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Abstract. The movement of people can be considered as the flow of liquid, so we can use the methods

employed for the flow of liquid to understand the motion of a crowd. Based on this, we present a novel

framework for abnormal behavior detection in crowded scenes. We extract a topological structure from

the crowd with the topology simplification algorithm. However, a conventional topology simplification

algorithm can not work well if we apply it to the crowd directly because there is too much noises

produced by the random motion of the people in the original image. To overcome this, we make a

step forward by optimizing this model using Particle Swarm Optimization (PSO) [5] to perform the

advection of particle population spread randomly over the image frames. Then we propose two new

methods for analyzing the boundary point structure and extraction of a critical point from the particle

motion field; both methods can be used to describe the global topological structure of the crowd motion.

The advantage of our approach is that each kind of abnormal event can be described as a specific change

in the topological structure, so we do not need construct a complex classifier, but can classify the crowd

anomalies dynamically and directly. Moreover, the approach monitors the crowd motion macroscopically,

making it insensitive to the motion of an individual, disregarding the global movement. The result of

an experiment conducted on a common dataset shows that our method is both precise and stable.

Key words: topological structure, particle swarm optimization, abnormal behavior, crowd behavior

modeling

1. Introduction

Recently, there has been increasing interest in video surveillance of crowded scenes within
the computer vision community. This brings many new challenges and problems, like
pedestrian detection, tracking in the crowd and crowd behavior modeling. Among these
applications, the central task is to automatically analyze and detect abnormal events in
a crowd video.

In the field of intelligent monitoring, crowd behavior detection is quite different from
individual behavior analysis. In the crowd, the complete trajectory of each individual
can not be captured easily by a camera. Besides, handling every state of every person
is a tough task for the device. Because of the interactions among a large number of

Machine GRAPHICS & VISION 23(1/2):115–132, 2014. DOI: 10.22630/MGV.2014.23.1.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2014.23.1.7


116 Novel approach based on topological simplification algorithm optimized. . .

people in a crowd, simple analysis of individual behavior will pose more difficulties and
lower the accuracy of the task. As further noted, modeling the motion of individual is
neither sufficient nor efficient. We need to spend more time analyzing the behavior of
the crowd globally. For instance, the trajectory-based method proposed in [14, 15] will
be useless if we mainly want to detect global behaviors, such as formation/dispersion
and splitting/merging in a crowd.

According to a well-established analysis of the crowd behavior model, we can divide
the models into three main approaches. (1) Microscopic approach, defining pedestri-
ans’ motivation for the movement and treating the crowd behavior as the result of a
self-organization process [4] (2) Macroscopic approach, which focuses mainly on goal-
oriented crowds. This method does not pay attention to the motion of each person,
and group habits are determined by global goals and destinations. All people in the
crowd are partitioned into different groups to follow the predetermined habits. Then a
macroscopic model is established [11]. For example, in [18], a dynamic texture model
is established to jointly model the crowd’s dynamics and appearance. This method ex-
plicitly detects both temporal and spatial anomalies in a crowded scene. (3) Hybrid
approaches combining microscopic and macroscopic methods to analyze both individual
behavior and the overall crowd status simultaneously. This hybrid way corrects every
individual’s behavior to optimize the features of global behavior. However, none of these
three approaches can detect anomalies directly, and a complex classifier is necessary to
obtain the final results. Unfortunately, am additional classifier brings extra difficulties
to the task.

In various works, different kinds of local motion patterns are captured from the crowd
as features. Following this, classifiers are trained by utilizing those features. The global
crowd behavior is modeled implicitly by the classifiers. The final performance of anomaly
detection is closely related to the choice of the classifier and of the training data. If we
want to obtain the results directly, without constructing and training a classifier, we
should try analyzing the crowd in another way. The new idea proposed to this end in
the present paper is inspired by the method known as topological simplification.

We will extract the topological structure from the particle motion field with topo-
logical simplification algorithm, which can represent the global behavior of the crowd
motion explicitly. Then we can monitor changes in the topological structure to detect
the abnormal crowd behavior directly. Therefore, we do not need to build a classifier to
train it and classify the anomalies. We also advance this hypothesis by optimizing the
model using Particle Swarm Optimization (PSO) to perform the advection of a parti-
cle population spread randomly over the image frames. The population of particles is
drifted towards the areas of the main image motion driven by the PSO fitness function
aimed at minimizing the interaction force, so as to model the most diffused and normal
behavior of the crowd. In this way, particles converge naturally towards the significant
moving areas in the scene, and in particular towards the parts that are likely show a
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high interaction force. So we can find that in a certain area, all of the particles we
have extracted have encountered fewer interference factors. There is no need to elimi-
nate the interferential points with velocity close to zero. Therefore, the altered topology
simplification algorithm can be used directly in the area where the particles have been
updated by PSO. After the PSO optimization, we can use more accurate critical points
to form a topology which is closer to the natural conditions in the crowd. Then we can
detect anomalies by tracking this topology because the crowd motion varies together
with the topology change. The advantage of our method is that we do not need to
create a complex classifier; it can detect anomalies directly by monitoring the changes
in the topological structure of the crowd. Moreover, the model proposed in this paper
has good robustness and it is quite insensitive to the motion of an individual that does
not affect the global motion.

The remainder of paper is organized as follows. In section 2, we give a brief introduc-
tion to the particle swarm optimization algorithm and the topological representation of
a 2D dense vector field. In section 3, our approach to constructing a topological struc-
ture optimized by PSO and detecting abnormal behavior using this topology are given.
Section 4 provides implementation details and experiment results.

2. Related Work

2.1. Particle Swarm Optimization (PSO)

Over the recent years, the PSO (similar to Evolutionary approach) has been developing
very rapidly. In computer science, PSO is a computational method that optimizes a
problem by iteratively trying to improve a candidate solution with regard to a given
quality measure. PSO optimizes a problem by having a population of candidate solutions,
here dubbed particles, and moving these particles around in the search-space according
to simple mathematical formulae over the particle position and velocity. Each particle’s
movement is influenced by its local best known position, and is also guided towards the
best known positions in the search-space, which are updated as better positions are found
by other particles. This is expected to move the swarm toward the best solutions. PSO
is applied to monitor abnormal crowd behavior, mainly because the crowd is a biological
system as well as a social system. More precisely; there are complex interactions between
the communities and the environment, especially interpersonal interactions. Besides,
PSO has originated from the simulation of a simple social system, and it can simulate
unpredictable group behavior using local information.

PSO is initialized with a population of N-dimensional particles distributed randomly,
and then pursues the final optimal solution by iteration. At each iteration, particles track
two ”Extreme Values” to update themselves. The first one, obtained by the particle
itself, is called pbest. The other one is obtained by the whole group, and represents
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the current global best value, denoted by gbest. Furthermore, it does not need the
whole group; part of the group near the particle is enough to obtain the local extreme
value. The pbest value represents the position associated with the best (i.e., minimum
or maximum) fitness value of the particle obtained at each iteration. The gbest value
represents the best position among all the particles in the swarm, i.e., the position of
the particle assuming the minimum or maximum value when evaluated by the fitness
function. When the particle velocity changes, the particle will be updated according to
the following equations [5]

vnewi =w · voldi + C1 · rand() · pbesti − presentoldi

+ C2 · rand() · (gbesti − presentoldi )
(1)

presentnewi = presentoldi + presentnewi (2)

where vnewi (voldi ) is the particle velocity after(before) updating, w is the inertia weight
used for balancing the local and global search in the PSO, C1, C2 are the learning factors
or acceleration parameters that drive every particle closer to the pbest and gbest values,
rand() is a random number between 0 and 1, and presentnewi (presentoldi ) is the particle’s
updated(current) position, respectively.

2.2. Topological simplification of a sparse vector field)

Topological simplification is widely used for data simplification and visualization of 2-
D and 3-D velocity vector fields in fluid mechanics computations (CFD). The basic
idea is to describe the structure of a dense vector field by certain special points, called
critical points, and curves connecting these points. These points and curves can be used
to determine qualitative behavior of the velocity field. This means that although we
cannot reconstruct the original velocity field from this structure, it can be estimated up to
topological equivalence, which is good enough for the analysis of the vector field behavior,
especially for the particle motion field. Besides, there is a topological classification theory
on the classification of these critical points based on the local structure around them.
Each category corresponds to one type of anomalies that we want to model in the training
phase.

According to theory of calculus, every person in the picture can be represented by a
velocity vector field function v(x, t), where, x are the spatial coordinates in the image,
and t is the time. However, there are so many pixels in a given image that the velocity
vector field will be too complex to calculate. Accordingly, we should simplify the vector
field to reduce the number of its dimensions. The method based on topological simpli-
fication proposed by Helman and Hesselink [3] can be well applied here. This approach
extracts a topological structure by detecting and classifying the critical points. The
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flow field topology can be used to express the characteristics of the flow field structure.
Subsequently, the topological analysis of the flow field is expanded from planar flow field
to wide surface flow field, 3D flow field and unsteady flow field [10]. However, the initial
topology analysis is not exhaustive. Some important features, such as open boundaries
or an extremely isolated limiting ring, may be lost or omitted. This is why, based on
the boundaries of the flow detection, Ken Wright proposed another two methods for
analyzing the phase plane and the parallel vector [6, 7]. The topological structure can
represent the vector field features very well, while also simplifying the vector field very
well. The Topological Simplification Algorithm divides the pixels in the image into two
parts: normal points, whose velocity exists, and critical points, whose velocity has van-
ished. The core idea of the method is to extract the topological structure of the vector
field, and use this structure to describe the qualitative behavior of the vector field.

The topological structure consists of certain critical points and certain curves. A
critical point is a domain in the image where the magnitude of the corresponding vector
field vanishes. It is also known as a singular point, or singularity. The curves join a
critical point to the next one, and divide the field domain into regions. In each region,
the vector field has a different behavior. Qualitative behaviors of the velocity field
can be completely determined by these points and curves. The use of such techniques
significantly reduces the amount of data we need to process. In a 2-D dense field, there
are six kinds of critical points (Fig. 1): repelling node, attracting node, repelling focus,
attracting focus, saddle point and center point. Among them, the most special point is
the saddle point, which has been proposed by Scheuermann [8]. Since the crowd cannot
perform as well as the saddle, we will not discuss the saddle point any more. For each
point x in the whole domain of an image I ⊂ R2, the velocity field in the neighborhood
of the critical points can be linearly approximated by the linear flow equation

v(x, t) =
dx
dt

≈ A(t)x+ b(t) (3)

where, x is the position of the critical point we are interested in, and t is the time. For
each explicit vector field, we can define a flow ϕt : I → I that can make the flow as
smooth as possible, where ϕt(x) := ϕ(x, t). In the above Equation, b(t) is a 2D vector
representing the position of the critical point in the velocity field, and A(t) is the 2 ∗ 2
Jacobian matrix [3] proposed by Helman and Hesselink, defined as

A

(
ux uy

vx vy

)
(4)

Here u and v represent the projections of the velocity vector V on the x-axis and the
y-axis, respectively. If A is invertible, then in the neighborhood of the critical point
the local shape of v(x, t) can be determined by the two eigenvalues of the matrix A. In
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Saddle Node

R1×R2 < 0

I1, I2 = 0

Attracting Node

R1, R2 > 0

I1, I2 = 0

Repelling Node

R1, R2 < 0

I1, I2 = 0

Attracting Focus

R1, R2 > 0

I1, I2 <> 0

Repelling Focus

R1, R2 < 0

I1, I2 <> 0

Center Node

R1, R2 = 0

I1, I2 <> 0

Fig. 1. Classification of critical points. R1 and R2 denote the real parts of the eigenvalues of the
Jacobian, while I1 and I2 denote their imaginary parts.

Fig. 1, if both eigenvalues are real-valued and have opposite signs, this is a saddle point;
if the two eigenvalues are both positive real numbers, the point is an attracting node;
if the two eigenvalues are both negative real numbers, the point is a repelling node; if
the two eigenvalues are conjugate complex numbers and their real parts are positive,
the point is an attracting focus; if the two eigenvalues are conjugate complex numbers
and their real parts are negative, the point is a repelling focus; and finally if the two
eigenvalues are conjugate imaginary numbers, then the critical point is a center point.

According to the invariance of the topological structure, if a vector field is transformed
by applying a continuous map to the original vector field in the neighborhood of critical
points, then the type of the corresponding critical points does not change. In other
words, although the velocity fields may seem to be quite different in different scenarios,
the behavior of the velocity field can be characterized by the same type of critical points.
The situation is like in Fig. 2, where the three critical points are of the same kind.

Thus, we can track a critical point to analyze the topology of the crowd using the
method of extracting the crowd velocity field. For example, we can consider a repelling
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(a) (b) (c)

Fig. 2. Three different motion fields belonging to the same type of critical node: an attracting node.

point, which represents the situation where all the persons near the critical point are
moving away from that point to all directions.

3. Our Approach

In a word, traditional topological simplification methods cannot be directly applied to
monitor a video; we must find a new way to solve the problems given by the original
image. In the original image, there are many points whose velocity fields are zero,
such as background points. The points we obtain from the image are affected by a lot
of noise caused by human arm and leg swings, and the velocity fields obtained from
image pixels are noncontiguous or piecewise continuous. On the other hand, a drawback
of using traditional topological simplification is only that it assumes that the crowd
follows a fluid-dynamical model, which is too restrictive when modeling masses of people.
Elements of the crowd may also move along unpredictable trajectories, which will result
in an unstructured flow. To overcome these drawbacks, we propose a novel particle
advection using PSO that can update the position of each particle to get rid of the
noise directly, and form a better topological structure to be monitored. Then we can
obtain the parameters of a linear stream model in strong interference with the RANSAC
algorithm to determine the crowd type.

3.1. Fitness functions and particle position updates

According to previous studies, because of the fact that a pedestrian in a video will be
sheltered from other people, or due to random variation in the population density or
differences in the image resolution, we cannot track the trajectory of each single person
in a dense crowd. On the opposite, we use the same method as proposed in [13, 16]
and apply particle convection to analyze the crowd behavior in the video. We need to
calculate the optical flow (OF) information to obtain the particle motion field. The
OF represents the velocity distribution of the brightness mode in the image. It can
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represent not only the spatial arrangement of a moving object, but also the change rate
of its distribution.

Every particle extracted from every frame of the video can be considered as the
clue of the driving force. Then the particle will be revalued by the fitness function just
because of the driving force. This important factor was neglected by most of the previous
studies. Even if the driving force was calculated just like in [13, 16], particle convection
was calculated on a coarse level. The researchers imposed a grid on the original image,
and used every node on the grid to represent a particle. To solve the problem, we propose
a novel approach. It amounts to using PSO to improve the particle position, which can
make the particle come closer to its real position. Then we can locate the anomalies
based on the new result we have obtained. First of all, we define random initialization
of the particles in the first frame of the video as the first input of the PSO algorithm. In
order to simplify our simulation, we always choose about 1/3 evenly distributed pixels in
the first frame as the first original particles. The same way of choosing a random input
is applied in the subsequent experiments in this paper. From such an initial stage, we
obtain the first estimate of pbest, and the global gbest for each particle. The particles
are defined by their 2D value corresponding to the pixel coordinates in the frames. At
each iteration, the pbest value is updated only if the present position of the particle
is better than the previous position according to the fitness function. We consider the
result obtained as the input for the next frame, then apply the same procedure until
the video ends. Actually, the fitness function can capture the most wanted interactions
among the crowd which drive the pedestrians’ movement. For each particle, the fitness
function is the factor which can revalue every particle using the OF. We first define the
intensity of the optical flow at a given position in the image for a particle i as

Wi = Oavg(x
new
i ) (5)

where Oavg represents the average optical flow at the particle coordinates xnew
i . Thus,

the average on can be obtained by all of the previous frames. Then we define the velocity
field W p

i for the most wanted particle

W p
i = O(xnew

i ) (6)

where O(xnew
i ) is the current OF of particle i updated by PSO. In fact, this OF value

is the average value computed in a small spatial neighborhood to avoid numerical insta-
bilities in the optical flow. Like in [16], we consider the velocity derivative dWi

dt as the
force driving the particle, where t is the time between the current video frame f and the
previous frame f − 1. This process is in some way mimicked by the particles which are
driven by the optical flow towards the areas with larger motion in the image. In this
way, the more regular the pedestrians’ motion, the smaller the interaction force, since
the flow of people movement varies in a smooth way. Accordingly, we define the fitness
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function as

FitPos = min
i=1,2...K

{1
τ
W p

i −Wi −
dWi

dt
} (7)

where K is the number of particles we have initialized in the image. Particle position
can be updated every time to bring it closer to reality.

3.2. Analysis of crowd behavior based on topological structure

The approach proposed in Section 2.2 cannot be applied to detecting anomalies in the
crowd, because the motion field of the particle is sparse. In order to capture the crowd
topology, we propose an improved method for determining the type of a critical point.

3.2.1. Virtual critical points

In the conventional method, the boundary points do not change over time. However,
when analyzing the crowd, the situation is opposite; the boundary points might work as
virtual critical points. Boundary points are the points whose velocity tends to zero, and
their behavior can be described by the sets α − limit and β − limit, where α − limit
(β − limit) are defined through subsets α(x) (β(x)) of the image domain I consisting of
points y ⊂ I such that ϕ(x) → y when the time t → ∞(−∞). In other words, the particle
at position x will reach α(x)(β(x)) after an infinitely long time. In a sparse velocity field,
the limit set can be determined by numerical integration. In order to extract virtual
critical points, we need to integrate the boundary points. For this purpose, Tricoche’s
cluster algorithm [9] can be used. Since points in the same cluster will exhibit the same
action, a virtual point can be defined at the center of each cluster. The type of each
virtual point can be determined by the type of the limit set: α− limit and β − limit.

The topological structure consists of points and relationships between points repre-
sented by curves. We define those relationships as below. If there is a trajectory linking
points in the limit sets corresponding to a sink N and a source S, we connect the sink
and the source by a curve. The process can be described as follows: For every moving
point x, we first find the α− limit set and the β− limit set, and then the corresponding
critical points Sinki and Sourcej ; following this, we add the connection relationship
count Cij . When we obtain the complete count set, we search for an element c which is
bigger than the threshold Cthreshold in the count set; then this c is added to the topo-
logical structure. As a result, the procedure of extracting the topological structure can
be defined as in Fig. 3.

3.2.2. Critical points

The boundary points have been treated above, so we will not consider them again in
this section. The points that could possibly be critical are determined by the PSO at
first. In the area under consideration, the particles are clustered, and definitely have
non-zero-velocity. So we do not need to define a threshold to remove the points whose
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Fig. 3. Overall procedure of topological structure extraction.

velocity tends to zero. Like in [10], the original image is cut into a few grids, and the
revised RANSAC [13] algorithm is applied to each area where the particles have been
updated by the PSO. Then the linear stream parameters A and b can be determined.
After the estimation of critical points, the critical point type can be determined by
calculating the eigenvalue of the Jacobian matrix A. If a critical type which looks like
the anomaly type we are interested in has just occurred, we will calculate the probability
of the anomaly to reduce error accumulation. Here, we just simply define the probability
as the percentage of points moving abnormally, i.e. P (abnormal) = Ntotal/Nabnormal.
Whether a point is an abnormal point or not can be determined based on the differences
between the calculated results and the estimated results for the point’s velocity vector.
If the difference is bigger than the threshold, the point can be considered an abnormal
one. The overall estimation procedure is listed in Fig. 4.

Fig. 4. Overall procedure of critical points estimation.

3.2.3. Detection of anomalies

Based on the theory above, the topological structure of the crowd can be described by
particle motion field. Accordingly, to monitor the crowd status, it suffices to track the
topology. If the topology changes, there must be something happening in the crowd.
For the holistic behavior case, the gathering of the crowd can be approximated by a
sink in the particle motion field, and the dispersion — by a source. If these structures
are detected frequently during some time interval, the corresponding event occurs. For
example, as shown in Fig. 5, when the crowd moves as a single entity at first, and then
splits into two flows at some moment, then the sink set of the extracted structure will
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split into two sinks. Finally, the original source-sink will become two separate sources-
sinks.

Fig. 5. Example of a crowd as one entity splitting in two. The blue nodes represent sources, the red
ones — sinks. The structure will change when the crowd splits.

If the proposed approach is used here, topological invariance can be inherited, and
it is not sensitive to noise, while it is loosely related to the individual’s motion status.
Macroscopical monitoring of the crowd motion appears to be both precise and stable.

4. Experimental Results and Comparisons

The purpose of the approach proposed in this paper is that anomalies in the crowd can
be extracted and classified in a precise way. In order to evaluate the method we have
proposed, we will consider a few existing methods and compare their results on standard
common datasets used for detection of abnormal behavior.

We partition the image into 88 grids and use Black’s optical flow algorithm to calcu-
late the velocity of the crowd motion, keeping 25% pixels of the original image to serve
as the random input to the PSO. Our experiment is conducted on the abnormal behavior
dataset, UMN or PETS. There are two different University of Minnesota scenarios in the
UMN dataset, and the total of eleven videos for testing. Pedestrians wander all over the
scene for a while, then escape. Abnormal activity can be defined as the escaping motion.
As Fig. 6 shows, the left frame is normal, and the right one — abnormal. In order to test
the validity of our approach, based on extracting the topological structure, we conduct
an experiment based on PETS. Fig. 7 below shows the structure we extract first, and
the structure after PSO reconstructed smoothly using RANSAC, which is similar to the
original one. When the people in the crowd escape, we can easily find there is high
probability of change in the extracted structure.

Fig. 8 is the result we obtain when detecting anomalies in the crowd based on Fig. 6.
In Fig. 6, people first wander, and then escape to every direction at an uncertain time.
Here, we use the way we have proposed above to detect the time when the abnormal
motion began. In Fig. 8, the horizontal coordinate denotes the time, the vertical coordi-
nate represents the probability of anomalies, and the dotted line denotes the threshold
determined by experience. To obtain a better result, we build a filter whose average
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normal abnormal

normal abnormal

Fig. 6. Sample frames in two different scenes from the UMN dataset: Normal (left) and abnormal (right).

(a) (b)

Fig. 7. (a) is the original, and (b) is the structure we extracted from (a) after PSO and RANSAC
revised.

window size is 25. Then the result we obtain is handled by a filter. If the value of the
result is beyond the threshold, the given frame is most likely an abnormal one. The
white part of the strip-chart at the bottom of Fig. 8 denotes the normal frames of the
test sequence, and the red part represents the abnormal frames. Hence we can see that
the approach we have proposed works well in classifying the abnormal frames in the
whole video sequence. Also, the time when attack/repelling anomalies happened can be
easily found in this way.
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(a) UMN sample 1

(b) UMN sample 2

Fig. 8. Two examples of detecting dispersing motion of the crowd based on the common dataset UMN.
The dotted line determined by experience denotes the threshold.

We extract the topological structure from the sample frames just as shown in Fig. 9.
If the pedestrians split into two independent smaller groups, topological structure (a)
changes to (b). Actually, we can find that the 95th frame is just as (d) shows, and
there are only two groups in this frame. This proves that topological structure can
represent the real situation in the crowd very well. To verify our approach effectively,
we reemploy the classical methods: optical flow [2], social force and MDT(mixture of
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(a) frame 5 (b) frame 95

(c) Topology of frame 5 (d) Topology of frame 95

Fig. 9. The structure extracted from an image in the PETS dataset. The blue nodes in (c),(d)are
sources, and the red ones — sinks. The smaller blue and red circles denote the α − limit and
β − limit sets. The dashed lines denote the relationship between the source and the sink.

dynamic texture) [18] on the PETS dataset. Each of the other three methods has been
proved effective in detecting the splitting/emerging anomalies of the crowd. Moreover,
they analyze the crowd’s behavior at the macroscopic level, just as our approach.

Fig. 10. ROC curves of the three existing methods and of our method.
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Tab. 1. The area under ROC of the four approaches.

Approach Optical Flow Social Force MDT Ours

AUC 0.832 0.955 0.983 0.992

Fig. 10 shows the ROC curve of our method for the frame level anomaly detection on
the PETS dataset, while Table.1 shows the quantitative results of the method compared
to all three other methods.

Experimental results show that our approach outperforms the optical flow method,
the social force method and the MDT method. Moreover, we discover that we do not
need to analyze every frame of image data from the video like in the other approaches
- for only half of the frames are enough for detecting an anomaly. If we do not use
the PSO algorithm, using 2 frames we can also determine the crowd type with some
loss of accuracy. On the other hand, there is no need to construct a complex classifier
to classify the anomalies in our method, so our approach to finding the time when
splitting/emerging anomalies (or other anomalies) occurred is much faster and simpler.

Actually, the method described in this article can be easily extended to detecting some
other anomalies of the crowd, such as abnormal speed. Since the average velocity of the
crowd is proportional to the Euclidean norm of the matrix A of the linear flow function,
we have vcrowd ∝ ||A||2 =

√
λmax(ATA), where λmax is the biggest eigenvalue of matrix

A. Here we have used another common dataset, PETS, to testify the effectiveness of the
algorithm. In this video sequence, the pedestrians walked into the screen from the right
hand side, and then began to run away at a certain frame-time. And then they walked
in from the left hand side, and began to run away again at another certain frame-time.
What can we define about the abnormal activity is that the crowd is moving at a faster
rate. Fig. 11 is a shortcut of this experiment. In order to show the performance of our
approach, a comparison test with HOG algorithm [17] will be carried on.

Fig. 12 is the result of abnormal speed detection, where the solid line is the Euclidean
norm of the matrix A of the linear flow function. The dotted line is a preset threshold,
which is configured according to the experience and convenience. If the norm is beyond
the threshold, we believe that the crowd may be moving at a faster rate. The strip-
chart in Fig. 12 represents the comparison of results obtained with our method and
hand-labeled ones. We can see that the Euclidean norm can basically reflect the average
speed of the crowd. Our method can be a reliable way of monitoring anomalies in the
crowd movement speed.

Table 2 shows the comparison of the performance of the HOG algorithm and our
method in velocity anomaly detection, where: TP is the true positive, which represents
the number of correctly detected frames among the abnormal frames obtained in the
experiment; FP is the false positive, denoting the number of wrongly detected frames
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Fig. 11. The structure extracted from an image in the PETS dataset; the blue nodes in (c,(d) represent
sources and the red ones — sinks. The smaller blue and red circles represent the α− limit and
β − limit sets. The dashed lines denote the relationship between source and sink.

Fig. 12. Result of abnormal velocity detection.

among the abnormal frames obtained in the experiment. The sensitivity is defined as
TP/(TP + FP ). Compared to HOG, our approach is more accurate. Accordingly,
we can employ this improved method to detect the velocity anomalies in a crowd very
conveniently and easily.

However, it inevitably also has some drawbacks. In order to avoid building a complex
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Tab. 2. Comparison of the two methods with regard to detecting abnormal crowd velocity.

Methods TP FP Sensitivity

HOG 198 22 0.90

Ours 202 18 0.92

classifier, we often use a threshold defined by experience to determine directly whether
the crowd is abnormal. Moreover, the saddle point type is not considered in this paper
which is a blind spot. This is a very arbitrary behavior. However, the goal of this
paper is not to assign blame but to identify important areas for further projects. The
experiments have shown that the results are often very close to the real situation, so this
method is feasible.

5. Conclusion

In this paper, we have proposed a new approach, based on a topological simplification
algorithm, to detecting anomalies in a crowd. To make the conventional topology simpli-
fication algorithm applicable directly, we use the PSO algorithm to improve the position
of the particle at the next frame. Moreover, use of the PSO can make the particles clus-
ter in a certain calculation area, where the particles meet in a dense state. After process
adjustment with the PSO, we obtain a typical topological structure, which consists of
critical points and a relationship described by curves linking them. In consequence, each
type of crowd anomaly can be represented by a special change in the structure. We
can monitor the crowd motion macroscopically instead of analyzing each person. Unlike
other known methods, this method does not require constructing a complex classifier,
which means that we can skip the learning phase and classify the anomalies of the crowd
dynamically and directly. The results are demonstrated for four cases of the crowd mo-
tion: formation/dispersion and splitting/merging, and we believe that this approach can
be applied to other types of variations, including more general motion.
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