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Abstract. The paper describes a method of partitioning a cylinder space into three-dimensional sub-
spaces, congruent to each other, as well as partitioning a cone space into subspaces similar to each
other. The way of partitioning is of such a nature that the intersection of any two subspaces is the
empty set. Subspaces are arranged with regard to phyllotaxis. Phyllotaxis lets us distinguish privileged
directions and observe parastichies trending these directions. The subspaces are created by sweeping
a changing cross-section along a given path, which enables us to obtain not only simple shapes but
also complicated ones. Having created these subspaces, we can put modules inside them, which do not
need to be obligatorily congruent or similar. The method ensures that any module does not intersect
another one. An example of plant model is given, consisting of modules phyllotaxically arranged inside
a cylinder or a cone.

Key words: computer graphics, modeling, modular model, phyllotaxis, cylinder partitioning, cone
partitioning, genetic helix, parastichy.

1. Introduction

Phyllotaxis is the manner of how leaves are arranged on a plant stem. The regularity of
leaves arrangement, known for a long time, still absorbs the attention of researchers in
the fields of botany, mathematics and computer graphics. Various methods have been
used to describe phyllotaxis. A historical review of problems referring to phyllotaxis is
given in [7]. Its connections with number sequences, e.g. Fibonacci sequence, and with
problems of symmetry, the golden ratio and logarithmic spiral have been discussed in
a number of papers. A few theories of biological processes and biomechanical phenomena
resulting in appropriate phyllotactic patterns were put forward ([9–14]). Douady and
Couder [2, 5] showed that phyllotactic patterns similar to those observed in botany can
also emerge as a result of activity of other physical processes. This approach is continued
in [16], where a magnetic cactus is presented. The influence of basic parameters on a kind
of phyllotactic pattern of both theoretical models and real plants is described in [4, 15].
The paper [8] contains a uniform description of spiral, jugate and whorl patterns on the
basis of Helmholtz equation. Papers [1,3] present an application of phyllotactic patterns
to plant modeling in computer graphics. The website [17] shows that phyllotaxis can
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be an inspiration for architects. The aim of this paper is to propose a new method of
constructing objects being a set of modules arranged inside a cylinder or a cone in such
a manner that they satisfy the rules of phyllotaxis. The modules are analogs of leaves
and for this reason they cannot intersect. In order to obtain the appropriate result,
a conception of subspaces is introduced. The subspaces fill to capacity the space of
a model. Each subspace can contain exactly one module. The subspaces are obliged
to satisfy appropriate conditions in reference to other subspaces while modules being
analogs of leaves should be in appropriate relations, each to its own subspace.

In Chapter 2, fundamental conceptions referring to phyllotaxis are introduced, such
as genetic helix or parastichy. In Chapter 3, the flat model of two- and three-directional
phyllotaxis is introduced. Chapter 4 describes phyllotaxis on cylindrical and conical
surfaces. Chapter 5 describes partitioning the interior of a cylinder and a cone. In
Chapter 6, a method of arranging modules using subspaces is presented and Chapter 7
contains a conclusion.

2. Genetic helix and parastichies

To describe phyllotaxis, an arrangement of modules on a cylindrical surface of the radius
R is often studied. The cylinder axis lies on the z axis of the coordinate system. As
a result of the growing process, the module i+ 1 emerges on the surface of the cylinder
in such a manner that it is rotated by a fixed angle ∆α and moved by a fixed distance
∆z along z axis, both in reference to the module i.

Let i = 0, ±1, ±2,... Knowing the origin coordinates of the module i, i.e. its angle αi

and its axis position zi we can calculate the position of the next point from the equations:
αi+1 = αi +∆α, zi+1 = zi +∆z, so that we obtain a sequence of points Q = {qi} lying
on a helix. We call this helix a genetic helix and ∆α—an angle of divergence [7].

Let a natural number N be given. Having the sequence Q, create a subsequence QN
j ,

(j = 0, 1,... N − 1), choosing elements qj , qj±N , qj±2N ,... Connect these points using
a line being a helix. We call this helix parastichy of the order N and mark them with
a symbol PN

j .
If two numbers N1 and N2 (N1 ̸= N2) are given instead of the number N , then we

can study two sets of parastichies {PN1
j } and {PN2

k } , where j = 0, 1,... N1 − 1 and
k = 0, 1,... N2− 1. Parastichies belonging to the same set do not intersect in opposition
to parastichies belonging to different sets, as the latter ones intersect in certain points
of Q.

Figure 1(a) represents a genetic helix, Fig. 1(b) and 1(c) show two examples of sets
{PN1

j } and {PN2
j } and Fig. 1(d) shows an example of three sets of parastichies.

One can cut open the cylindrical surface and study the genetic helix in a two-
dimensional space S<αζ>, i.e. in a space with the coordinate system Oαζ, where
α ∈ ⟨−π, π) and ζ ∈ (−∞,+∞). In this case α is the angle and ζ stands for z. On
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Fig. 1. Genetic helix (a) and parastichies belonging to sets: (b) {P 3
j }, {P 5

k }, (c) {P 3
j }, {P 8

k }, and (d)
{P 3

j }, {P 5
k }, {P

8
l }.

Fig. 2. The genetic helix on the cut open and unrolled cylinder surface.

a conical surface, the dependence of z upon ζ is slightly more complicated, which is
described in Chapter 4.

In the case of two-dimensional space S<αζ>, the genetic helix and parastichies change
into sets of line sections moved along the z axis by a constant value [1].

3. Flat model of phyllotaxis

In order to define a genetic helix in the space S<αζ>, we need two parameters ∆α and
∆ζ. We calculate coordinates of points qi using equations:

αi = ∆α i− 2πk,
ζi = ∆ζ i,

where k: αi ∈ ⟨−π, π) and i = 0, ±1, ±2,...
The genetic helix for ζ ≥ 0 is shown in Figure 2. Notice that the genetic helix passes

through the point q0 of coordinates (α, ζ) = (0, 0).
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Fig. 3. The space with parastichies belonging to sets: (a) {P 3
j }, {P 5

k } and (c) {P 3
j }, {P 5

k }, {P
8
l } and

partitioning the space into parallelograms and hexagons.

Figure 3(a) shows parastichies belonging to sets {PN1
j } and {PN2

k } where N1 = 3
and N2 = 5. For each parastichy of the order N ≥ 3, it is possible to show two
parastichies belonging to the same set and being in neighborhood with it. In this figure,
we see that the parastichy P 5

0 is a neighbor of P 5
2 and P 5

3 . In accordance with two
directions constituted by two sets of parastichies one can divide the space S<αζ> into
parallelograms of identical shapes and orientations filling all the space (Figure 3(b)).
The parallelograms, due to their contact by their sides, create strips in accordance with
the parastichies directions. We call such partitioning a two-directional one.

Analogically, we can consider three sets of parastichies {PN1
j }, {PN2

k } and {PN1+N2

l }.
Such case was studied in [1]. The set {PN1+N2

l } states the third direction, as it is shown
in Figure 3(c) for the sets {P 3

j }, {P 5
k } and {P 8

l }. Then we can divide the space into
hexagons of identical shapes and orientations completely filling it out. In Figure 3(d)
we can observe strips parallel to these three directions and so we call such partitioning
a three-directional one.

Instead of {PN1+N2

l } we can take into account the set {PN1−N2

l } (N1 −N2 ≥ 1) [1],
but that case can be easily reduced to the case described above.

Below, we study two- and three directional partitionings into areas of identical shapes
and orientations, but we do not demand their sides to be sections of straight lines.

Firstly, we will consider a three directional partitioning. Let there be given the point
qi lying in the place, where parastichies PN1

j , PN2

k and PN1+N2

l intersect. We also
consider points lying on neighboring parastichies, namely qi+N1

, qi+N2
, and qi+N1+N2

.
Assume that the point qi is associated with two points v<1>

i , v<2>
i and with a line

Li consisting of three open line segments L<1>
i , L<2>

i and L<3>
i , as it is shown in Fig-

ure 4(a). These line segments can be fragments of straight lines, curves or polylines. We
assume below that for each two points qi1 and qi2 these lines are congruent in couples:
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Fig. 4. Example of (a) three-directional partitioning and (b) two directional one.

L<1>
i1

≡ L<1>
i2

, L<2>
i1

≡ L<2>
i2

, L<3>
i1

≡ L<3>
i2

. (1)

From this assumption it appears that v<1>
i = v<2>

i−N2
and v<2>

i = v<1>
i+N2

.
The segments L<1>

i , L<2>
i and L<3>

i together with L<1>
i+N2

, L<2>
i+N1

and L<3>
i+N1+N2

limit a certain area. We denote the interior of this area with Ei. Using Ei, we can
define a set Ei, which will be helpful in the next part of this paper:

Ei = Ei ∪ L<1>
i ∪ L<2>

i ∪ L<3>
i ∪ {v<1>

i } ∪ {qi}.
The areas constructed in this manner are congruent, which results from Eq. (1) (of

course, if one takes into account periodicity of the surface in relation to α). Moreover,
none of these areas overlap each other and all of them fill the space S<αζ> completely.

One can understand a two directional partitioning as a particular case of a three
directional one, where the length of the segment L<3>

i has been reduced to null. Then
v<1>
i = qi, v<2>

i = qi+N2
etc., so Ei is enclosed by segments L<1>

i , L<2>
i and L<1>

i+N2
,

L<2>
i+N1

.
Reducing the length of L<3>

i to null causes the direction stated by parastichies from
the set PN1+N2

l to become more difficult to observation, as particular areas contact with
each other not along a line but only in one point. For example, areas Ei and Ei+N1+N2

are in contact not along L<3>
i+N1+N2

but only in the point qi+N1+N2
(Fig. 4(b)).

4. Phyllotaxis on a cylindrical surface and on a conical one

Below, we describe a cylindrical surface as a space in the coordinate system Oxyz and
mark it by S<xyz>

cyl . Similarly we mark a conical surface in the system Oxyz by S<xyz>
cone .
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Fig. 5. Side view of a cone; there are shown cross-sections for various values of ζ.

If a point q(α, ζ) ∈ S<αζ> is given, then we can calculate the coordinates of its
equivalent in the space S<xyz>

cyl using the following formulas:

x = R cosα, y = R sinα, z = Zζ, (2)

where R and Z are predefined.
Analogically, we can calculate coordinates of q(α, ζ) in the space S<xyz>

cone using the
formulas:

x = Rqζ cosα, y = Rqζ sinα, z = Zqζ , (3)

where R, Z and q are predefined.
After applying Eq. (2), the space S<αζ> transforms into a cylindrical surface having

the following properties:
(1) For ζ ∈ (−∞,+∞) z ∈ (−∞,+∞) and if ζ = 0, then z = 0.
(2) A cross-section of the cylinder surface is a circle of the radius R.
On the other hand, after applying Eq. (3), the space S<αζ> transforms into a cone

surface. Their properties are as follows:
(1) For ζ ∈ (−∞,+∞) z ∈ (0,+∞) and if ζ → −∞, then z → 0.
(2) If ζ = 0 we obtain a cross-section being a circle of the radius R located on the

plane z = 1.
(3) If ζ = 1 we obtain a cross-section being a circle of the radius Rq located on the

plane z = q (Fig. 5).
Let us study two areas in the space S<αζ> described in Chapter 3. We denote them

by Ei1 and Ei2 . We know that Ei1 ≡ Ei2 (where ≡ is a symbol of congruency) and that
they have an identical orientation. It means that there exists a translation described by
two constants cα, cζ such that if a point p<1>(α1, ζ1) ∈ Ei1 exists, then there also exists
the point p<2>(α2, ζ2) ∈ Ei2 described by the equation:

p<2>(α2, ζ2) = p<1>(α1 + cα, ζ1 + cζ).
After transforming p<1> and p<2> into the space S<xyz>

cyl by Eq. (2), we obtain p<1>
cyl =

(R cosα,R sinα,Zζ) and p2
cyl = (R cos(α + cα), R sin(α + cα), Z(ζ + cζ)). This means

that p<1>
cyl ≡ p<2>

cyl (are congruent), which in this case is a superposition of translation

Machine GRAPHICS & VISION 23(1/2):21–36, 2014. DOI: 10.22630/MGV.2014.23.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2014.23.1.2


C. Stępień 27

Fig. 6. Covering a cylindrical surface with congruent sets and a conical surface with similar ones; the
sets of each kind completely cover their respective spaces.

along the z axis by cζ and rotation by an angle cα. It is evident that the mentioned sets
are also congruent in the space Sxyz

cyl , which we write down as Ei1 ≡ Ei2 .
After transforming these same points p<1> and p<2> from S<αζ> into Sxyz

cone by
Eq. 3), we obtain p<1>

cone = (Rqζ1 cosα1, Rqζ1 sinα1, q
ζ1) and p<2>

cone = (Rqζ1+cζ cos(α1 +
cα), Rqζ1+cζ sin(α1 + cα), q

ζ1+cζ ). So we see that p<1>
cone ∼ p<2>

cone , where ∼ stands for
similarity, which in this case is a result of superposition of scaling with the scale factor
qcζ and rotation by an angle cα. It appears that, for S<xyz>

cone , Ei1 ∼ Ei2 . Using Eq. (3)
results in complete covering the cone surface S<xyz>

cone with similar areas (Fig. 6).

5. Partitioning the interior of a cylinder and a cone

Let us introduce a three-dimensional space S<αζρ>, which is understood as a generaliza-
tion of S<αζ>. This allows us to consider S<αζ> as a cross-section of S<αζρ> for a given
ρ, namely S<αζ>(ρ). Similarly, as it was described in Chapter 3, we divide the space
S<αζ>(ρ) into sets Ei(ρ) using the genetic helix (passing through the point q0(ρ)). As
q0(ρ) is dependent on ρ, it means that appropriate parastichies and segments of lines
being borders of the areas Ei(ρ) are dependent on ρ too. We express that by using the
notation L<1>

i+N2
(ρ), L<2>

i+N1
(ρ) and L<3>

i+N1+N2
(ρ).

The dependence of q0(ρ) on ρ implies that the set {q0(ρ)} is a segment of a certain
line, which we call a path. For a given {q0(ρ)}, segments of lines describing borders of
E0(ρ) are denoted by L<1>

N2
(ρ), L<2>

N1
(ρ) and L<3>

N1+N2
(ρ), because i = 0.

Taking into account how the points qi(ρ) depend on q0(ρ) we notice that for each
i1, i2 ∈ {0,±1,±2, ...} and for a fixed ρ the paths {qi1(ρ)} and {qi2(ρ)} are congruent,
which we show by using the notation {qi1(ρ)} ≡ {qi2(ρ)}.

Consider the set of points V <αζρ> ∈ S<αζρ>, defined as follows: α ∈ ⟨−π, π), ζ ∈
(−∞,+∞), ρ ∈ (rmin, rmax⟩ (Fig. 7(a)). Let us divide V <αζρ> into subsets V <αζρ>

i ,
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Fig. 7. From left: sets V <αζρ>, V xyz
cyl and V xyz

cone.

which are further referred to as subspaces. Each subspace is defined as follows:

V <αζρ>
i =

⋃
ρ∈(rmin,rmax⟩

Ei(ρ) (4)

This equation shows that Ei(ρ) is a cross-section of V <αζρ>
i for a given ρ. Taking

into account the congruency of Ei(ρ), we see that subspaces V <αζρ>
i are congruent

too, completely fill S<αζρ> and do not intersect each other. In fact, in order to create
V <αζρ>
i , we simply sweep a variable cross-section Ei(ρ) along a path {qi(ρ)}. This

manner of description of three-dimensional solids is known in computer graphics as
sweep representation [6].

Below, we consider a transformation of points q(α, ζ, ρ) ∈ V <αζρ>
i into the space

S<xyz>
cyl or S<xyz>

cone , respectively, in accordance with the following equations:
for a cylinder

x = ρ cosα, y = ρ sinα, z = Zζ (5)

and for a cone
x = ρqζ cosα, y = ρqζ sinα, z = Zqζ (6)

In the space S<xyz>
cyl , the set V <αζρ> obtains a shape of a drilled cylinder, which

is marked by the symbol V <xyz>
cyl (Fig. 7(b)), while in the space S<xyz>

cone , it obtains
a shape of drilled cone which is marked by V <xyz>

cone (Fig. 7(c)). Subspaces being results
of transformations V <αζρ>

i are marked by V <xyz>
cyl,i and V <xyz>

cone,i .

Figure 8 represents a space V <αζρ>
i in the case when L<1>

i (ρ), L<2>
i (ρ) and the path

{q0(ρ)} are segments of straight lines. Moreover, two corresponding subspaces: V <xyz>
cyl,i

and V <xyz>
cone,i are shown. Figure 9 explains how the subspaces V <xyz>

cyl,i and V <xyz>
cone,i can

fill a cylindrical space and a conical one for both two- and three-directional partitioning.
Below, there are more complicated examples of two-directional partitioning. One can

easily imagine analogous examples for a three-directional case comparing these examples
with Fig. 6. Figure 10(a) illustrates a subspace V <αζρ>

i , which has its path being
a segment of straight line, while L<1>

i (ρ), L<2>
i (ρ) are segments of curves changing
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Fig. 8. From left: an example of a subspace V <αζρ>
i and two corresponding subspaces V <xyz>

cyl,i and
V <xyz>
cone,i .

Fig. 9. Examples of a cylinder space and a cone one filled by subspaces V <xyz>
cyl,i and V <xyz>

cone,i for both
the two- and the three-directional partitioning.

their shapes depending on ρ. Fig. 10(b) shows a subspace V <xyz>
cyl,i being a result of

transformation for the input subspace from Fig. 10(a). Figure 10(c) shows a cylinder
subspace constructed by these same lines L

<1>(ρ)
i , L<2>(ρ)

i and the path being a curve
lying on a plane α = const. In Fig. 10(d) there is a similar example but the path is
a curve lying on a plane ζ = const.

Fig. 10. Examples: (a) a subspace V <αζρ>
i and various subspaces V <xyz>

cyl,i (b, c, d); the front faces
have been removed in order to reveal the interiors.
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Fig. 11. Filling the cylinder interior by subspaces V <xyz>
cyl,i ; left: three models where modules originate

respectively from Fig. 10(b), (c) and (d), right: a three-directional model.

Fig. 12. An example of a subspace V <xyz>
cone,i (left) and the result of filling a cone interior (right).

Figure 11 (left) shows a manner of filling the cylinder space by subspaces V <xyz>
cyl,i

from Fig. 10(b), (c) and (d). Subspaces lying on a certain chosen parastichy PN1
j and

on a certain PN2

k have been distinguished respectively by colors: red and blue, whereas
a subspace located on the intersection of both these parastichies—by yellow. On the
right side of this figure a model with three-directional filling is shown.

Figure 12 shows an example of a certain subspace V <xyz>
cone,i and a result of filling

a cone interior with subspaces similar to V <xyz>
cone,i .
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6. Arranging non-intersecting modules inside a cylinder or a cone

When natural objects having their modules arranged in accordance with the phyllotaxis
rules are modeled, it is often essential for them not to intersect each other. In order to
meet this requirement we can use the idea of subspaces V <αζρ>

i , V <xyz>
cyl,i and V <xyz>

cone,i ,
(i = 0, ±1, ±2,...) discussed in Chapter 5.

Let us associate a certain set M<αζρ>
i , called module, with each subspace V <αζρ>

i .
Assume that the following relation is true:

M<αζρ>
i ⊆ V <αζρ>

i (7)

This relation remains true also after transforming a module M<αζρ>
i into the cylin-

drical space or into the conical one. Thus for a cylinder

M<xyz>
cyl,i ⊆ V <xyz>

cyl,i (8)

and for a cone

M<xyz>
cone,i ⊆ V <xyz>

cone,i (9)

In the case of a cylinder, if we assume that all the modules are congruent, then we can
work out the shape of a module in the space S<αζρ>. Next, after doing the test described
by Eq. (7), we should copy this module and put the duplicates in the appropriate places
of this space. In the end, the whole group of modules is transformed into the cylinder
space.

Alternatively we can work out the shape of a module in the space S<xyz>
cyl , execute

the test in accordance with Eq. (8) and, in the end, copy the module to put its duplicates
in places being occupied by the subspaces V <xyz>

cyl,i . We should remember that it is not
necessary to restrict our activity to the case when modules are congruent to each other,
in contrast to the case of subspaces. It is only essential for each module to satisfy Eq. (8).
This ensures that the area of applications of the described method is wider.

In the case of cones, variants of the procedure are analogous but requirements relating
to congruency of the modules in the space S<xyz>

cyl should be replaced with requirements
relating to the similarity in S<xyz>

cone . In addition, the test described by Eq. (9) should
be applied instead of the test in Eq. (8).

Figure 13 shows objects resembling leaves arranged inside a cylinder. The correspond-
ing subspaces are shown too. Figure 14(a) represents a cylindrical model, consisting of
160 modules with shapes that vary depending on their positions along the z axis. Here,
the subspaces from Fig. 13(d) have been used. Fig. 14(b) represents a conical model
consisting of the same modules. Figure 15 shows a model of inflorescence consisting of
two parts: the upper one—conical and the lower one—cylindrical. Each part contains
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Fig. 13. Two models, (a) and (b), consisting of non-intersecting modules, each resembling a leaf on
a stem, and two sets of subspaces corresponding with these models, shown in (c) and (d),
respectively.

Fig. 14. A cylindrical model (a) consisted of modules having their shapes dependent on the module
position along the model axis, and a conical one (b) consisted of the same modules.
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Fig. 15. On the right, an inflorescence consisting of two parts: the conical upper part and the cylindrical
lower one; on the left, a module is shown in the foreground while in the background we can see
partitioning a cone and a cylinder into subspaces appropriate for this model.

120 non-intersecting modules arranged in concordance with the rules described herein.
Each module consists of a flower, a leaf and a stalk.

To sum up, in order to construct a model, namely the set {M<xyz>
cyl,i } or {M<xyz>

cone,i }
one should perform the following steps:

Begin
1) Determine the phyllotaxis parameters, namely the parameters of the

genetic helix and parameters of parastichies in dependence on a cho-
sen partitioning: two- or three-directional;

2) Determine a path q0(ρ) in the space S<αζρ>;
3) Determine lines L<1>

0 (ρ), L<2>
0 (ρ), and for the three-directional par-

titioning also L<3>
0 (ρ);

4) Construct an area E0(ρ) and next, basing on this area and on the
path, construct a subspace V <αζρ>

0 using the sweep representation
method; choose Variant A, B or C;

Variant A:

5(a) Construct the module M<αζρ>
0 in the manner which satisfies relation

M<αζρ>
0 ⊆ V <αζρ>

0 ;
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6(a) Copy M<αζρ>
0 and arrange duplicates along the axes α and ζ in

accordance with the phyllotaxis parameters, which ensure that each
subspace V <αζρ>

i containing its own module M<αζρ>
i precisely adjoin

its neighboring subspaces;
7(a) Using Eq. (5) or Eq. (6), transform the obtained set of the mod-

ules {M<αζρ>
i } into the cylinder space S<xyz>

cyl or into the cone one
S<xyz>
cone ; Go to L1; (End of Variant A);

Variant B—for a cylinder:
5(b) Using Eq. (5), transform V <αζρ>

0 into the cylinder space S<xyz>
cyl to

obtain V <xyz>
cyl,0 ;

6(b) Construct the module M<xyz>
cyl,0 in the manner which satisfies the re-

lation M<xyz>
cyl,0 ⊆ V <xyz>

cyl,0 ;
7(b) Copy M<xyz>

cyl,0 , next rotate and move in accordance with the phyl-
lotaxis parameters, in order to obtain the set {M<xyz>

cyl,i }; Go to L1;
(End of Variant B);

Variant C—for a cone:
5(c) Using Eq. (6), transform V <αζρ>

0 into the cone space S<xyz>
cone to ob-

tain V <xyz>
cone,0 ;

6(c) Construct the module M<xyz>
cone,0 in the manner which satisfies the re-

lation M<xyz>
cone,0 ⊆ V <xyz>

cone,0 ;
7(c) Copy M<xyz>

cone,0 , next rotate, scale and move in accordance with the
phyllotaxis parameters, in order to obtain the set {M<xyz>

cone,i }; (End
of Variant C);

L1: End

7. Conclusion

The method described in this paper makes it possible to construct modules and arrange
them in accordance with phyllotaxis rules in such a way that they do not intersect each
other. One can create the modules using the conception of a subspace in the space
V <αζρ> or alternatively in the respective spaces V <xyz>

cyl or V <xyz>
cone . A diversity of

shapes is a result of creation subspaces using the so called sweep representation method
by moving a cross-section along a given path. The curvilinear paths are allowed as well
as such cross-sections that change their shapes along the path. The appropriate require-
ments related to the cross-section shape in the space V <αζρ> ensure the congruency of
subspaces inside a cylinder as well as similarity inside a cone and at the same time the
absence of mutual intersections of subspaces. The advantage of the described method
consists in the following: if there is given a certain partitioning into subspaces then one
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can place inside these subspaces modules differing from each other in shapes, as it can be
observed in nature. The method enables us to construct complicated models composed
of certain parts being cylinders and at the same time of other parts being cones (Fig. 15).
This approach can be useful in practical applications. The author hopes that the method
described herein can be applicable to modeling not only modular plants but also other
objects of a cylindrical or conical shape, consisting of regularly arranged modules.
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