symmetrically with six surrounding nearest neighbours. The weight function of the
edges between the vertex xi, xj for voxel size h can be calculated as:

wij =
4πh2

3
ρ

(
xi − xj

2

)
(66)

The results of the described algorithm are shown in Fig. 21

Fig. 21. The results of the algorithm [65], (left) -– one of sequence of 312 input images, (middle) – a 3D
model generated on the basis of the input images, (right) — the accumulated value votei for
voxels in the slice denotated as plane in middle image.

A important drawback of the SfPC algorithms described so far is the long operation
time. It is due to the fact that these methods are based on scenes voxel full review.
A considerable execution time reduction of SfPC based method can be obtained by
using calculus of variations.

2.4.2. Shape from photo-consistency – calculus of variations

The shape from photo-consistency theory assumes that there is a function consistK
which allows to check photo-consistency of the scene’s shape with the input images. The
problem in using this method is a relatively long time needed for checking if all regions
of the observed surface are consistent with the images. Limited reconstruction resolution
determined by the minimal size of a voxel is also problematic. A very promising direction
in this research is using variational methods based on the photo-consistency. Instead of
a function consistK , there is an functional that defines energy of adjustment the shape of
the scene to its images. A discrete voxel representation of the scene’s shape is replaced
by a continuous function of scenes surface. Variational methods allows to find the scenes
shape which adjustment energy is the smallest [64, 77].
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Stuhmer et al. in work [64] describe the methods which makes it possible to obtain
a dense scene’s reconstruction in real time. An algorithm’s input is a set of images
obtained from a moving video camera {Ii : Ωi → R}, i = 1, N .The result of the algo-
rithm’s operation is assigning every pixel of I0 a distance value, that is a depth function
h : Ω0 → R. For presenting the method’s details it is necessary to enter a few additional
denotations. Mapping between points coordinates in external three-dimensional coordi-
nates system into coordinates in camera’s pixel coordinates system is called a projection
function π : R3 → R2. The image points coordinates are denoted as homogeneous co-
ordinates x = [x1, x2, 1]

T ∈ Ω0. The coordinates in 3D space are calculated from depth
function as X (x, h) = h (x1, x2) ·x. Projecting the 3D points that has coordinates X on
Ωi a different than Ω0 image plane may be calculated by using formula π(exp(ξ̂i) ·X),
where ξ ∈ R6 are camera’s “twist” coordinates. Operator ∧ : R6 → se(3) allows to
present the “twist” coordinates as linear (matrix) Lie’s representation. Matrix exponen-
tial of ξ̂i it’s transformation matrix between coordinates system of I0 and Ii with the
assumption of rigid body motion. Best way to show principle of algorithm operation
is to start from case of only two camera’s locations. The algorithm’s aim is to find h
function, for which the value of the energy functional is minimal:

E(h) = λ

∫
Ω0

∣∣∣I1 (π (exp(ξ̂i) ·X (x, h)
))
− I0 (x)

∣∣∣d2x+

∫
Ω0

|∇h| d2x (67)

The first integral is a data term, the second is a regularization term. The data term in this
case is the difference between the second image’s points’ brightness and the brightness
of first image points projection on second image for assumed shape of the distance
function. Energy minimization of only data term could lead to unrealistic results as
form of very irregular surface, particularly in the presence of noise. Regularization is
implemented to enforce smoothes of surface. The regularization term is total variation
of h function. In order to simplify the notation, a denotation I1 (x, h) is introduced for
I1

(
π
(
exp

(
ξ̂1

)
·X (x, h)

))
.

Linear approximation of I1 (x, h) by using Taylor’s formula leads to a new shape of
the energy functional:

E (h) =

∫
Ω0

λ

∣∣∣∣I1 (x, h0) + (h− h0)
d

dh
I1 (x, h)|h0

− I0 (x)

∣∣∣∣︸ ︷︷ ︸
ρ1(x,h)

d2x+

∫
Ω0

|∇h| d2x (68)

Generalizing for many images we obtain:

E (h) = λ

∫
Ω

∑
i∈ℑ(x)

ρi (x, h)d
2x+

∫
Ω

|∇h| d2x (69)
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where:
ℑ (x) – the set of images indexes for which projection

π
(
exp

(
ξ̂i

)
·X (x, h)

)
is in boundaries of the image

ρi (x, h) = Ii (x, h0) + (h− h0)
d
dh Ii (x, h)|h0

− I0 (x)

Finding the minimal value of the functional (69) is difficult because of the discontin-
uous differentiability. The solution proposed by the authors is to enter supplementary
function u, which separates the data term from the regularization term and allows to
build a functional which is a convex approximation 69.

Eθ =

∫
Ω

|∇u|+ 1

2θ
(u− h)

2
+ λ

∑
i∈ℑ(x)

|ρi (x, h)|

d2x (70)

where: θ – small constant
The functional minimum can be determined by using minimization scheme of func-

tionals based on more than one functionals. The problem is decomposes into single
functional minimization and solved in iterative way (thresholding scheme). Proposed by
authors method is to use primal-dual algorithm for minimization of ROF energy. For
defined h, we calculate the energy’s minimum which has the following form:

min
u

∫
Ω

{
|∇u|+ 1

2θ
(u− h)

2

}
d2x (71)

The solution is u = h − θp function, where p = (p1, p2) is the vector field which fulfils
the differential equation ∇ (θdivp− h) = |∇θdivp− h| p. The vector field above can be
calculated using the iterative method, using the formula:

[pk+1 =
pk + τ∇

(
div pk − h/θ

)
1 + τ∇ |div pk − h/θ|

(72)

where: p0 = 0, τ < 1
8

For defined u, there is a functional’s minimum:

min
h

∫
Ω

 1

2θ
(u− h)

2
+ λ

∑
i∈ℑ(x)

|ρi (x, h)|

d2x (73)

The functional (73) cannot be directly minimized by using the gradient methods,
because it is not continuously differentiable in the whole interval. The fact that dis-
continuous places exist results from the used norm L1. The critical points in which the
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functional is indifferentiable are places in which the function ρi (x, h) goes through zero
and change its sign. The critical points can be calculated using formula:

ti = −
Ii (x, h0)− h0I

h
i (x)− I0

Ihi (x)
, i ∈ ℑ (x) (74)

where:
Ihi (x) ≜ d

dhIi (x, h)
∣∣∣
h0

The image’s indexes are chosen in such a way so that the critical points are sorted in
a non-decreasing order ti ⩽ ti+1. Moreover, there are two points added: t0 = −∞ and
t|ℑ(x)|+1 = +∞. The shape of h function which guarantees the functional’s minimum,
can be found using the following strategy:

if the stationary point

h1 = u− λθ

 ∑
i∈ℑ(x):i⩽k

Ihi (x)−
∑

j∈ℑ(x):i>k

Ihj (x)

 (75)

belongs to interval (tk, tk+1) for same k ∈ ℑ (x), then the solution is h = h1, otherwise:

h = arg min
h2∈{ti}

 1

2θ
(u− h2)

2 − λ
∑

i∈ℑ(x)

|ρi (x, h2)|

 (76)

The implementation of the algorithm on GPU makes it possible to make a dense
scene’s shape reconstruction in real time. The image sequence of resolution 640×480
pixels, using GPU Nvidia GTX 480, was processed at speed of 11 frames per second. The
quality of the obtained reconstruction depends on the size and number of input images.
Moreover, the level of texturing has also got a considerable impact. An example of such
reconstruction obtained using the method described above can be seen in Fig. 22.

The methods described so far were based on a relation analysis between the 3D
point’s location and the position of their projections on the image plane, with defined
location of the cameras. A completely different carrier of information about the distance
is used by shape from defocus methods.

2.5. Shape from defocus

The last of the presented grup of algorithms of passive 3D scene’s reconstruction is the
shape from defocus (SfD). It is characteristic for this method to use the imperfection’s
model of the camera’s optical system to calculate the distance. The image’s blurring is
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Fig. 22. The results of SfPC algorithm [77]. The top line shows the obtained 3D model and the impact
of an increasing number of images on the quality of mapping the real scene. The bottom line
shows selected frames from a sequence of input images.

function of distance from focal point of the camera’s optical system and image plane.
The blurring is measured by the radius of the circle of confusion, which can be calculated
using formula:

b =
Dν

2

∣∣∣∣ 1F − 1

ν
− 1

s

∣∣∣∣ (77)

where:
b – radius of circle of confusion
D – radius of lens
F – focal distance
ν – distance between image plane and principal point of lens
s – distance between scene’s point and principal point of lens

The image formed on the image plane is ideally sharp only for 3D points which lies
on plane to the image parallel for which the circle of confusion radius equals zero. The
image is out of focus for all the points which do not lie on this plane. Acquisition of
a single image happens with constant parameters F ,ν, D. However s may be different
for every point of image plane. Therefore, the image’s model forming, which includes
the blurring phenomenon can be written in the following form:

I (y) =

∫
Ω

h (y, x, s (x) ;F,D, ν) r (x) dx (78)
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where:
Ω ⊆ R2 – image space
x, y ∈ Ω – points of image
s (x) – distance from image plane
r (x) – radiance
h (·) – kernel

The SfD is an inverse problem, its calculating s (x) value for every y ∈ Ω on the
basis of image I. Method of directly calculating the scene’s shape on the basis of the
general model (78) is unknown. The SfD algorithms described in the literature are
based on simplified models. The most common simplification used is defining the point’s
local surroundings as a surface parallel to the image plane (equifocal assumption) [6,
12, 14, 18, 23, 27, 37]. It allows to write down the image point’s brightness equations
as a convolution of kernel and the surface radiation function (for notation simplification
the constants F , D, ν were omitted):

I (y) =

∫
Ω

h (y, x) ∗ r (x) dx (79)

The kernel is called the Point Spread Function. The shape of PSF changes depending
on the surface’s point distance from the image surface. Most commonly in the literature
there are two PSF forms – the Pillbox function and Gaussian function. The measure-
ment of defocus is adjustment of PSF’s model parameters (for example, the standard
deviation of Gaussian function). On the basis of PSF model’s parameters we may cal-
culate the distance from the image surface. The main problem is that the Point Spread
Function has to be isolated from the image brightness function by using deconvolution.
Unfortunately, apart from PSF the radiance of scene is also unknown. Therefore, the
task is the blind deconvolution of two integrated signals, which is ill-posted inverse prob-
lem. Because the general method of solving this class of problems is unknown, many
algorithms have been developed that allows to calculate the approximated PSF param-
eters. In the context of this article, we are going to describe only the methods which
are based on more than one image. At this point we must differentiate the shape from
defocus (SfD) methods from the shape from focus (SfF) methods. The SfF are methods
of calculating the scene’s shape by obtaining a series of images, which differ in the dis-
tance of plane for which all of the points are ideally focused (focal plane). Subsequently
by measuring the defocus and selecting points with minimal defocus we determine the
intersection points of scenes surfaces and focal plane. The isolines obtained as the result
determine the approximated shape of the scene. The reconstruction’s quality strongly
depends on the number of images and the differences in the camera focal settings. The
necessity of obtaining a large number of images from static camera, causes the SfF meth-
ods to have limited practical use. The SfD methods are based on the analysis of two
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images. Most frequently the basis of determining the scene’s shape is the ratio of the
defocusing measure (relative blur). The differentiator of the SfD methods is the way
of measuring defocus. Considering the domain in which the analysis is carried out, the
methods can be divided into frequency methods and spatial methods.The foundation of
the methods which are based on Fourier transform is the fact that the convolution with
PSF works as low-pass filter of characteristics dependent on defocus. Apart from Fourier
transform, authors of algorithms use a wide range of different mathematical tools, such
as convolutions, orthogonal functions in Hilbert space [37], S-transform of the images
approximated by a polynomial [12], Markov Random Fields [21], the global and local
optimisation methods [60]. At the end, the result of every algorithm is a distance map,
which is obtained by converting the defocus measure into distance. Often, an additional
step of the algorithm is to smooth the distance map, using filters (such as a bilateral
filter). There is one main problem of methods which are based on equifocal assumption.
Error of defocus measure depends on window size of local planar surface approximation.
Enlarging the window’s size enables to calculate estimators of the PSF parameters with
less variation, but causes also an increase in the error of mapping the scenes shape (in
reality the scene is not a parallel to the image plane). Therefore there is a forced com-
promise between the precision and robustness (independence from the type of the scenes
texturing).

The new approach allows modeling the process of forming the image without the
equifocal assumption (non equifocal model). To present the issues and concepts con-
nected with SfD an algorithm which belongs to the group of variation methods will be
accurately described. The publication [67] contains descriptions of SfD methods which
are based on analogy between image blurring and process of heat diffusion. The algo-
rithm’s input data are two images of the same scene , obtained using the same camera
at static position and orientation but with different parameters of the optical system. It
is assumed that the radius of CoC (blur) is regulated by changing the distance of the
image plane from the lens principal point (ν1, ν2) with the unchanged focal length (F )
and the lens sizes (D). Understanding the algorithm requires the introduction of few
concepts. The first is relative blur. In the simplest case in which the PSF is Gaussian
function, which shape depends only on the point’s distance and does not depend on their
location (shift invariant) and the assumption that the image I2 is more out of focus than
the image I1, we may write down the equation:

I2 (y) =

∫
1

2πσ2
2

e
− ∥x−y∥2

2σ2
2 r (x) dx =

∫
1

2π∆σ2
e−

∥x−y∥2

2∆σ2 I1 (x) dx (80)

where:
∆σ2 ≜ σ2

2 − σ2
1 – relative blur

σ2
1 , σ

2
2 – variations accordingly of the first and second image
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The introduction of the relative blur eliminates the scene’s radiance r from the equa-
tion which is unknown. The equation (80) can also be interpreted as the heat diffusion
equation. Introducing a time variable we may write down the equation (80) in the form
of u(y, t1) = I1(y) and u(y, t2) = I2(y), ∀y ∈ Ω. For σ2 > σ1 we can form the following
system of equations: {

u̇ (y, t) = c∆u (y, t) c ∈ [0,∞)
u (y, t1) = I1(y) ∀y ∈ Ω

(81)

where:
u̇ ≜ δu

δt – derivative of function u with respect to time t
∆ – laplacian

A case when σ2 < σ1 can be solved by interchanging I1(y) and I2(y). To simplify the
analysis, variable t is introduced as the increase of time in relation to t1 = 0. Therefore
u(y, 0) = I1(y), u(y,∆t) = I2(y), ∀y ∈ Ω. We may write down the relation between the
relative blur and time increment as:

∆σ2 = 2∆tc (82)

for c =
γ2(b22−b21)

2∆t where bi =
Dνi

2

∣∣∣ 1F − 1
νi
− 1

s

∣∣∣, i = 1, 2, γ is constant greater than zero.
According to the assumptions above, we may write down the following system of

equations: 
u̇ (y, t) = ∇ · (c (y)∇u (y, t)) t ∈ (0,∞)
u (y, 0) = I1(y) ∀y ∈ Ω
c (y)∇u (y, t) · n (y) = 0 ∀y ∈ δΩ
u (y,∆t) = I2(y) ∀y ∈ Ω

(83)

where:
∇· – divergence
∇ – gradient
Ω – space of image
δΩ – boundaries of image
n – unit normal vector at boundaries of image

Solution to the system of equations for a real pair of images does not guarantee
obtaining correct results, because the earlier assumption for the whole image σ2

2 > σ2
1

(or σ2
2 < σ2

1) does not have to be fulfilled. Practically, every pair of images contains areas
in which σ2

2 > σ2
1 and areas in which σ2

2 < σ2
1 . Additionally, in case the assumption is

not fulfilled, the algorithm is no longer numerically stable. It is crucial to develop the
algorithm by forcing the one-way diffusion in which c (y) > 0 is in the whole domain of
analysis (forward diffusion). The proposed solution is to split the images on two separate
areas:

Ω+ ≜ {y ∈ Ω : c (y) > 0} (84)
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and
Ω− ≜ {y ∈ Ω : c (y) ⩽ 0} (85)

Therefore, the system of equations obtains a new form:

u̇ (y, t) =

{
∇ · (c (y)∇u (y, t))
∇ · (−c (y)∇u (y, t))

∀y ∈ Ω+, t ∈ (0,∞)

∀y ∈ Ω−, t ∈ (0,∞)

u (y, 0) =

{
I1(y)

I2(y)

∀y ∈ Ω+

∀y ∈ Ω−

c (y)∇u (y, t) · n (y) = 0 ∀y ∈ δΩ+ = δΩ−

u (y,∆t) =

{
I2(y)

I1(y)

∀y ∈ Ω+

∀y ∈ Ω−

(86)

Diffusion coefficient c(y) is a function dependent on distance map s(y) by the relation:

c(y) =
γ2D2

8∆t

(
ν22

(
1

F
− 1

ν2
− 1

s(y)

)2

− ν21

(
1

F
− 1

ν1
− 1

s(y)

)2
)

(87)

Therefore, diffusion coefficient c(y) = 0 when s(y) = (ν1+ν2)F
ν1+ν2−2F or s(y) = F . It makes it

possible to precisely define the boundaries:

δΩ+ = δΩ− =

{
y : s(y) =

(ν1 + ν2)F

ν1 + ν2 − 2F
∨ s(y) = F

}
(88)

and the areas:
Ω+ =

{
y : 0 < s(y) < F ∨ s(y) >

(ν1 + ν2)F

ν1 + ν2 − 2F

}
(89)

Ω− =

{
y : F < s(y) <

(ν1 + ν2)F

ν1 + ν2 − 2F

}
(90)

The boundaries δΩ+, δΩ− are areas which on both images have the same level of blurring.
Their shape depends directly on the scene’s shape. The scene’s shape has an impact on
function u by coefficient c (y) and can be calculated by minimizing the function:

ŝ = argmin
s


∫
H (c (y)) |u (y,∆t)− I2(y)|2dy+

+
∫
H (−c (y)) |u (y,∆t)− I1(y)|2dy+

+α∥∇s∥2 + κ∥s∥2

 (91)

where:
H (·) – Heaviside step function
α > 0 – constant
κ > 0 – constant
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To simplify the notation, the following is introduced:

E (s) ≜ E1 (s) + E2 (s) + E3 (s) (92)

where:
E1 (s) ≜

∫
H (c (y)) |u (y,∆t)− I2(y)|2dy

E2 (s) ≜
∫
H (−c (y)) |u (y,∆t)− I1(y)|2dy

E3 (s) ≜ α∥∇s∥2 + ακ∥s∥2

Sum E1 (s) + E2 (s) defines data term and E3 (s) defines regularization term of the
functional E (s). The structure of regularization term α∥∇s∥2+ακ∥s∥2 for a very small
κ causes that energy E (s) is smaller for small, smooth surfaces. Finding ŝ = argmin

s
E(s)

is possible by using the standard method of steepest descent. The changes in the surface
shape are indexed by pseudo-time variable, hence:

∂s

∂τ
≜ −E′ (s) (93)

According to previously established denotations E′ (s) = E′
1 (s) + E′

2 (s) + E′
3 (s).

Using the chain rule for a data term we obtain (Ẽi denotes Ei functional to avoid
ambiguity):

E′
i (s) = Ẽ′

i (c (s)) c
′ (s) , i = 1, 2 (94)

where

c′ (s) =
γ2D2 (ν2 − ν1)

4s2∆t

[
(ν2 + ν1)

(
1

F
− 1

s

)
− 1

]
(95)

At last, the gradients have the following form:

Ẽ′
1 (c (s)) (y) = −2H (c (y))

∫ ∆t

0

∇u (y, t) ·∇w1 (y,∆t− t) dt

+ δ (c (y)) (u (y,∆t)− I2 (y))
2

(96)

Ẽ′
2 (c (s)) (y) = −2H (−c (y))

∫ ∆t

0

∇u (y, t) ·∇w2 (y,∆t− t) dt

+ δ (−c (y)) (u (y,∆t)− I1 (y))
2

(97)

where:
δ (·) – Dirac delta function
w1 : Ω+ × [0,∞)→ R
w2 : Ω+ × [0,∞)→ R
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Funtions w1,w2 fulfill the following systems of equations: ẇ1 (y, t) = ∇ · (c (y)∇w1 (y, t)) t ∈ (0,∞)
w1 (y, 0) = u (y,∆t)− I2(y)
c (y)∇w1 (y, t) · n (y) = 0 ∀y ∈ δΩ+

(98)

and  ẇ2 (y, t) = ∇ · (−c (y)∇w2 (y, t)) t ∈ (0,∞)
w2 (y, 0) = u (y,∆t)− I1(y)
c (y)∇w2 (y, t) · n (y) = 0 ∀y ∈ δΩ−

(99)

The gradient of the regularization term has the following form:

E′
3 (s) (y) = −2α∆s (y) + 2ακs (y) (100)

Theoretically, calculating the direction of the gradient’s functional could be the last
element needed to implement an iterative method of calculating the minimum of E (s).
The authors, however, propose additional step of preconditioning, thanks to which algo-
rithm’s numerical stability will improve and in consequence the robustness of method.
Pre-conditioning aims to reduce the impact of values of the functions u (y,∆t),u′ (y,∆t)
on the result of the algorithm. Pre-conditioning involves replacing the equation (93) by

∂s

∂τ
≜ −M (s)E′ (s) (101)

where:
M (s) – positive definite operator

The proposed pre-conditioning operator is:

(M (s)ϕ) (y) =
ϕ (y)

2 [H (c (y)) I2 (y) +H (−c (y)) I1 (y)] |u′ (y,∆t)|
(102)

where:
u′ (y,∆t) – derivative of functional respect to s

Pre-conditioning of the gradient of the functional’s E (s) data term has the form:

(M (s)E′
1 (c (s))) (y) = H (c (y))

(
u(y,∆t)
I2(y)

− 1
)

u′(y,∆t)
|u′(y,∆t)|

+ 1
2δ (c (y))

(u(y,∆t)−I2(y))
2

I2(y)|u′(y,∆t)|

(103)

and
(M (s)E′

2 (c (s))) (y) = H (−c (y))
(

u(y,∆t)
I1(y)

− 1
)

u′(y,∆t)
|u′(y,∆t)|

− 1
2δ (c (y))

(u(y,∆t)−I1(y))
2

I1(y)|u′(y,∆t)|

(104)
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Preconditioning of regularization term is unnecessary, hence finally:

∂s

∂τ
≜ −M (s)

(
E′

1 (s) + E′
2 (s) +M(s)

−1
E′

3 (s)
)
=

= −M (s) (E′
1 (s) + E′

2 (s))− E′
3 (s)

(105)

All of the notions and and formulas described so far are needed to formulate the
scene’s reconstruction algorithm on the basis of the shape from defocus. The proposed
iterative algorithm was written as alg. 2.7.

Algorithm 2.7 Shape from defocus via relative diffusion
Step 1: For two images I1,I2 of the scene obtain information about the parameters
of the camera’s optical system. Required calibration parameters: ν1, ν2, F , D, γ.
Determine the value of regularization parameters α and κ. Determine threshold
value ε of change E for stop condition.
Step 2: Initialize the depth map with a plane at depth s0 = (ν1+ν2)F

ν1+ν2−2F
Step 3: Calculate the diffusion coefficient c via eq.(87), compute the partition
{Ω+,Ω−} via eq.(89) and eq.(90)
Step 4: Simulate (i.e. numerically integrate) eq.(81) and eq.(83)
Step 5: Using solution obtained at Step 4 simulate eq.(98) and eq.(99)
Step 6: Compute the gradient of u and w and evaluate eq.(96), eq.(97), eq.(100),
eq.(102)
Step 7: Update the depth map s by performing a time step of
∂s
∂τ ≜ −M (s) (E′

1 (s) + E′
2 (s))− E′

3 (s), with precomputed right-hand side.

Step 8: Return to Step 3 until
∥∥∥E′

1 (s) + E′
2 (s) +M(s)

−1
E′

3 (s)
∥∥∥ ⩽ ε otherwise

stop
Result: Depth map s

An example results of algorithm can be seen in Fig. 23. The visible edges’ roundings
are caused by used L2 norm for the regularization term. In the picture results of gradient
pre-conditioning are also visible.

The newer publication [79] contains the description of a more complex, two-step SfD
method, which allows obtaining a dense depth map in real time. The first stage is
space discretization and approximation of its shape at certain distances from the camera
(space slicing by equifocal planes). The second stage is to use the calculus of variations
to obtain a dense and continuous approximation of the scene’s shape. The result of the
first stage of the algorithm is the starting point for the variational method. The precise
initialization is required, because of the fact that the proposed by the authors functional
is not convex. An important characteristic of the described two-step method is the
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Fig. 23. The results of the Shape from Defocus via relative diffusion method [67] for three pairs of input
images (top row). The scene’s model is obtained without pre-conditioning conditioning (middle
row) and with pre-conditioning (bottom row)

possibility of parallelizing most calculations. Thanks to the effective implementation on
GPU (Nvidia GTX 460, 1 GB), the total time of the algorithm’s functioning is below
0,25 s for images of 640×480 resolution in pixels. It is worth to point out that the
common feature of SfD methods is low precision in the reconstruction of scenes which
do not have textures of high constituent frequencies.

3. The summary

Even though there are clear differences between the algorithms we may point out a gen-
eral trend of passive methods’ development, which consists transition from two-image
methods to multi-image methods. Reconstruction algorithms based on common informa-
tion contained in the multiple images (bundle adjustment, shape from photo-consistency
- calculus of variations) are generally more accurate and more resistant to disadvanta-
geous phenomenon occurring in the image (such as noises and occlusions). Less com-
putationally expensive methods have been successfully implemented on mobile devices.
Stereo-vision and shape from motion often form the basis for navigation in a low-cost
mobile robots. Directions of development of the 3D reconstruction algorithm determines
to a large extent available computational power. A skillful use of GPU allowed obtaining
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a dense depth map in real time for the whole visible scene. Implementation of varia-
tional methods using mass parallel processing is currently the main direction of research
on passive 3D reconstruction methods.

The computer vision and passive 3D scene’s reconstruction methods are an intensively
developing discipline of knowledge. The article contains only reviews of a few chosen
methods and key ideas which appeared in the publications about the three-dimensional
modeling of the scene. The presented details of algorithms allows to understand the
problems regarding the 3D reconstruction and point out methods on how to solve them.
The article’s aim was to acquaint the reader with the basic notions and key concepts
which appeared in the literature. We hope that the information which is contained here
will constitute a good starting point for further, more thorough, independent analysis of
the issues described in this article.
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