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Abstract. Perceptual quality assessment of 3D triangular meshes is crucial for a variety of applica-

tions. In this paper, we present a new objective metric for assessing the visual difference between a

reference triangular mesh and its distorted version produced by lossy operations, such as noise addition,

simplification, compression and watermarking. The proposed metric is based on the measurement of

the distance between curvature tensors of the two meshes under comparison. Our algorithm uses not

only tensor eigenvalues (i.e., curvature amplitudes) but also tensor eigenvectors (i.e., principal curva-

ture directions) to derive a perceptually-oriented tensor distance. The proposed metric also accounts

for the visual masking effect of the human visual system, through a roughness-based weighting of the

local tensor distance. A final score that reflects the visual difference between two meshes is obtained

via a Minkowski pooling of the weighted local tensor distances over the mesh surface. We validate the

performance of our algorithm on four subjectively-rated visual mesh quality databases, and compare the

proposed method with state-of-the-art objective metrics. Experimental results show that our approach

achieves high correlation between objective scores and subjective assessments.

Key words: 3D triangular mesh, perceptual quality, human visual system, objective metric, cur-

vature tensor, visual masking.

1. Introduction

Three-dimensional (3D) triangular meshes have become the de facto standard for digital
representation of 3D objects, and by now have found wide use in various applications,
such as digital entertainment, medical imaging and computer-aided design [30]. As a rule,
3D triangular meshes undergo some lossy operations, like simplification, compression and
watermarking. Although these operations are necessary to speed up and facilitate the
transmission, storage and rendering of 3D meshes, or to enforce the copyright protection,
they inevitably introduce distortion to the original, unprocessed mesh. However, such
distortion might degrade the quality of service associated with the mesh model. Since
end users of 3D triangular meshes are often human beings, it is thus important to derive
some means to faithfully evaluate the degree of visual distortion introduced to a 3D mesh.
Directly asking human subjects to evaluate the visual distortion is obviously unpractical
in most real-world applications, as such subjective evaluation is time-consuming and

Machine GRAPHICS & VISION 23(1/2):59–82, 2014. DOI: 10.22630/MGV.2014.23.1.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2014.23.1.4
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costly. Therefore, it is necessary to develop objective metrics (i.e., software tools) that
can accurately predict the result of a subjective visual quality assessment of the for 3D
triangular meshes [39].

Although during the last decade we have seen tremendous advance in objective image
visual quality assessment [19, 34], the research on objective mesh visual quality (MVQ)
assessment is still at its early stage, with very few metrics proposed [39]. A possible
way to evaluate the perceptual quality of 3D meshes is to apply image quality metrics
on 2D images generated through 3D model rendering under several pre-selected viewing
positions. The first problem with this so-called image-based approach is how to select
the viewing positions that the 2D image projections are generated from. In our opinion,
a both optimum and automatic selection of such viewing positions is a very difficult
problem in itself. Furthermore, researchers wonder whether it is appropriate to use 2D
image quality metrics to evaluate the visual quality of 3D meshes. In order to answer
this question, Rogowitz and Rushmeier [10] investigated the reliability of the image-
based approach by conducting a series of experiments to compare the perceived quality
of simplified 3D meshes (as presented in a series of continuous viewing positions) and of
their corresponding 2D image projections. The experimental results seem to imply that
the perceptual quality of 3D meshes is in general not equivalent to the visual quality of
their 2D image projections.

Inspired and motivated by the results of Rogowitz’s and Rushmeier’s experiments,
the research community is now paying more attention to the development of model-based
MVQ metrics. This approach suggests that it would be more reasonable to relate MVQ
directly to the 3D shape of the mesh model than to its 2D image projections. Similarly
to the fact that PSNR (peak signal-to-noise ratio) and MSE (mean squared error) fail
to capture the visual quality of an image [29], it is not surprising to see that classical
mesh geometric distances (e.g., root mean squared error and Hausdorff distance) [6, 11]
have been demonstrated to be irrelevant to human visual perception, and thus failing to
predict the visual difference between an original mesh (also called reference mesh) and
the distorted one [39]. In Fig. 1, we show an example where the Hausdorff distance (HD)
fails to provide correct MVQ assessments: The Hausdorff distance between the original
mesh in Fig. 1(a) and the distorted mesh in Fig. 1(b) is smaller than that between the
original mesh and the distorted mesh in Fig. 1(c); however, connversely, the model of
Fig. 1(c) has obviously better perceptual quality than the one shown in Fig. 1(b).

In order to develop an effective objective MVQ metric, it is necessary to make use of
perceptually relevant features, and take into account some important properties of the
human visual system (HVS). In this paper, we choose surface curvature amplitudes and
principal curvature directions as perceptually relevant features. As discussed later, both
features are important properties of the mesh surface that can be derived from eigende-
composition of the curvature tensor. Meanwhile, we integrate some HVS properties in
the metric, in particular the visual masking effect. In the case of MVQ assessment and
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(a) (b) (c)

Fig. 1. (a) Original Bimba model; (b) distorted Bimba with noise added in smooth regions;
and (c) distorted Bimba with noise added in rough regions. The distortions introduced
for Hausdorff distances (HD) [6, 11] and TPDM (Tensor-based Perceptual Distance
Measure, proposed in this paper) are given below the distorted models.

as illustrated in Fig. 1, this effect mainly means that distortions in mesh surfaces are
usually more visible in smooth regions than in rough regions. This paper is an extension
of the earlier work presented in [36], and our contributions can be summarized as follows.

• Development of an effective model-based approach to the assessment of visual mesh
quality based on a novel distance measure between mesh curvature tensors.

• Use of not only curvature amplitudes, but also of principal surface directions (which
have been shown perceptually important, as discussed later) to define the curvature
tensor distance.

• Integration of some HVS features in the metric: We introduce a roughness-based
weighting of the local curvature tensor distance to simulate the visual masking
effect, and a processing step similar to the divisive normalization transform to
mimic an important neural mechanism, known as adaptive gain control [27, 34].

• The source code of our MVQ metric is freely available on-line at: http://www.

gipsa-lab.fr/~fakhri.torkhani/software/TPDM.rar.

The proposed metric, named TPDM (Tensor-based Perceptual Distance Measure),
has been extensively tested on four subjectively-rated visual mesh quality databases,
and has been compared with state-of-the-art objective MVQ metrics. The experimental
results show that our metric achieves high correlation between objective scores and sub-
jective assessments. As a simple example to illustrate its effectiveness, TPDM provides
perceptually coherent assessments for the visual quality of the distorted meshes shown
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in Figs. 1(b) and 1(c) (a lower TPDM value implies a better visual quality of the dis-
torted model): The TPDM distance between the original mesh and the distorted mesh in
Fig. 1(b) is 0.88, while that between the original mesh and the distorted mesh in Fig. 1(c)
is 0.38. The proposed metric has the potential to be used, for instance, in the bench-
marking of a variety of mesh processing algorithms (e.g., compression, watermarking,
remeshing, etc.), or to guide the design of new perceptually-oriented algorithms.

The remainder of this paper is organized as follows. Related work on model-based
MVQ assessment and our motivation for the design of TPDM are presented in Section 2.
Section 3 details the pipeline of the proposed MVQ metric. The experimental results are
presented in Section 4, including performance evaluation of TPDM , comparison with
state-of-the-art MVQ metrics, and two simple examples to illustrate potential applica-
tions of the proposed metric. Finally, we draw the conclusion and suggest several future
work directions in Section 5.

2. Related Work and Motivation

2.1. Model-based MVQ assessment

During the last decade, there has been increasing interest in the research on perceptual
quality assessment of 3D meshes. To our knowledge, the first perceptually-oriented
model-based MVQ metric was introduced by Karni and Gotsman [9] for the evaluation
of their mesh compression algorithm. That metric is actually a weighted combination of
root mean squared errors in vertex positions and errors in mesh Laplacian coordinates.
Based on the fact that the local smoothness measure has a more important visual effect,
Sorkine et al. [14] enhanced Karni and Gotsman’s metric by assigning a greater weight
to the errors in mesh Laplacian coordinates. Although initially proposed as by-products
for evaluating mesh compression algorithms, these two metrics have triggered promising
studies focusing on the perceptual quality assessment of 3D meshes.

Corsini et al. [22] developed two perceptual metrics for the visual quality assessment
of watermarked meshes, named, respectively, 3DWPM1 and 3DWPM2. The visual
distortion is evaluated in these two metrics as the roughness difference between the
original and watermarked meshes. Two roughness measures were proposed: The first
one is based on statistics (within multiscale local windows) of dihedral angles over the
mesh surface, while the second roughness measure is defined as the geometric difference
between a mesh model and its carefully smoothed version.

A physically-inspired MVQ metric was proposed by Bian et al. [25]. They considered
3D meshes as objects with elasticity, and assumed that the visual difference between a
pair of meshes is related to the strain energy that is required to induce the deformation
between them. It was shown in [25] that this metric was effective in assessing small
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visual differences between meshes with constant connectivity (i.e., the same adjacency
relationship between the bmesh vertices).

The research on MVQ assessment could benefit from the much more fruitful literature
on image visual quality assessment. Following this line of research, Lavoué et al. [17]
proposed a metric called structural mesh distortion measure (MSDM ), which can be
considered as an extension of the well-known structure similarity index for 2D images [16]
to the case of 3D triangular meshes. MSDM relates the visual degradation to the
alteration of local statistics (i.e., mean, variance and covariance) of mesh curvature
amplitudes. An improved multiscale version MSDM2 [32] has been proposed, which also
integrates a vertex matching preprocessing step to allow the comparison of two meshes
with different vertex connectivities.

Váša and Rus [37] proposed a dihedral angle mesh error (DAME ) metric to compare
triangular meshes sharing the same connectivity. DAME relies on the oriented surface
dihedral angles to evaluate the perceptual distortion, and integrates the visual masking
effect, as well as the visibility model which accounts for the probable viewing positions
and directions of the models to be compared. This metric is computationally efficient,
and has a good correlation with subjective assessment.

Recently, Wang et al. [38] introduced the fast mesh perceptual distance (FMPD)
measure. This metric is based on a local roughness measure derived from the Gaussian
curvature of the mesh surface. FMPD estimates the perceptual distance as the differ-
ence between the global roughness values of the two meshes under comparison. There-
fore, the metric does not require a mesh correspondence or registration preprocessing
step, and can be applied to compare meshes with different connectivities. FMPD is in
essence a reduced-reference metric, since only the global roughness of the original mesh
and some parameter values are required to carry out the visual quality assessment of a
distorted mesh. In contrast, full-reference MVQ metrics, such as MSDM , MSDM2 and
DAME , require the availability of full information about the original mesh.

A summary of the most representative model-based MVQ metrics, along with our
TPDM metric, is presented in Tab. 1. In that table, we also list two popular mesh geo-
metric distances RMS (root mean squared error) and HD (Hausdorff distance). Despite
their poor correlation with human visual perception [39], nowadays RMS and HD are
still largely used in the evaluation of various mesh processing algorithms. The metrics
are summarized according to three different algorithmic aspects: the mesh feature used
for MVQ assessment, the information about the reference mesh required (i.e., whether
the metric is classified as full-reference or reduced-reference one), and whether the metric
requires the two meshes under comparison to have the same connectivity. Quantitative
comparisons of these metrics are presented in Section 4.
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Tab. 1. Summary of model-based mesh perceptual quality metrics.

Metric Feature
Information about Connectivity
reference mesh constraint

RMS [6, 11] Surface-to-surface distance Full-reference No

HD [6, 11] Surface-to-surface distance Full-reference No

3DWPM [22] Global roughness Reduced-reference Yes

MSDM [17] Curvature amplitude Full-reference Yes

MSDM2 [32] Multiscale curvature amplitude Full-reference No

DAME [37] Dihedral angle Full-reference Yes

FMPD [38] Global roughness Reduced-reference No

TPDM Curvature tensor distance Full-reference No

2.2. Motivation for tensor-based MVQ assessment

MSDM2 has a good correlation with subjective scores [32], though by considering only
the modification in mesh curvature amplitudes. We argue that a modification in the
principal surface directions as defined by the orthogonal directions of minimum and max-
imum curvatures is also important for MVQ assessment. As shown in Fig. 2, maximum
and minimum curvature directions represent salient structural features of the surface
and thus should be visually important. Indeed, when drawing a 3D object, one strategy
of caricaturists is to draw strokes on these lines of curvatures [23]. For example, we may
expect that the drawings of either trained artists or untrained amateurs, when asked to
complete a line drawing of the Bimba model shown in Fig. 2(a), would be similar to the
images shown in Figs. 2(b) and 2(c). The perceptual importance of principal surface di-
rections have been noticed by computer graphics and geometry processing experts: They
have been successfully used for describing [3] and illustrating [8] complex 3D objects, as
well as for guiding a high-performance anisotropic remeshing algorithm [12].

Motivated by the above observation, in this paper we introduce a new MVQ metric
TPDM which makes use of more information that can be extracted from mesh curvature
tensors, i.e., both the curvature amplitudes and the principal surface directions. In
Section 4, we will show that experimentally our tensor-based metric achieves a high
correlation with the subjective scores of mesh visual quality. In particular, the use
of information on principal surface directions in TPDM appears to help improve the
assessment performance when compared to the state-of-the-art metric MSDM2 that
uses only curvature amplitudes. Before presenting the technical details of the proposed
metric in Section 3, in the next subsection we will briefly introduce a technique for the
estimation of mesh curvature tensors, and explain how to obtain curvature amplitudes
and principal curvature directions from the tensor.
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(a) (b) (c)

Fig. 2. (a) Bimba’s model; (b) maximum curvature directions of Bimba scaled by maximum
curvature values; and (c) minimum curvature directions of Bimba scaled by minimum
curvature values.

Fig. 3. Geometric elements used to compute the curvature tensor.

2.3. Curvature tensor estimation

Estimation of the mesh curvature tensor is a well-researched problem. So far, the most
popular estimation technique has been the one from Cohen-Steiner and Morvan [13].
Based on the solid foundation of normal cycle theory, they derived an elegant per-vertex
curvature tensor estimation. Tensors computed on edges are averaged on a geodesic disk
window B of user-defined size to obtain the curvature tensor T on each vertex v:

T (v) =
1

|B|
∑

edges e

β (e) |e ∩B| ē ēt, (1)

where |B| is the area of the geodesic disk, β (e) is the signed angle between the normals of
the two triangles incident to edge e, |e ∩B| is the length of the part of e inside B, ē and
ēt are the unit vector in the direction of e and its transpose (cf. Fig. 3), respectively. The
minimum and maximum curvature amplitudes (denoted by κmin and κmax), respectively)
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Fig. 4. Block diagram of the pipeline of TPDM (Tensor-based Perceptual Distance Measure).
In the roughness map within the block of “Step 3: Roughness-based weighting”; warmer
colors represent larger values (i.e., where the local surface is rougher).

are the absolute values of the two non-zero eigenvalues of the tensor T , and the principal
surface directions are the associated two eigenvectors (denoted by 3D vectors γmin and
γmax, respectively). In Section 3, we will derive a perceptually-oriented distance between
curvature tensors by incorporating the information from both their eigenvalues and their
eigenvectors, and will use this distance to conduct the MVQ assessment.

3. MVQ Assessment Based on Curvature Tensor Distance

An overview of the processing pipeline for the proposed MVQ metric TPDM is illus-
trated in Fig. 4. First of all, in order to compare two meshes with potentially different
connectivities, we perform a preprocessing step of vertex matching between the two
meshes under comparison, based on the AABB tree data structure implemented in the
CGAL library [35]. The objective of this step is to find, for each vertex of the reference
mesh, a corresponding point on the surface of the distorted mesh. The second step is
to compute a curvature tensor at each vertex of the two meshes, and then to derive the
distance between the tensors of each vertex in the reference mesh and its counterpart
in the distorted mesh. Both the curvature amplitudes and the principal curvature di-
rections are involved in the tensor distance calculation. Before this local tensor distance
computation, a correspondence relationship has to be established between the principal
curvature directions and the curvature amplitudes of the two tensors to be compared,
so as to determine for each vertex how to exactly calculate the tensor distance. In the
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Fig. 5. Projection of a vertex vi of the reference mesh Mr onto the surface of the distorted mesh
Md. Here the projection is v′i, a point on the triangular facet that is constituted of v′i,1,
v′i,2 and v′i,3. For the sake of simplicity, we only show one single facet in Mr and in Md.

third step, this local tensor distance is weighted by two roughness-based factors in order
to account for the visual masking effect of HVS, which is vital for conducting a correct
MVQ assessment. In the fourth and last step, we use a surface-weighted Minkowski
pooling of the local TPDM distances to obtain a global TPDM value. In what follows,
we will present the technical details of each of the four steps.

3.1. Vertex matching preprocessing

In order to establish the correspondence between the vertices of the two meshes, analo-
gously as in the preprocessing step in MSDM2 [32], we use the AABB tree data structure
implemented in the CGAL library [35] to perform a fast and simple vertex projection
from the reference mesh Mr to the surface of the distorted mesh Md. As a result of this
matching step, each vertex vi in Mr is assigned a corresponding point v′i on the surface
of Md. Note that v

′
i is in general not a vertex of Md, but a point on a certain triangular

facet T ′
i of Md composed of three vertices v′i,1, v

′
i,2 and v′i,3 (cf. Fig. 5). In this general

case, the local TPDM distance associated to vi, denoted by LTPDM vi , is computed as
the barycentric interpolation [2] of the three local perceptual distances, between vi and
v′i,1, vi and v′i,2, and finally vi and v′i,3, respectively:

LTPDM vi =

3∑
k=1

bk (v
′
i)LPDvi,v′

i,k
, (2)

where LPDvi,v′
i,k

is the local perceptual distance between vi and the k-th vertex of the

triangular facet T ′
i that contains the projection v′i, and bk (v

′
i) is the k-th barycentric

coordinate [2] of v′i within T ′
i . The next two subsections focus on how to derive the local

perceptual distance LPDvi,v′
i,k
.
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3.2. Local tensor distance

The derivation of the local perceptual distances LPDvi,v′
i,k

is based on the local tensor

distances between vi and v′i,k, denoted by LTDvi,v′
i,k

for k = 1, 2, 3. For this purpose,

we first estimate the curvature tensors at each vertex of Mr and Md. The tensors on
the two vertices vi and v′i,k are hereafter denoted by Tvi and Tv′

i,k
, respectively. They

are computed using Equation (1), with a local window established as the intersection of
the mesh surface and the Euclidean sphere [13] that is centered on the vertex and has,
experimentally, a radius equal to 0.5% of the bounding box diagonal of Mr.

As mentioned earlier, we want to use the differences between both the curvature
amplitudes (i.e., tensor eigenvalues) and the principal curvature directions (i.e., tensor
eigenvectors) to derive the local tensor distance. We should first of all decide between
which curvature amplitudes/directions we will compute the differences. The straightfor-
ward choice is to derive the difference between the minimum curvature of Tvi and the
minimum curvature of Tv′

i,k
(the same for the differences in the maximum curvature am-

plitudes, in the minimum curvature directions and inthe maximum curvature directions).
Then we can combine the obtained four differences to derive the local tensor distance.
However, we find that this simple “min→min, max→max” correspondence between the
tensor elements results in poor MVQ assessments, especially in the situations where
the principal directions are severely disturbed after medium and strong distortions, and
where the mesh contains a large portion of locally isotropic regions (in these regions, the
values of minimum and maximum curvature amplitudes are close to each other, so that
the minimum and maximum curvatures may change roles even after small-amplitude
distortions).

Motivated by this observation, we adopt another rule for establishing the correspon-
dence relationship between the curvature amplitudes/directions of Tvi and Tv′

i,k
, which

is based on the minimum angular distance criterion between the principle curvature
directions. More precisely, for γmin (i.e., the minimum curvature direction) of Tvi , we
find the principal direction of Tv′

i,k
that has the smallest angular distance to it (this

direction is denoted by γ′
1), and then relate γmin to γ′

1. Accordingly, κmin (i.e., the
minimum curvature amplitude) of Tvi is related to the curvature amplitude associated
to γ′

1 (denoted by κ′
1). That is, if γ

′
1 is the minimum (or maximum) curvature direction

of Tv′
i,k
, then κ′

1 is the minimum (or maximum) curvature amplitude of Tv′
i,k
. Under the

proposed correspondence rule, γ′
1 can be either the minimum or the maximum curvature

direction of Tv′
i,k
, as long as this minimum or maximum curvature direction has the

smallest angular distance to γmin. Similarly, the following correspondence relationships
are established: κmax → κ′

2 and γmax → γ′
2. It is easy to see that γ′

1 and γ′
2 (and κ′

1 and
κ′
2, respectively) are distinct principal curvature directions (distinct principal curvature

amplitudes, respectively) of Tv′
i,k
. In practice, the above correspondence, which is based
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on the minimum angular distance criterion, yields better MVQ assessment results than
the straightforward “min→min, max→max” correspondence discussed above.

The local tensor distance is computed for each pair of vi and v′i,k as

LTDvi,v′
i,k

=
θmin

(π/2)
δκmin +

θmax

(π/2)
δκmax , (3)

where θmin ∈ [0, π/2] is the angle between the curvature lines of γmin and γ′
1 (similarly,

θmax ∈ [0, π/2] is the angle between the lines of γmax and γ′
2), and δκmin

is a Michelson-

like contrast [1] of the curvature amplitudes κmin and κ′
1, i.e., δκmin

=
∣∣∣ κmin−κ′

1

κmin+κ′
1+ε

∣∣∣ with
ε a stabilization constant fixed as 5% of the avarage mean curvature of Mr (similarly,

δκmax
=
∣∣∣ κmax−κ′

2

κmax+κ′
2+ε

∣∣∣). Both the differences in the curvature amplitudes and in the

principal surface directions are involved in the derivation of the local tensor distance.
Besides its perceptual relevance [4, 5], another reason to use the Michelson-like contrast
to evaluate the difference between curvature amplitudes is that in this way both the
difference the principal directions (after the normalization by a factor of π/2) and in the
curvature amplitudes are in the same range of [0, 1], so that these two kinds of differences
can be easily combined together.

3.3. Roughness-based weighting of local tensor distance

For the development of an effective MVQ metric, we should take into account some
HVS features, in particular the visual masking effect [20]. In the context of MVQ
assessment, this effect mainly means that the same distortion is less visible in rough
regions of the mesh surface than in the smooth regions. In order to account for the visual
masking effect, our solution is to modulate the values of LTDvi,v′

i,k
by two roughness-

based weights (the rougher the local surface is, the smaller the weights are). The local
perceptual distance between vi and v′i,k, which incorporates the visual masking effect, is
computed as:

LPDvi,v′
i,k

= RW
(γ)
i .RW

(κ)
i .LTDvi,v′

i,k
, (4)

with RW
(γ)
i , RW

(κ)
i ∈ [0.1, 1.0]. They are, respectively, the roughness-based weights

derived from the principal surface directions and the curvature amplitudes in the 1-ring

neighborhood of vi. For RW
(γ)
i , we first project all the principal curvature directions

at the 1-ring neighbors of vi on the tangent plane of vi, and then take the sum of the
two angular standard deviations of the projected minimum and maximum curvature di-
rections as the local roughness value. This value is then linearly mapped to [0.1, 1.0] to

obtain RW
(γ)
i : The higher the sum of the two angular standard deviations is, the lower

the mapped value is. Similarly, to get RW
(κ)
i , we compute the ratio of the Laplacian for

the mean curvatures in the 1-ring neighborhood of vi and the mean curvature at vi as the
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local roughness measure. The Laplacian of the mean curvatures in the 1-ring neighbor-
hood of vi describes the local variation of the mesh curvature amplitudes. In our metric,
we use the cotangent-based mesh Laplacian due to its solid theoretical foundation and its
excellent performance in practical applications [18,24]. This curvature-amplitude-based

roughness value is then linearly mapped to [0.1, 1.0] to obtain RW
(κ)
i : The higher the

roughness is, the lower the mapped value is. It is worth mentioning that the derivation

of the roughness weight RW
(κ)
i includes a divisive normalization (i.e., the normalization

of the Laplacian for mean curvatures by the mean curvature on vi itself), which is sim-
ilar to that in the neural mechanism of HVS that partially explains the visual masking
effect [27,34]. Also note that vertices in isotropic regions, i.e., where κmin and κmax are
close to each other, are treated differently. An anisotropy coefficient ρvi is first computed
as:

ρvi
=

κ
(vi)
max − κ

(vi)
min

κ
(vi)
max + κ

(vi)
min + ϵ

, (5)

where κ
(vi)
min and κ

(vi)
max are, respectively, the minimum and maximum curvatures at vertex

vi, and ϵ is a stabilization constant set as 5% of the average mean curvature of Mr. We
consider that the vertices at which ρvi is smaller than 0.5 belong to relatively isotropic

regions. For these vertices, we set RW
(γ)
i equal to 1, and accordingly the final roughness-

based weight is determined by the value of RW
(κ)
i . The reason is that in isotropic

regions, the principal curvature directions are not well-defined and their estimation is
not reliable. It is therefore safer to use only the curvatur-amplitude-based roughness

weight RW
(κ)
i for the local tensor distance modulation. A roughness map that combines

both weights RW
(γ)
i and RW

(κ)
i is shown in the “Step 3” block of Fig. 4, where warmer

colors represent higher roughness values (i.e., lower roughness-based weights).

Finally, as described by Equation (2), the local tensor-based perceptual distance
measure at vertex vi, LTPDM vi , is computed as the barycentric interpolation of the
three local perceptual distances LPDvi,v′

i,1
, LPDvi,v′

i,2
and LPDvi,v′

i,3
.

3.4. Global perceptual distance

The global tensor-based perceptual distance measure TPDM from the reference mesh
Mr to the distorted mesh Md is computed as the weighted Minkowski sum of the local
distances LTPDM vi , i = 1, 2, ..., N :

TPDM =

(
N∑
i=1

wi |LTPDM vi |
p

) 1
p

, (6)

where wi = si/
∑N

i=1 si with si one third of the total area of all the incident facets of vi,
and p = 2.5. The surface-based weighting can, to some extent, enhance the stability of
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the metric to the variation of vertex sampling density over the mesh surface. Compared
to the standard mean-squared error where p = 2.0, the choice of p = 2.5 can increase
the importance of the local high amplitude distances of in the calculation of the global
perceptual distance [15]. This is perceptually relevant, since the part of mesh with high-
amplitude distortion experimentally attracts more attention from human observers, and
thus has more impact on the result of subjective assessment.

4. Experimental Results

4.1. Performance evaluation and comparisons

In order to verify its efficacy, the proposed metric TPDM has been extensively tested
and compared with the existing metrics on four subjectively-rated visual mesh quality
databases:

• The LIRIS/EPFL general-purpose database1 [17]: Contains 4 reference meshes and
the total of 84 distorted models. The distortion types include noise addition and
smoothing, applied either locally or globally to the reference mesh. Subjective
evaluations were made by 12 observers.

• The LIRIS masking database2 [26]: Contains 4 reference meshes and the total of
24 distorted models. The local noise addition distortion included in this database
was designed specifically for testing the capability of MVQ metrics to capture the
visual masking effect. 11 observers participated in the subjective tests.

• The IEETA simplification database3 [28]: Contains 5 reference meshes and the
total of 30 simplified models. 65 observers participated in the subjective study.

• The UWB compression database4 [37]: Contains 5 reference meshes and the total
of 64 distorted models. Subjective evaluations were made by 69 observers.

TPDM has been compared with seven state-of-the-art metrics, i.e., the Hausdorff
distance (HD) [6, 11], the root mean squared error (RMS ) [6, 11], 3DWPM1 and
3DWPM2 [22], MSDM2 [32], DAME [37] and FMPD [38]. The coherence between
the objective values produced by the MVQ metrics and the mean opinion scores (MOS)
provided by subjective databases is measured using two different correlation kinds: The
Pearson linear correlation coefficient (PLCC or rp), which measures the prediction ac-
curacy of the objective metrics, and the Spearman rank-order correlation coefficient
(SROCC or rs), which measures the prediction monotonicity [19,34]. Before computing
the correlation values, especially the PLCC , it is recommended to conduct a psycho-
metric fitting between the objective scores and the MOS values, in order to partially

1http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html
2http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html
3http://www.ieeta.pt/~sss/index.php/perceivedquality/repository
4http://compression.kiv.zcu.cz/
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remove the non-linearity between them. Another effect of psychometric fitting is that af-
terwards we obtain objective MVQ values belonging to the [0, 1] interval, which are easier
for the users to understand. In our tests, we apply a cumulative Gaussian psychometric
function [7] for the fitting:

g(a, b, R) =
1√
2π

∫ ∞

a+bR

e−(t
2/2)dt, (7)

where R is the raw TPDM value. The two parameters a = −1.14 and b = 11.47
are obtained through a non-linear least squares fitting (under Matlab, with the curve
fitting toolbox) using the raw TPDM values and the corresponding MOS for the group
of Dinosaur models in the general-purpose database. As shown in Fig. 6, the same
psychometric function is used for models in other subjective databases. From the plots
we can see that the fitted psychometric function has a good generalization capability for
other databases, as the psychometric curve is close to the TPDM -MOS pairs.

The tables 2 to 5 present, respectively, the evaluation and comparison results for
the general-purpose, masking, simplification and compression databases. Analogously
to the comparisons in [39], the overall correlations (last two columns in the tables) are
computed for the whole database (i.e., we compute the statistical linear or non-linear
dependence between all objective scores andMOS values of all models in each database),
except the compression database, where per-model averages are used. This is because
the data acquisition procedure of the compression database does not take into account
inter-model coherence [37,39]. The results for the existing metrics shown in Tabs. 2 to 5
are either extracted from published papers [31, 37–39] and the related erratum [40], or
collected from our own tests.

The geometric distance metrics HD and RMS in general fail to evaluate the percep-
tual mesh quality: The overall Pearson and Spearman correlations are quite low for all
the four databases. HD even results in a negative correlation on some difficult models,
i.e., Jessy and James from the compression database (cf. Tab. 5). In the following we
will focus on the comparison of our approach with state-of-the-art perceptually-driven
MVQ metrics for each database.

For the general-purpose database (cf. Tab. 2), TPDM has high PLCC and SROCC
values for almost every individual model, as well as for the whole repository. TPDM
has the highest overall PLCC and SROCC values among all the MVQ metrics tested
(the last two columns). In particular, there is a noticeable improvement in terms of
overall correlations compared to the second best metric FMPD. For example, the
overall SROCC has improved from 81.9% for FMPD to 89.6% for TPDM . Since the
general-purpose database has the highest number of distorted models among the four
available databases, as well as a variety of distortion types, the high correlation values
of TPDM for this database appear to be promising evidence for the good performance
of TPDM in assessing visual mesh quality.
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Fig. 6. Psychometric function curve plotted with TPDM -MOS pairs of all the reference and dis-
torted models in: (a) the LIRIS/EPFL general-purpose database; (b) the LIRIS masking
database; and (c) the IEETA simplification database.
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Tab. 2. PLCC (rp) and SROCC (rs) (%) of different objective metrics on the general-purpose
database.

Metric
Armadillo Dinosaur RockerArm Venus All models
rp rs rp rs rp rs rp rs rp rs

HD [6, 11] 54.9 69.5 47.5 30.9 23.4 18.1 8.9 1.6 11.4 13.8
RMS [6, 11] 56.7 62.7 0.0 0.3 17.3 7.3 87.9 90.1 28.1 26.8

3DWPM1 [22] 59.7 65.8 59.7 62.7 72.9 87.5 68.3 71.6 61.9 69.3
3DWPM2 [22] 65.6 74.1 44.6 52.4 54.7 37.8 40.5 34.8 49.6 49.0
MSDM2 [32] 85.3 81.6 85.7 85.9 87.2 89.6 87.5 89.3 81.4 80.4
DAME [37] 76.3 60.3 88.9 92.8 80.1 85.0 83.9 91.0 75.2 76.6
FMPD [38] 83.2 75.4 88.9 89.6 84.7 88.8 83.9 87.5 83.5 81.9

TPDM 78.8 84.5 89.0 92.2 91.4 92.2 91.0 90.6 86.2 89.6

Tab. 3. PLCC (rp) and SROCC (rs) (%) of different objective metrics on the masking database.

Metric
Armadillo Bimba Dinosaur LionVase All models
rp rs rp rs rp rs rp rs rp rs

HD [6, 11] 61.4 48.6 27.4 25.7 55.8 48.6 50.1 71.4 20.2 26.6
RMS [6, 11] 66.8 65.7 46.7 71.4 70.9 71.4 48.8 71.4 41.2 48.8

3DWPM1 [22] 64.6 58.0 29.0 20.0 67.3 66.7 31.1 20.0 31.9 29.4
3DWPM2 [22] 61.6 48.6 37.9 37.1 70.8 71.4 46.9 38.3 42.7 37.4
MSDM2 [32] 81.1 88.6 96.8 100 95.6 100 93.5 94.3 87.3 89.6
DAME [37] 96.0 94.3 88.0 97.7 89.4 82.9 99.5 100 58.6 68.1
FMPD [38] 94.2 88.6 98.9 100 96.9 94.3 93.5 94.3 80.8 80.2

TPDM 91.4 88.6 97.2 100 97.1 100 88.4 82.9 88.6 90.0

From the results forthe masking database (cf. Tab. 3), we can see that in general
TPDM captures the visual masking effect well, as reflected by the high individual and
overall PLCC and SROCC values for that database. The same applies to the results for
the general-purpose database: TPDM has the highest overall PLCC and SROCC values
among all the metrics tested. Another observation is that although the reduced-reference
metric FMPD performs quite well for each individual model, its overall PLCC and
SROCC values are not that high when compared to the full-reference metrics MSDM2
and TPDM . Hence, it seems that in order to capture the visual masking effect well in the
case of MVQ assessment, it would be advantageous to conduct a precise vertex-to-vertex
local analysis, with the availability of the full information about the reference mesh.

Compared to other connectivity-independent metrics (cf. Tab. 1), TPDM has compa-
rable performance withMSDM2 and FMPD for the simplification database (cf. Tab. 4).
The results of 3DWPM1, 3DWPM2 and DAME are missing because those metrics
have the mesh connectivity constraint, and therefore cannot be applied to compare two
meshes with different connectivities. For the Head model, the correlation of TPDM
is rather low. This is because TPDM has difficulties in distinguishing the quality of
simplified Head meshes generated by different simplification algorithms but with the
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Tab. 4. PLCC (rp) and SROCC (rs) (%) of different objective metrics on the simplification
database.

Metric
Bones Bunny Head Lung Strange All models

rp rs rp rs rp rs rp rs rp rs rp rs

HD [6, 11] 92.0 94.3 37.8 39.5 72.8 88.6 80.6 88.6 52.3 37.1 50.5 49.4
RMS [6, 11] 86.4 94.3 94.5 77.1 49.6 42.9 89.0 100 90.4 88.6 59.6 70.2
MSDM2 [32] 98.3 94.3 98.1 77.1 88.9 88.6 92.3 60.0 99.0 94.3 89.2 86.7
FMPD [38] 96.0 88.6 98.0 94.3 70.4 65.7 95.5 88.6 96.0 65.7 89.3 87.2

TPDM 99.0 94.3 98.0 94.3 63.1 65.7 98.6 94.3 98.7 94.3 86.9 88.2

Tab. 5. PLCC (rp) and SROCC (rs) (%) of different objective metrics on the compression
database.

Metric
Bunny James Jessy Nissan Helix All models

rp rs rp rs rp rs rp rs rp rs rp rs

HD [6, 11] 34.1 52.2 -16.8 6.8 -23.6 12.5 14.4 23.6 45.1 46.4 10.6 28.3
RMS [6, 11] 34.2 20.9 14.0 10.8 0.0 14.8 17.8 29.7 46.9 44.6 22.0 24.1

3DWPM1 [22] 94.7 93.4 77.3 72.3 87.2 89.5 63.6 59.3 98.0 95.2 84.1 81.9
3DWPM2 [22] 96.0 91.2 76.9 65.3 86.9 85.9 56.3 67.6 95.5 94.3 82.3 80.9
MSDM2 [32] 97.4 90.1 82.6 69.2 84.3 63.1 84.4 73.1 98.1 94.7 89.3 78.0
DAME [37] 96.8 93.4 95.7 93.4 84.4 70.5 93.9 75.3 96.6 95.2 93.5 85.6
FMPD [38] 94.2 89.6 95.3 91.2 63.3 60.0 92.4 77.5 98.4 90.8 88.8 81.8

TPDM 95.1 96.5 90.8 73.6 85.8 75.8 82.7 73.4 98.7 95.0 91.5 82.9

same vertex reduction ratio. FMPD is more or less affected by the same problem. The
simplification database is a relatively simple dataset. MSDM2 , FMPD and TPDM all
have very high overall correlation on this database, and even HD and RMS have very
good performance on some individual models. This observation implies the necessity
of constructing a comprehensive subjectively-rated MVQ database which incorporates
more models and more types of lossy operations affecting mesh connectivity, e.g., other
simplification algorithms, remeshing or even subdivision.

For the compression database (cf. Tab. 5), DAME has the highest overall PLCC
and SROCC : 93.5% and 85.6% for DAME against respectively 91.5% and 82.9% for
TPDM , the second best metric for this database. Initially, we encountered difficulties in
testing TPDM on the James, Jessi and Nissan models, which consist of many spatially
non-connected components ( 70, 138 and 212, respectively). Some of the components
have null Euclidean distance to each other, so that the vertex matching preprocessing
fails since a vertex may be incorrectly projected onto a different nearby component, even
without any introduced distortion. A simple solution has been adopted to resolve this
problem. We first identify such incorrectly projected vertices on the reference mesh by
conducting the TPDM comparison between the reference mesh and itself. The incor-
rectly projected vertices are those with non-zero LTPDM values. When performing a
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comparison with a distorted mesh, the LTPDM distances for these vertices are deduced
from the distance values of its 1-ring neighbors, via simple median filtering. This also
demonstrates that in order to conduct an effective MVQ assessment (especially for the
development of full-reference MVQ metrics), it is important to develop a robust, or ide-
ally perceptually-driven, mesh correspondence algorithm. The development of such an
algorithm remains an open research problem.

All in all, TPDM shows quite good performance on all the available subjectively-
rated mesh visual quality databases, as reflected by its high correlation with subjective
scores on most individual models, as well as on the whole repositories. In particular,
TPDM has the highest overall SROCC (the last column in the tables) on the general-
purpose, masking and simplification databases, and it is the second best performing
metric on the compression database. Furthermore, TPDM has always higher SROCC
than MSDM2 on all the four databases, and also under three cases out of four higher
PLCC values (the exception is the simplification database). It appears that the injection
of the information on the principal surface directions helps improve the MVQ assessment
performance.

TPDM also allows us to obtain a perceptually coherent distance map between two
meshes. Figure 7 illustrates the distance maps produced by TPDM and RMS between
the original Bimba model and a distorted Bimba after uniform random noise addition.
The map of TPDM is quite consistent with human perception (i.e., the perceived distor-
tion is higher in smooth regions than in rough regions), while the map of RMS is purely
geometric and fails to capture the visual masking effect.

Fig. 7. From left to right: the original Bimba model, the distorted Bimba model after uniform
random noise addition, the distance map of TPDM between the two meshes, and the
distance map of RMS . In the distances maps, warmer colors represent higher local
distance values.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Application of TPDM to the perceptual evaluation of robust mesh watermarking: (a)
original Bunny model; (b) Bunny watermarked by using the method in [33]; (c) and (d)
models watermarked by the method in [21] giving, respectively, the same MRMS and
TPDM distortion as (b); (e) original Venus model; (f) Venus watermarked by the method
in [33]; (g) and (h) models watermarked by the method in [21], giving, respectively, the
same MRMS and TPDM distortion as (f). The TPDM values are those obtained after
psychometric fitting.

4.2. Applications

In this subsection, we show two simple examples to illustrate the potential of TPDM
in practical mesh applications. The two examples concern, respectively, the quality
evaluation of watermarked meshes and the optimum quantization level selection for mesh
vertex coordinates.

Figure 8 shows the potential application of our metric TPDM in the visual quality
assessment of watermarked meshes or, more generally, in the benchmarking of robust
mesh watermarking algorithms. Indeed, when comparing two robust watermarking al-
gorithms, a common strategy is to first of all fix the amount of distortion induced by
watermark embedding, and then compare the robustness of watermarks against a series
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Fig. 9. Application of TPDM for the selection of optimum quantization level of mesh vertex
coordinates: (a) TPDM vs. quantization levels, with threshold τTPDM = 0.40; and (b)
95-th percentiles of LTPDM vs. quantization levels, with threshold τLTPDM = 0.40.

of attacks, such as noise addition, smoothing and simplification. The question comes to
how to quantify the induced distortion. We consider that using classical mesh geometric
distances (e.g., maximum root mean squared error, MRMS [6, 11]) is not appropriate,
at least when the watermarked meshes are used in applications having human beings as
users. In Figs. 8(b) and 8(f) (second column of the figure) we show two watermarked
models generated by the method of Wang et al. [33]. We show in Figs. 8(c) and 8(g)
(third column) the corresponding watermarked models produced by the method of Cho
et al. [21] that have exactly the same MRMS as Wang et al.’s models. Despite having
the same MRMS values, the watermarked models produced by the two methods are of
significantly different visual quality, and so it would be unfair to conduct robustness
comparison on these models. In contrast, the comparison would be fair enough, at least
for applications where the visual quality of watermarked mesh is very important, if we
fix the amount of TPDM distortion induced by the two methods. We show in Figs. 8(d)
and 8(h) (last column) the watermarked models produced by the method of Cho et
al. [21] that have exactly the same TPDM values as the models of Wang et al. The
watermarked meshes are of comparable and good visual quality.

The second potential application of TPDM shown here is automatic selection of the
optimum quantization level of mesh vertex coordinates, defined as the minimum number
of bits allocated for representing each quantized coordinate that does not introduce
unacceptable visual distortion. Vertex coordinate quantization is almost a mandatory
step in lossy mesh compression, but the selection of optimum quantization level is in
general mesh-dependent and tedious, which often requires efforts of human observers.
TPDM could help us facilitate this task. For this purpose, we introduce two kinds
of thresholds, as explained below. The first threshold τTPDM is defined on the global
TPDM value, which guarantees good global visual quality of the mesh after quantization.
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In Fig. 9(a) we plot TPDM values versus quantization levels for four meshes of different
geometric complexity, and the threshold (i.e., the maximum allowable TPDM introduced
by quantization) is fixed as 0.40. The second threshold τLTPDM is defined on the local
tensor-based perceptual distance measures, so as to ensure precise control of the local
distortion. For this local control, we first compute the 95-th percentile of the LTPDM
distances after quantization (i.e., the value below which 95 percent of LTPDM distances
may be found in a quantized mesh), and then compare this percentile value with τLTPDM .
In Fig. 9(b) we show the 95-th percentiles of LTPDM versus quantization levels, and
the threshold τLTPDM is fixed as 0.40, the same value as τTPDM . Compared to the
global threshold, the local threshold appears to be a more strict metric for the control
of introduced distortion. We show the quantization results in Fig. 10. For Chinchilla
and Bimba, both global and local thresholds select the same level as the optimum, i.e.,
10 bpc (bits per coordinate) for Chinchilla and 11 bpc for Bimba, which are consistent
with human perception. For Horse, after applying the global threshold, a relatively low
quantization level 10 bpc is selected, which results in a mesh of rather globally acceptable
visual quality, but with some high-amplitude local distortions (especially on the head);
the local threshold is stricter and selects 11 bpc as the optimum, so as to avoid visually
unacceptable local distortion. Another remark is that TPDM may result in unstable
assessment results for meshes with relatively few vertices. As shown in Fig. 9(a), for
Chinchilla, which has 4307 vertices, the distorted mesh obtained after 10-bit quantization
is of better quality than the mesh obtained after 11-bit quantization, according to the
TPDM values. Although the two meshes are of rather comparable visual quality (cf.
Figs. 10(b) and 10(c)), we think that this is a drawback of the proposed metric, and an
improvement on this point will be part of our future work.

5. Conclusion and Future Work

A new curvature-tensor-based approach to objective evaluation of visual mesh quality
has been proposed. We show that it is beneficial to use the information on both the
curvature amplitudes and the principal curvature directions for MVQ assessment. The
local tensor distance that we propose may be found useful in other mesh applications,
such as mesh segmentation and shape matching. Experimental results show that our
TPDM metric has high correlation with subjective scores and performance comparable
with the best performing MVQ metrics proposed so far. Finally, two simple examples
illustrate the potential applications of the proposed metric.

TPDM implementation is freely available on-line at http://www.gipsa-lab.fr/

~fakhri.torkhani/software/TPDM.rar. Future work will consists mainly in integrat-
ing more HVS features into the metric (e.g., the contrast sensitivity function), extending
the metric to perceptual evaluation of triangular meshes with photometric properties
(i.e., with color and textures), and developing a curvature-tensor-based visual quality
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(a) Q = 9 bpc (b) Q = 10 bpc (c) Q = 11 bpc

(d) Q = 10 bpc (e) Q = 11 bpc (f) Q = 12 bpc

(g) Q = 9 bpc (h) Q = 10 bpc (i) Q = 11 bpc

Fig. 10. Application of TPDM to the selection of optimum quantization level of mesh vertex
coordinates. For Chinchilla (first row, (a)-(c)), both global and local thresholds select
10 bpc as the optimum level (Q in bits per coordinate). For Bimba (second row, (d)-(f)),
both global and local thresholds select 11 bpc as the optimum level. For Horse (third
row, (g)-(i)), the global threshold selects 10 bpc as the optimum level while the local
threshold selects 11 bpc as the optimum level.
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metric for dynamic meshes. In particular, for perceptual evaluation of dynamic meshes,
it would be interesting to derive a spatial-temporal perceptually-oriented curvature ten-
sor distance that accounts for both the spatial visual masking effect (as shown in this
paper) and the temporal visual masking effect due to the movement of the 3D mesh.
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[26] G. Lavoué. A local roughness measure for 3D meshes and its application to visual masking. ACM

Trans. on Appl. Perception, 5(4):21:1–21:23.
[27] Q. Li and Z. Wang. Reduced-reference image quality assessment using divisive normalization-based

image representation. IEEE J. Sel. Topics Signal Process., 3(2):202–211.
[28] S. Silva, B. S. Santos, C. Ferreira, and J. Madeira. A perceptual data repository for polygonal

meshes. In Proc. of Int. Conf. in Visualization, pages 207–212.
[29] Z. Wang and A. C. Bovik. Mean squared error: love it or leave it? — A new look at signal fidelity

measures. IEEE Signal Process. Magazine, 26(1):98–117.

2010
[30] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy. Polygon Mesh Processing. AK Peters.
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[40] G. Lavoué. Erratum of the Results of Mesh Visual Quality Metrics (Available on-line at http:

//liris.cnrs.fr/glavoue/travaux/Erratum.html).

Machine GRAPHICS & VISION 23(1/2):59–82, 2014. DOI: 10.22630/MGV.2014.23.1.4 .

http://liris.cnrs.fr/glavoue/travaux/Erratum.html
http://liris.cnrs.fr/glavoue/travaux/Erratum.html
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2014.23.1.4

	Introduction
	Related Work and Motivation
	Model-based MVQ assessment
	Motivation for tensor-based MVQ assessment
	Curvature tensor estimation

	MVQ Assessment Based on Curvature Tensor Distance
	Vertex matching preprocessing
	Local tensor distance
	Roughness-based weighting of local tensor distance
	Global perceptual distance

	Experimental Results
	Performance evaluation and comparisons
	Applications

	Conclusion and Future Work

