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Abstract. In this paper, we present a method of self-calibration of a CCD camera with varying intrinsic
parameters by an unknown planar scene. The advantage of our method is to reduce the number of images
(two images) to estimate the parameters of the camera used. Moreover, the self-calibration equations
become related to the number of matched points (very numerous and easy to detect) and not to the
number of images, because the use of a large number of the images requires a high execution time. On
the other hand, we base on the matched points which are numerous to estimate the projection matrices
and the homographies between images. The latter are used with the images of the absolute conic to
formulate a system of non-linear equations (self-calibration equations depend on the number of matched
couples). Finally, the intrinsic parameters of the camera can be obtained by minimizing a non-linear
cost function proceeding from two steps: initialization and optimization. The experiment results show
the robustness of our algorithms in terms of stability and convergence.

Keywords: self-calibration, equilateral triangle, absolute conic, homography, varying intrinsic
parameters.

1. Introduction

The camera is the main element in many applications of computer vision. The estimation
of camera parameters is an important step in this kind of applications. Generally, the
estimation procedure can be performed according to two strategies. The first is called
the calibration: it consists to determine the intrinsic and extrinsic parameters using a
known object (calibration pattern) [12, 14, 15, 25]. The latter can be three-dimensional
(3D calibration) or plane (2D calibration). The second strategy is called self-calibration.
It allows determining the intrinsic and extrinsic parameters without any prior knowledge
of the scene. Several works are based on the self-calibration of cameras from 3D scenes [4–
8,13,24,31], or they are based on planar scenes [11,18,26,28] to automatically determine
the intrinsic and extrinsic parameters.

In this work, we are interested on the self-calibration of a camera with varying intrin-
sic parameters by any planar scene. We mention that from two points of the 2D scene
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we can obtain an equilateral triangle (the third point of the triangle can be obtained
in a unique way). Our method is based on the rotation of a fixed reference associated
with the planar scene to determine the transformation matrix between the vertices of
the different equilateral triangles. This transformation characterizes the strong point of
our approach. The latter resides in the use of a large number of matches which are the
projections of the points (two vertices of the equilateral triangles) of the planar scene
in the couples of images. This projection is used with the homography matrices to for-
mulate a system of linear equations. The resolution of the latter allows obtaining the
projection matrices. After detecting the interest points by the Harris algorithm [3] and
the matching of these points by the correlation measure ZNCC [16,22], the homography
between the two images is estimated from four matches by using RANSAC algorithm [2].
The relationships between the projection matrices, homographies and the images of the
absolute conic proved a non-linear cost function. The minimization of this function
by the Levenberg-Marquardt [1] allows obtaining the intrinsic parameters of the used
camera.

In addition, the importance of this work resides on the one hand in the use of fewer
images (two images) instead of using more images [10] to estimate the cameras parame-
ters. On the other hand, it resides in the formulation of self-calibration equations from
the matches (numerous and easy to detect) and not of the number of the images (re-
quires a high processing time). The self-calibration steps of our approach are presented
in Figure 1.

The paper is organized as follows: Section 2 presents a survey of related works.
The camera model used in this work and the image of the absolute conic is treated in
Section 3. The vision system is described in Section 4. The tools for self-calibration
are presented in Section 5. The self-calibration equations are elaborated in Section 6.
Experiments are presented in Section 7, and the conclusions in Section 8.

2. Survey of Related Works

In literature we find several methods which treat the problem of self-calibration. Two
categories of these methods can be distinguished: i) the methods that use cameras
characterized by constant parameters. ii) those which use cameras characterized by
varying parameters.

i) With the assumption of constant parameters we find several works. The first major
work of self-calibration was treated in [4], the authors have proposed an algorithm based
on two steps: In the first step, they found the epipolar transformation by the method of
Sturm (this method is based on projective invariants) and the other method is based on
the generalization of the essential matrix. In the second step of the computation, they
used the Kruppa equations [13] which link the epipolar transformation to the image of
the absolute conic. Subsequently, in [7] the authors treated the self-calibration of camera
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Fig. 1. Steps of camera self-calibration

by using the absolute dual quadric to recover the Euclidean structure. With the same
assumption, in [11] the authors have proposed an algorithm based on the projection of
two circular points of the planar scene in each image plan (five images at least), together
with the estimation of the homography between each couple of images to determine the
camera parameters. On the other hand, in [8] the authors have incorporated the so-called
module in the stratification approach to upgrade projective structures to affine and finally
recover the absolute conic and improve structures Euclidean constraint. Further work
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with the same assumption, using 2D or 3D scenes assuming contain specific objects
(parallelogram, circle, triangle...) that allow to exploit some geometric constraints to
estimate camera parameters. For example, in [26], the authors have proposed a method
of self-calibration plane based on the use of a parallelogram. They have used the matched
points to estimate all the projection matrices of this parallelogram. These matrices are
operated with homographies between images to estimate the intrinsic parameters.

ii) In recent years, the researchers have proposed new methods of camera self-
calibration with varying parameters. They have supposed assumptions about the scene
(2D or 3D), camera movement (circular, pure rotation), and intrinsic parameters (zero
skew and known aspect ratio) for estimating the camera parameters. A new method
of self-calibration of camera characterized by the varying intrinsic parameters is treated
in [29]. It is based on the quasi-affine reconstruction. After this reconstruction, the
authors have estimated the homography of the plane at infinity and they have used it
with some constraints on the images of the absolute conic to determine the intrinsic
the cameras parameters. On the other hand, a robust method of self-calibration of the
cameras characterized by varying parameters is treated in [31]. The last method is based
on the projection of three points of the scene on the plans of images and the relation
between the matchings to formulate a non-linear cost function. The resolution of the
latter allows obtaining the intrinsic parameters of the cameras used. In [23] a method of
self-calibration of a camera with varying parameters is based on a circular movement of
the camera. The homography of the plane at infinity is determined from two constraints:
the first considers that rotation angle between two views of the camera is known, and
the second considers that the pixels are square. After obtaining the homography, the
intrinsic camera parameters are easily determined. In [17], the authors have considered
a self-calibration problem of a moving camera whose intrinsic parameters are known,
except the focal length which may vary freely across different views. Furthermore, the
focal length’s values depend only on the camera’s motions. The authors gave a complete
catalog of critical motion sequences, which is used to determine these sequences from
stereo systems with variable focal. With the assumption of varying parameters, in [27]
the authors have presented a practical algorithm for self-calibrating of a camera with
varying intrinsic parameters. For each view, the authors suggest minimizing a non-linear
least square to establish the matrix of intrinsic parameters. The minimization procedure
begins by an initialization to give a first estimate of the focal distance; therefore the esti-
mation of the intrinsic parameters is performed by an algorithm with several iterations.
In each iteration, one parameter is estimated by assuming some constraints on the other
parameters. A recent method [30] is based on relative distances to estimate the camera
parameters. The latter are obtained from the resolution of a non-linear equation system
which is formulated by using the invariant relative distance and the homography that
transforms the projective reconstruction to metric reconstruction.
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The method presented in this work is a development of the work treated in [28]
and almost similar to the work treated in [26] and [31]. In [26] and [28], the authors
considered that the camera used has constant intrinsic parameters and requires at least
three images to calibrate the camera. Moreover, the authors assumed the constraints
τ = 0 and ε = 0. On the contrary, the present method uses any camera (characterized
by varying intrinsic parameters), in addition, two images are sufficient to calibrate the
camera and no constraint on the intrinsic parameters of the camera used. Furthermore,
the only difference between this method and the one treated in [31] resides in the objects
used in planar scenes: the method presented in [31] is based on the projection of a
parallelogram on the plans of images and the relationship between the matches. On the
contrary, the present method is based only on the relations between the vertices of the
triangles used in the planar scene.

3. Camera Model and the Image of The Absolute Conic

Our approach is based on the pinhole model of the camera to transform a point of the
planar scene to its projection in the image.

Fig. 2. Pinhole model of camera
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The projection of each point P of the scene in image i can be described by a 3×4
matrix: Li which is expressed by the following formula:

p ∼ LiP (1)

The matrix Li can be written as follows: Li = Ai(Riti); with:
• (Riti) represents the matrix of extrinsic parameters, where Ri the rotation matrix

and ti is the translation vector in the space.
•Ai is the matrix of intrinsic parameters, which is:

Ai =

 fi τi u0i

0 εifi v0i
0 0 1

 (2)

With, fi represents the focal length for the view i, i = 1 or 2 (in our case), εi is the
aspect ratio, (uoi, v0i) are the coordinates of the principal point in the image i and τi is
the image skew.

The Image of the Absolute Conic (IAC), denoted by ωi, is an imaginary point conic
directly related to the camera internal matrix Ai in formula (2) via ωi =

(
AiA

T
i

)−1:

ωi =
1

ε2i f
4
i

 ε2i f
2
i −τiεifi −u0iε

2
i f

2
i + v0iτiεifi

∗ f2
i + τ2i −v0if

2
i + u0iτiεifi − v0iτ

2
i

∗ ∗ ε2i f
4
i + v20if

2
i + (u0iεifi − τiv0i)

2

 (3)

Where the three lower triangular elements are replaced by “∗” to save space, since ωi

is symmetric. The estimation of intrinsic parameters of the camera used automatically
gives the elements of the matrix ωi and vice versa.

4. Vision System

In this work, we consider an unknown planar scene. On the plan of the scene, we consider
n points Pr, with r = 1 . . . n, or n ∈ N∗ and O is a point different from the points Pr

and it is in the same plane which contains the points Pr. For each segment [OPr],
there exists a unique point Mr in the scene plan such that OPrMr is an equilateral
triangle having an angle PrÔMr > 0. . We associate to each triangle OPrMr a reference
(O,Xr, Yr, Zr) with Pr ∈ (OXr) and (OZr) is perpendicular to the plan containing the
triangle (OPrMr) (Figure 3).

We denote by (O,X1, Y1) the fixed reference in the scene plan. Let (O,Xr, Yr) with
r = 2 . . . n denote moving references according to (O,X1, Y1). These references are
associated with equilateral triangles OPrMr with r = 2 . . . n. They are obtained by a
simple rotation of the fixed reference around (OZ1) axis. In addition to that, the passage
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Fig. 3. Vision system

from fixed reference (O,X1, Y1) to the moving reference (O,Xr, Yr) is performed by using
the rotation matrix which is given as follows:

R(φr) =

 cos(φr) − sin(φr) 0
sin(φr) cos(φr) 0

0 0 1

 , with r = 2 . . . n (4)
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With φr the rotation angle which allows obtaining the moving reference (Figure 4).
Figure 4 shows the system used: the planar scene, the fixed reference, the moving

references and the equilateral triangles.

Fig. 4. System used

The homogeneous coordinates of points Pr, Mr and O in the moving reference
(O,Xr, Yr) are respectively (ar, 0, 1)

T , (ar

2 ,
√
3
2 ar, 1)

T and (0, 0, 1)T . With ar (ar = OPr)
represents the length of the equilateral triangle OPrMr. These coordinates can be rewrit-
ten as follows:

(ar, 0, 1)
T = Sr(1, 0, 1)

T (5)

(
ar
2
,

√
3

2
ar, 1)

T = Sr(0, 1, 1)
T (6)

With:

Sr =


ar

ar
2

0

0

√
3

2
ar 0

0 0 1

 (7)

The coordinates corresponding to points Pr and Mr in the fixed reference can be calcu-
lated as follows: R(φr)Pr and R(φr)Mr.

5. Self-calibration Tools

The self-calibration procedure used in our approach is the following: detecting the in-
terest points by Harris algorithm, setting a matching of the interest points by the corre-
lation measure ZNCC, calculating the homography between images using the RANSAC
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algorithm, determining the projection matrix of the scene by the resolution of a linear
system, and estimating the intrinsic parameters of the camera used by minimizing of a
non-linear cost function.

5.1. Matching and interest points

The matching of the image points can be established in two steps: The first step is to
extract the interest points of the two images i and j. In the literature, there are several
algorithms to extract interest points [3, 9, 20, 21], this article uses the Harris algorithm
[3].The second step is to find for each interest point of the image their correspondent
in the image by measuring correlation ZNCC [16, 22], and then we eliminate the false
matches by using the RANSAC algorithm [2].

5.2. Homography between images

The homography is a 3×3 transformation of matrix linking the matches points between
the images i and j, it is expressed as follows:

pjr ∼ Hijpir (8)

Where pir and pjr are respectively the projection of a point Pr of the scene in the images
i and j. With r = 1 . . . n, Hij is the homography matrix between the images i and j.
The homography matrix is calculated by the RANSAC algorithm [2]. The latter allows
estimating the geometric entity (homography) from four matches between the images i
and j.

5.3. Projection matrices of the segments [OPr]

The objective of this section is to estimate the projection matrices Lir and Ljr for each
segment [OPr] of the scene, in the two images i and j (Figure 5). Knowing that the
degree of freedom of these matrices is eight, therefore, we need at least eight equations
to calculate these two matrices which will be used in the self-calibration equations.

The projection of the different points expressed in the fixed reference of the scene in
the images i and j is given by the formula (1). The coordinates of the points Pr in the
fixed reference are given by R(φr)Pr, and they are given by Sr(1, 0, 1)

T in the moving
reference (O,Xr, Yr).

The projection of the points O,P1, P2, . . . , Pn in the images i and j is performed by
the following formulas:

Image i ⇒
{

(ui0, vi0, 1)
T ∼ Lir(0, 0, 1)

T

(uipr
, vipr

, 1)T ∼ Lir(1, 0, 1)
T (9)

Image j ⇒
{

(uj0, vj0, 1)
T ∼ Ljr(0, 0, 1)

T

(ujpr
, vjpr

, 1)T ∼ Ljr(1, 0, 1)
T (10)
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Fig. 5. Projection of points of the scene in the images i and j

With the points (ui0, vi0, 1)
T and (uipr

, vipr
, 1)T are respectively the projection of the

points O and Pr in the image i, the points (uj0, vj0, 1)
T and (ujpr

, vjpr
, 1)T are respec-

tively the projection of the points O and Pr in the image j and Lir, Lir represent the
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projection matrices of the points (O,Pr) in the images i and j respectively, they are
expressed as follows:

Lir = AiRi

 1 0
0 1 RT

i ti
0 0

R(φr)Sr (11)

Ljr = AjRj

 1 0
0 1 RT

j tj
0 0

R(φr)Sr (12)

With R(φr) and Sr are given respectively by the formulas (4) and (7).
Let S∗ denotes the matrix is defined as follows: S∗

r = R(φr)Sr. Using the formulas
(4) and (7), S∗

r can be expressed as follows:

S∗
r =


ar cos(φr)

ar
2

cos(φr)−
√
3

2
ar sin(φr) 0

ar sin(φr)
ar
2

sin(φr) +

√
3

2
ar cos(φr) 0

0 0 1

 (13)

The matrices Hi = AiRi

 1 0
0 1 RT

i ti
0 0

 and Hj = AjRj

 1 0
0 1 RT

j tj
0 0

 are

respectively the homographies which permit to project the plane of the scene, in the
images i and j, therefore the formulas (11) and (12) become:

Lir = HiS
∗
r (14)

Ljr = HjS
∗
r (15)

From Equations (14) and (15) we deduce that:

Ljr = HijLir (16)

With Hij is the homography between the images i and j such that:

Hij = HjH
−1
i (17)

From the formulas (11), (12) and (13) we can deduce that:

Lir = AiRi(GrR
T
i ti) (18)

Ljr = AjRj(GrR
T
j tj) (19)
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With:

Gr =


ar cos(φr)

ar
2

cos(φr)−
√
3

2
ar sin(φr)

ar sin(φr)
ar
2

sin(φr) +

√
3

2
ar cos(φr)

0 0

 (20)

The formula (9) gives four equations according to the Lir elements.
The formulas (10) and (16) give:{

(uj0, vj0, 1)
T ∼ HijLir(0, 0, 1)

T

(ujpr
, vjpr

, 1)T ∼ HijLir(1, 0, 1)
T (21)

The system (21) gives four other equations according to the Lir elements;
Therefore, we can obtain the eight Lir elements from expressions (9) and (21).
The Ljr projection matrix is estimated from the formula (16).

6. Camera Self-Calibration

The expression (18) gives:
A−1

i Lir = Ri(GrR
T
i ti) (22)

The formula (22) can be written as follows:

LT
irωiLir =

(
GT

r Gr GrR
T
i ti

tTi RiGr tTi ti

)
(23)

With ωi = (AiA
T
i )

−1 is the projection of the absolute conic (Ω ∼ I3) in the image i.
Proceeding in the same way, we can show that:

LT
jrωjLjr =

(
GT

r Gr GrR
T
j tj

tTj RjGr tTj tj

)
(24)

With ωj = (AjA
T
j )

−1 is the projection of the absolute conic (Ω ∼ I3) in the image j.
The expression (20) gives:

GT
r Gr =

 a2r
a2r
2

a2r
2

a2r

 (25)

From the formulas (23) and (24) we can deduce that the four upper left coefficients
(GT

r Gr) of LT
irωiLir and LT

jrωjLjr are identical.
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We note by Qir and Qjr the matrices that represent respectively the four upper left
coefficients (GT

r Gr) of the two matrices LT
irωiLir and LT

jrωjLijr.
From expressions (23) and (24), we conclude that:

Qir ∼ Qjr (26)

We put:

Qir =

(
q1ir q2ir
q2ir q1ir

)
(27)

and
Qjr =

(
q1jr q2jr
q2jr q1jr

)
(28)

From the equations (26), (27) and (28) we can deduce the following equalities between
images i and j:

q1ir
q2ir

=
q1jr
q2jr

with r = 1 . . . n (29)

Where n represents the number of matches between images i and j.
The expression (29) gives:

q1irq2jr − q1jrq2ir = 0 with r = 1 . . . n (30)

Therefore, for each couple (pir, pjr), we obtain one equations. Then we need at least
ten matching couples to estimate the ten parameters of the camera used. Indeed, with
this approach we detect an important number of matched points couples (n matches)
which provides a large number of equations (n equations). Furthermore, the importance
of this approach lies in the fact that the self-calibration equations become related to the
couples of the matched points.

The system (30) is non-linear; therefore, we will minimize the following non-linear
cost function:

min
(ωi,ωj)

m−1∑
i=1

m∑
j=i+1

n∑
r=1

(q1irq2jr − q1jrq2ir)
2 (31)

With m represents the number of images, and n represents the number of matches.
To solve the function (31) we use the Levenberg-Marquardt algorithm [1]. The latter

requires an initialization step. For this, we assume that some conditions are satisfied on
the vision system.
•The pixels are squared therefore εi = εj = 1 and τi = τj = 0.
•The principal point is in the center of the images, therefore: u0i = v0i = u0j = v0j =
256 (because the size of images used is 512×512). And the focal lengths (fi, fi) are
estimated from the expression (30) (by replacing the parameters by their values in
this expression).
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7. Experimentation

7.1. Simulations

In this section, we realize a simulation of a sequence of ten 512×512 images of an unknown
planar scene to show the performance and robustness of our approach. We estimated
the camera parameters by a classical method of calibration from a planar pattern, the
parameters obtained are as follows: f = 1230, ε = 0.93, u0 = 261 and v0 = 254. In the

Fig. 6. Relative error on u0 (%) according to number of images

Fig. 7. Relative error on v0 (%) according to number of images
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Fig. 8. Relative error on f (%) according to number of images

Fig. 9. Relative error on τ (%) according to number of images

first time, we have carried the detection of interest points by Harris algorithm [3], and we
have matched these points by the ZNCC correlation function [16,22] aiming to estimate
the homographies (from the 4 matches) between couples of images by the RANSAC
algorithm [2]. These homographies are used with the projection of the planar scene
points in the images to determine the different projection matrices. The resolution of a
non-linear equation system which is formulated from the points of the planar scene and
its projections in the images (the matches) by Levenberg-Marquardt algorithm [1] allows
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Fig. 10. Relative error on ε (%) according to number of images

Fig. 11. Relative error on (u0, v0, ε, τ) and f (%) according to Gaussian noise

to treat the intrinsic parameters of the different cameras used. For this, we compare our
method with two other efficient methods which are Triggs [11] and Jiang [29]. In this
simulation, we discussed the influence of the number of images used on the relative errors
corresponding to u0, v0, ε, τ and f (represented respectively in Figures 6, 7, 8, 9 and
10) by our approach and the approaches of Triggs [11] and Jiang [29].

We also carry out a second simulation to test the performance of our method with
respect to noise. To do this, we add to all image pixels a Gaussian white noise with
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standard deviation σ (0 < σ ≤ 4.5) with a step of 0.5. For each noise level, we calculate
the relative errors corresponding to u0, v0, ε and f (represented in Figure 11) by our
approach.

7.2. Analysis of the simulations

The Figures 6, 7, 8, 9 and 10 show that relative errors corresponding to u0, v0, ε, τ and
f determined by our method decrease almost linearly if the number of images is between
2 and 5. They decrease slowly when the number of images used is between 5 and 8.
They become almost stable if the number of images exceeds 8, but when the number of
images increases, the parameters to be estimated become very numerous. Consequently,
the calculations become more complex, which allows increasing the program execution
time.

On the other hand, the Figure 11 shows that the relative errors to u0, v0, ε, τ and f
remain almost stable when the noise value is between 0 and 2.5. They increase slowly if
the noise is between 2.5 and 3.5, and they increase quickly if the noise becomes greater
than 3.5.

The analysis of the results obtained in Figures 6, 7, 8, 9 and 10, shows that the relative
errors corresponding to the parameters u0, v0, ε, τ and f obtained by our method are
similar to those calculated by the method of Jiang [29], and they are a little different
to those obtained by the method of Triggs [11]. Triggs uses more than four images to
estimate the intrinsic parameters. On the contrary, our method estimates the parameters
of the camera used from two images only.

7.3. Real data

Ten 512×512 images of an unknown planar scene are taken by a digital camera char-
acterized by varying parameters from different views to confirm the robustness of the
approach presented in this paper. Two (among ten) are shown in Figure 12(a). The
interest points and the matches between these two images are shown respectively in
Figure 12(b) and Figure 12(c).

For the choice of equilateral triangles in the images shown in Figure 12(c), we denote
by (oi, oj) a matching between the images i and j, such that (oi, oj) are the projections
of the origin of the fixed reference in the images i and j. Moreover, let (pri, prj) a couple
of matching between the images i and j such that pri and prj are the projections of the
second vertex of the triangle respectively in the images i and j. There exists a unique
point Mr in the scene plan such that OPrMr is an equilateral triangle, the point Mr is
not used in practice (we only projected two points o and Pr in the images, because their
correspondents in these images represent a couple of matching).

In our approach, the estimation of the intrinsic parameters is based on the couples of
matched points. To obtain efficient solutions, we have performed a regularization phase.
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(a)

(b)

(c)

Fig. 12. (a) The two images of the planar scene. (b) The interest points detected by Harris. (c)
The matches between the couple of images.
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Indeed, the couples of matched points in this phase contain false matches; we eliminate
them by the constraint that checks the formula (8).

The projection of the points of the planar scene in the two images allows estimating
the geometric entities (the homographies and the projection matrices). Afterwards, the
solution of a non-linear system of equations (formula (31)) allows estimating the elements
the image of the absolute conic and finally the intrinsic parameters of the camera.

The Table 1 below represents the intrinsic parameters estimated by our approach.

Tab. 1. The Results of Intrinsic Camera Parameters Estimated by the Two Methods

f ε τ u0 v0

The
present
method

Image 1 1237 0.93 0.04 258 262
Image 2 1233 095 0.03 260 254
Image 3 1247 0.92 0.01 253 259
Image 4 1251 0.94 0.02 257 261

Jiang

Image 1 1249 1 0 251 259
Image 2 1243 0.93 0.05 263 261
Image 3 1255 0.95 0.02 259 264
Image 4 1267 0.91 0.04 251 260

According to the experiments results on real data: the two images presented in
Figure 12(a) and the eight other images, we conclude that our approach gives the results
closer to those obtained by Jiang [29].This shows, on the one hand, the accuracy of the
approach presented in this present work. In the other hand, our algorithms converge
rapidly to the optimal solution, because we estimated the five parameters of the camera
for each view, knowing that we did not use any constraint on the intrinsic parameters of
the camera, on the contrary, Jiang assumes that τ = 0 and ε = 1 in the first image. These
constraints influence directly the results of self-calibration. Our method and Jiang’s can
calibrate the camera from only two images, but the suggested method presents the
advantage does not require any constraint on the self-calibration system, compared to
Jiang method which requires the constraints on intrinsic parameters of the camera.

8. Conclusion

In this work, the problem of the self-calibration of cameras with varying intrinsic pa-
rameters has been addressed by using an unknown planar scene. This approach is based
on the use of equilateral triangles assumed in the planar scene and the transformation
matrix between them. The projection of vertices of equilateral triangles in the planes of
the images and , and the relationship between images of absolute conic for each pair of
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images allow formulating a non-linear cost function. The minimization of this function
by the Levenberg-Marquardt algorithm provides the intrinsic parameters of the cam-
eras used. The advantages of this method are the use of any camera (no constraints
on the intrinsic parameters) and two images of the planar scene are sufficient to cali-
brate the cameras used. The found experiments results are satisfactory, which shows the
robustness and reliability of our approach.
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