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Abstract. Remote sensing satellite images are affected by different types of degradation, which poses an
obstacle for remote sensing researchers to ensure a continuous and trouble-free observation of our space.
This degradation can reduce the quality of information and its effect on the reliability of remote sensing
research. To overcome this phenomenon, the methods of detecting and eliminating this degradation are
used, which are the subject of our study. The original aim of this paper is that it proposes a state of art
of recent decade (2012-2022) on advances in remote sensing image restoration using machine and deep
learning, identified by this survey, including the databases used, the different categories of degradation,
as well as the corresponding methods. Machine learning and deep learning based strategies for remote
sensing satellite image restoration are recommended to achieve satisfactory improvements.

Key words: image restoration, remote sensing images, Artificial Intelligence (AI), Machine Learn-
ing (ML), Deep Learning (DL), Convolutional Neural Network (CNN).

1. Introduction

Remote sensing images are used to obtain a variety of data, including spying on enemy
territories for the military purposes (the main purpose of building satellites), climate
prediction and control, which has been one of the main civilian activities of remote
sensing (Meteosat satellites), disaster prevention, measuring the ozone layer, detecting
and controlling forest fires or oil slicks, mapping, etc. In other words, the general aim
of remote sensing is to record and recognize the globe. Although satellites have made
progress, researchers often encounter problems when taking satellite images, in terms of
sensor malfunctions or the presence of clouds that prevent optimal exploitation of the
data. In order to solve this problem, restoration treatments are frequently required to
restore the polluted parts of these images and to exploit them afterwards. This document
aims to present the studies carried out during the last decade (2012-2022) and their
techniques for reconstructing satellite images based on automatic and deep learning, the
different kinds of noise and the databases used. The papers consulted for our study were
taken from references, publications and conferences relevant to our topic. This paper is
structured as follows: Section 2 presents the databases used, Section 3 describe the main
sources of degradation, Section 4 describe various techniques to detect and reduce them.
Section 5 presents applications of these techniques. Section 6 concludes the paper.
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2. Databases

As of April 30, 2018, the United States was leading the space launches; indeed, it has
successfully launched 859 satellites in orbit. China launched 250, Russia 146, while in
the rest of the world launched 631 satellites. In 2021, interestingly, the Chinese space
industry has surpassed that of the United States, in terms of satellite launches, , while
in Africa there was no rocket fired [1]. In turn, China has planned to organise more than
40 space expeditions in the coming months [2], where the Chinese super administrator
China Aerospace Science and Technology Corporation (CASC), said in early 2022.

The remote sensing images were collected in several databases. Where, in this section,
we will present the different satellites used in the work done according to the continents.
In the United States, the Geostationary Operational Environmental Satellite (GOES)
series [3] is the main group of meteorological satellites moving in geostationary orbit to
provide frequent images of the Earth’s surface and cloud cover to the National Weather
Service, such as Meteosat [4] and [5]). The GOES satellites were planned by the National
Aeronautics and Space Administration (NASA) [6].

In America, Land Satellite (Landsat) is widely used, and it is the main space program
of Earth observation for non-military purposes. It was created by the American space
agency NASA. Landsat was initially known under the acronym Earth Resources Tech-
nology Satellite (ERTS-1) [7] and its program is a technical and scientific success. This
type of satellite is employed in [8]-[20]. In California, Vandenberg AFB launched Quick-
Bird which is a commercial high resolution Earth Observation Satellite. QuickBird is
used in [21]. PatternNet dataset has been suggested since 2017; it is composed of a large
number of high-resolution and large-scale remote sensing images collected for remote
sensing image databases. These images are collected from Google Maps (GMA) and
Google Earth Imagery (GEI) for cities in the United States (US). PatternNet is utilized
in [22]. National Oceanic and Atmospheric Administration (NOAA) is the American
agency responsible for the investigation of the ocean and the atmosphere. On board of
NOAA there is the primary sensor named Advanced Very High Resolution Radiometer
(AVHRR), valuable for monitoring weather and vegetation on the surface of the globe,
sea surface temperature, storms, etc. NOAA-AVHRR is applied in [23]. Space Plug-
and-play Architecture Research Cubesat (SPARC) is a military research nano satellite
shared by the United States and Sweden. SPARC is applied in [20].

In Europe, the system (satellite for Earth observation, SPOT) is a family of French
civilian remote sensing satellites for earth observation. It was designed and launched by
the French National Centre for Space Studies (CNES) [24], in a joint effort with Belgium
and Sweden. It is used to acquire remote sensing information for commercial purposes.
SPOT images have some applications in areas that require continuous imagery, such as
guard service and agriculture. In addition, the Sentinel satellites are a family of European
Earth observation satellites, focused on the environment and security [25]. Meteosat is
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a European meteorological satellite placed in geostationary orbit [26]. These satellites
are developed under the supervision of the European Space Agency (ESA) on behalf of
the European meteorological satellite operator (EUMETSAT). The European satellites
Meteosat, Spot and Sentinel are used in [4, 5], [27, 28], and in [29,31], respectively.

In Asia, the Indian Remote Sensing (IRS) satellite series includes all Earth obser-
vation satellites launched and operated by the Indian Space Research Organization
(ISRO) [32]. The Indian space agency is responsible for the planning and operation
of satellites and launchers. In China, China National Space Administration (CNSA) is
the space agency responsible for the Chinese Space Program. Gaofen is a family of Chi-
nese earth observation satellites for civilian use. Its objective is to provide near real-time
data for natural disaster prevention and treatment, climate change monitoring, mapping,
resource and environmental monitoring, and agricultural support. Ziyuan (meaning Re-
sources) is a Chinese Earth observation satellite. It is a high-resolution imaging satellite
operated by the Ministry of Land and Resources (MLR) of the People’s Republic of
China. The satellite is utilized to provide imagery to monitor resources, land use and
ecology, and for use in urban planning and disaster management. GaoFen is applied
in [18, 33, 34, 35, 36, 37] and ZiYun-3 is used in [18, 33, 37] and [38]. In addition, Yaogan
(meaning remote sensing satellite) is a complete Chinese platform of earth observation
and remote sensing satellites for military use. Officially, the Chinese authorities consider
them as observation satellites designed for crop evaluation, disaster prevention, urban
planning and scientific experimentation. But it is generally accepted that, given their
orbit, payload and launch rate, they are in fact military satellites [22]. UC Merced is the
Google image dataset of the University of California, Merced (UC Merced) or (UCM).
Its images were extracted in a manual way from large images from the database of The
United States Geological Survey (USGS), which is a U.S. government agency responsible
for monitoring the seismic phenomenon. UC Merced is applied in [22]. WHU-RS19 is a
set of remote sensing satellite images exported from Google Earth, and it was released by
Wuhan University responsible for providing high-resolution satellite images [22]. As for
the aerial image dataset (AID) [39], it is a new large-scale dataset, obtained by collecting
sample images from Google Earth. RSSCN7 is a satellite image database collected from
the private research company Remote Sensing Systems (RSS) that processes microwave
data from a variety of NASA satellites. RSSCN7 is utilized in [39].

3. Sources of image degradation

The main sources of degradation can be divided into several categories: physical degrada-
tion, linked to the imperatives of physics, notably the radiative nature of sunlight and air
turbulence. Mechanical degradation linked to the camera (the impacts of photographic
grain), electronic degradation linked to errors in information transmission (transmission
in the camera to the radio device), and optical degradation linked to the properties of
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the imaging system (the lenses), and so on. For each type of degradation, the image
processing operations that can be applied to reduce its effects depend on the source
of the degradation [40]. This is why image restoration processing is often essential to
correct the distortions introduced and thus improve the quality of these images, so that
they can be used later.

The presence of degradation is the major problem of images obtained from satellites.
It can take various forms such as: clouds [4, 5, 10, 12, 13, 14, 17, 18, 20, 21, 23, 28, 31, 33,
35, 41], the cloud and its shadow [8, 19, 34, 37], haze [9, 11, 39, 42], thin cloud [15], thick
cloud [16,23,38], thick cloud and cloud shadow [29], cloud and snow [30], noise [36,43,44],
shadow [45], noise and blur [46] and jitter [22].

4. Techniques used

With the rapid development of remote sensing image acquisition technology, there are
often degraded regions in these images due to poor atmospheric conditions or internal
malfunction of satellite sensors that cause the loss of collected information and also make
target detection, object recognition and other post-processing tasks very difficult, gener-
ating erroneous results. Detection and elimination of degradation can therefore improve
the efficiency of remote sensing image interpretation. Image restoration involves restor-
ing missing data from the original image from the degraded image. The considerable
number of application areas of image restoration techniques demonstrates the impor-
tance of this operation in the field of image processing, from cosmic and astronomical
images to medical images [47] and police investigations. In this section, the bibliogra-
phy surveyed the different detection and removal techniques employed by researchers to
restore remote sensing images.

4.1. Classification of restoration techniques

Relevant approaches to remote sensing image restoration can be divided into two broad
categories: approaches based on classical algorithms and approaches based on Artificial
Intelligence [48]. Some examples of approaches based on classical algorithms are:

•Clear-Sky Background Differencing (CSBD) algorithm based on image characteris-
tics [50,51].

•Automatic Cloud Cover Assessment (ACCA) based on the relationship between ob-
jects of cloud and cloud shadow [52].

•Background Subtraction Adaptive Threshold (BSAT) method [53].

• Spectral indices method-cloud index (CI) and clod shadow index (CSI) [54].

•Himawari-8 Cloud and Haze Mask (HCHM) algorithm [55].

• Fmask algorithm (Cloud Displacement Index) CDI [56].

Regarding the approaches based on Artificial Intelligence here are some types:
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•Multi-Scale Residual Convolutional Neural Network (MRCNN) [11].

• Simple Linear Iterative Cluster (SLIC), Deep Convolutional Neural Networks (CNNs)
[21].

•Multiple Convolutional Deep Neural Networks (ConvNets), Conditional Random Field
(CRF) [45].

• Image Despeckling Convolutional Neural Network (ID-CNN) [57].

4.2. Techniques based on classical algorithms

Classical algorithms are considered as the methods that have specific known steps to
follow for a specific input image. The output of cloud removal and detection depends on
the input image and the algorithms employed (input + program = output); moreover,
in classical techniques there is no learning. In contrast, machine learning is a field of
Artificial Intelligence that allows systems to learn automatically based primarily on the
input image and existing data (input + output = program).

4.3. Artificial intelligence based techniques

Artificial Intelligence (AI) is a term used in 1956 by John McCarthy. It is the science and
engineering of making intelligent machines, it is a thought that suggests that hardware
can learn and think on its own, without being coded with commands [49]. AI has offered
promising solutions to the problem of image processing, especially the restoration of
remote sensing images, allowing greater flexibility which makes it more robust than
traditional techniques. Machine learning (ML) is a field of study in AI, its basic idea
is the study of computer algorithms that can improve automatically through experience
and the use of data. AI has two phases: the first is learning or training where the ML
must first be trained by processing a large number of input patterns and their associated
reference output patterns, once trained, the ML is able to recognize similarities when
presented with a new input pattern, resulting in a predicted output pattern presented
by the second phase. Deep learning (DL) is the sub-domain of ML derived from AI.

Machine and deep learning is about creating huge neural network models capable of
making accurate choices based on data, DL is suitable for situations where the data is
complex. DL algorithms have been progressing day by day for a very long time in the im-
provement of image processing algorithms and have developed in many fields. Notably,
space research, intelligent robots, security and surveillance, autonomous vehicles, voice,
facial and fingerprint recognition, social networks where Facebook uses it to break down
the message in online discussions, financial forecasting, automated commerce, identifica-
tion of defective parts and localization of malware or false statements. In the health field,
DL algorithms analyze information extracted from wearable watches, artificial pacemak-
ers and various monitoring sensors placed in the human body. DL elements have made
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it possible to detect many diseases including epilepsy, hypoglycemia and atrial fibrilla-
tion. As for the gaming industry, the Xbox uses DL. to detect body movements and
respond by exciting game fans. In addition, in language processing, DL can understand
speech, convert it into written form and translate one language into another. Likewise,
all the intelligent computer systems that are equipped with DL, have contributed to the
enormous success, which we are currently witnessing [51].

5. Application of machine and deep learning for remote sensing restoration

Restoration of remote sensing images using machine and deep learning is the objective of
our paper. However, considerable research is available in the literature to provide noise-
free images or at least images with reduced degradation impacts, in particular, due to
the arrival of new satellite images. This leads us to classify these algorithms in three
categories as follows: Some of them deal with suppression, others with detection, while
the last ones deal with both at the same time. The bibliography survey has reviewed
different techniques.

5.1. Detection techniques

Noise frequently exists in remote sensing images, diminishing the quality of the image
and leading to erroneous or inaccurate interpretations and thus causing many obstacles
to remote sensing image applications. To remedy this, it is essential to first detect this
noise and then remove it. Recently, several new studies have appeared for this type of
technique, we present them below:

•Multilayer Perceptron (MLP) [4].

• Fuzzy Logic, Neural Network [5].

• Fully Convolutional Neural Networks Fully Convolutional Network (CloudFCN) [10].

•Multiscale Features-Convolutional Neural Network (MF- CNN) [12].

• Spectral Rationing + Fuzzy C-Means Clustering (FCM) [17].Cloud Detection Neural
Network (CDnet), Deep Convolutional Neural Network (DCNN) [18].

•Deep Convolutional Neural Networks, SegNet, Remote Sensing Network (RS-Net) [20].

•Adaptive Simple Linear Iterative Clustering (A-SCLI), Multiple Convolutional Neural
Networks (MCNNs) [33].

•Machine Learning and Multi-Feature, Multilevel Feature Fused Segmentation Net-
work (MFFSNet) [34].

• Linear Stripe Noise Detection (LSND)[34].Convolutional Neural Network -3D Multi-
scale (3D-CNN) [37].

The paper [4] adopted the Multilayer Perceptron (MLP) approach which is a multi-
layer perceptron neural network to detect clouds in the Meteosat second generation Spin
Enhanced Visible and Infrared Imager (MSG SEVIRI) images with the CLoud Mask
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(CLM) provided by EUMETSAT. The MLP model is a feed forward artificial neural
network classifier. The connections between the perceptrons in an MLP are direct and
each perceptron is connected to all the perceptrons in the next layer, except for the
output layer which gives the result. This approach is useful in cases where there is not
enough auxiliary data. Furthermore, it is believed that the multilayer perceptron can
be improved by increasing the size and diversity of the training and test sets, and by
systematically testing other types of artificial neural networks and training algorithms.
This proposed model was able to detect not only thick and bright clouds but also thin or
less bright clouds. In addition, the execution time is about 20 s, which gives a significant
impact on reducing the computational load when large data sets need to be processed.

Automatic detection of daytime land and marine clouds from Meteosat second gen-
eration rotationally enhanced visible and infrared imager (MSG SEVIRI) images based
on fuzzy logic and neural networks was the proposed topic of the authors of [5]. They
used the threshold mechanism and auxiliary data such as numerical weather prediction
(NWP) for the development of the model. The analysis of the results obtained by the
neural network compared to fuzzy logic also demonstrates its high accuracy and the use-
fulness of using artificial intelligence techniques in remote sensing imagery applications.
This approach was not only able to detect thick clouds but also thin and less bright
clouds.

Correct detection of cloudy pixels in Landsat 8 remote sensing images that relies on
deep learning using fully Convolutional neural networks named FCN and CloudFCN are
developed by [10] and [13] respectively. The deep learning process aims at extracting local
and global semantic features at the pixel level of cloudy areas in an image. In addition,
a gradient-based total identification is designed to perceive and exclude snow/ice areas
in ground truths from the training set. The proposed techniques provide distinct and
diverse detailed performance tests, which confirm that fully Convolutional network ar-
chitectures are indeed a powerful and effective tool for cloud detection in remote sensing
images, and can outperform previous techniques. Although these designs have become
a standard deep learning approach for image segmentation, a direct deficiency of this
work is the coverage of cloud shadows, fog and haze.

The Multiscale Features Convolutional Neural Network (MF-CNN) method described
in the paper [12] is based entirely on a neural network and aims to solve the problem
of reliably detecting thin clouds at the pixel level, while providing excessive accuracy
for detecting thick clouds and non-cloudy pixels in remote sensing images. The design
consists of first stacking the visible near- infrared, shortwave, cirrus, and thermal infrared
bands of Landsat 8 imagery to obtain the combined spectral information. To learn the
global multiscale features of the stacked images, the MF-CNN model is then used. The
high-level semantic information acquired in the feature learning procedure is integrated
with the low-level spatial information to classify the imagery into thick, thin, or cloud-
free regions. The proposed method leads to the identification of complex cloud types
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and shapes. Experimental comparison of the results of the MF-CNN model with those of
traditional machine learning, deep learning, and the classical Fmask and F Score method
of thick and thin clouds are needed to further evaluate the performance of the proposed
model.

The authors of [17] have automatically detected clouds in Landsat ETM+ images
without any manual intervention. The proposed approach is to conduct a color trans-
formation on the input image. Then, by using the spectral image rationing technique a
report image will be produced. Finally, it gathers the report image using Fuzzy C-Means
clustering (FCM) to detect the clouds in an automatic way. The spectral rationing tech-
nique uses the value of the ratio between croma and luma to build the report image to
detect clouds in satellite images. This method is effective in detecting thick clouds and
thin clouds in average time.

The topic addressed by [18] is to detect clouds through a neural network of (CDnet)
with an encoder-decoder structure, a feature pyramid module (FPM) and a boundary
refinement block (BR) used for cloud mask extraction via ZY-3, GF-1 WFV and Landsat-
8 satellite vignettes. The objective of this paper is threefold: First, the FPM module
extracts multi-scale contextual data without lack of resolution and coverage. Second,
the BR block refines object boundaries by exploiting high-level semantic capabilities and
mid-level visual properties for category recognition of image areas. Finally, the encoder-
decoder network structure recovers the segmentation results step by step with a size
equivalent to the input image. Experimental results show its efficiency and robustness
using only three bands of the multi-spectral images, but its drawback is the localization
of boundaries for thin clouds.

The authors of [19] proposed a deep Convolutional Neural Network (CNN) to surface
clouds and their shadows in Landsat 7 and Landsat 8 images. The authors performed
a detailed CNN-based semantic segmentation named SegNet for extracting multi-level
spatial and spectral features computed on the full input image to identify pixels as
clouds, thin clouds, cloud shadows or bright areas. According to the extensive qualitative
and quantitative analysis compared to FCMask, the adapted SegNet technique achieves
promising performance in terms of overall accuracy for cloud and cloud shadow detection.

A formula for cloud detection in satellite imagery using deep learning and a remote
sensing network (RS-Net) based on the U-net structure employing a fusion of spatial
and spectral models has been planned by the authors of [20]. The model is trained
using Landsat 8 Biome and SPARCS datasets. The high performance of this approach,
which uses only the RGB and RGBI (Red/Green/Blue/Infrared) bands, outperformed
the Fmask algorithm.

The author of [28] evaluated the performance of the proposed algorithm to automat-
ically detect clouds from panchromatic SPOT5-HRS multi-temporal satellite images.
This algorithm is designed by a regional growth procedure. The sheaths that correspond
to the cloud are picked by a pixel-to-pixel comparison between existing images based on a
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strong change in reflection between two images. Although this method works on images
with a single panchromatic channel and no longer requires a thermal band, the drawback
is the false positive detection of many clouds which requires improved post-processing.

Multi-level cloud detection is a challenge for high-resolution remote sensing images
based on a deep learning framework, this was the topic proposed by the authors of [21,
23]and [30]. First, the image is segmented into good quality super-pixels using the Simple
Linear Iterative Clustering (SLIC) method. Then, a pair of image patches is extracted
from each super-pixel and fed into a two-branch deep Convolutional Neural Network
(CNN) designed to extract the multi-scale features of each super-pixel which effectively
predicts the class of that super-pixel. Finally, the final cloud detection result is obtained
using the predictions of all super-pixels. Through qualitative and quantitative analysis,
and by evaluating the approach used with those previously performed, it was found that
the performance of the approach used not only detects clouds at multiple levels, but
also distinguishes between thin and thick clouds in [21] and [23] and between clouds and
snow in [30].

The article [33] adopted the same techniques as the previous articles [21, 23, 30].
Because it performs multilevel cloud detection by applying the Adaptive Simple Linear
Iterative Clustering (A-SCLI) algorithm to segment the satellite image into superpixels.
Except that the CNN used by the authors of [21, 23] and [30] is replaced by a Multiple
Convolutional Neural Network (MCNNs) which has the same task. The proposed method
performed on GF-1, GF-2 and ZY-3 databases to distinguish between thin clouds, thick
clouds and cloud shadows. Cloud and cloud shadow detection using multi-level feature
fusion segmentation network (MFFSNet) for automatic training is performed by the
authors in [34]. First, they used a fully convolutional network for training the cloud
features and their shadows. Then, the extraction of the contextual relationship between
the cloud and its shadow is performed by a new pyramid. Finally, to combine the
semantic and spatial information of different levels to achieve better multi-scale object
management and produce detailed segmentation boundaries, a special multi-level feature
fusion structure is designed. The experimental aspect shows that MFFSNet outperforms
the latest methods and achieves a high level of accuracy.

The authors of [35] investigated the machine learning strategy and fusion of several
features, based on a comparative analysis of spectral, textural, and other typical varia-
tions between clouds and backgrounds in the images for cloud detection. By processing
the Gao Fen-1 and Gao Fen-2 image database selected in southern China, object-oriented
post-processing was applied using rectangles and a length-to-width ratio shape index,
which further minimizes the classification errors of highly reflective images, thus increas-
ing the accuracy. The proposed algorithm can be applied to totally different varieties,
sizes and densities of clouds, and to any image source. Despite the reliability shown by
this approach, the training samples must necessarily be selected manually. This analysis
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is intended to meet the requirements of the Chinese disaster reduction project, which
focused on drought and flooding in southern China.

The authors of [36] have developed a new approach for band noise detection in
GaoFen-2 high resolution remote sensing images using a deep learning technique called
Linear Stripe Noise Detection (LSND). First, through linear transformations a large scale
dataset is generated by simulating a wide variety of remote sensing images with band
noise. Then, the target recognition of the band noise was performed using Deep Convo-
lutional Neural Networks. On the experimental basis the LSND algorithm indicated its
validity in terms of accuracy and time.

The basic concept of the paper [37] focuses on a multi-scale (3D-CNN) network of
high- resolution multi-spectral imagery for the detection of clouds and their shadows in
GF-1 WFV and ZY-3 data sets. The extraction of contextual data of clouds and their
shadows at various levels was performed by a multi-scale learning module. In addition,
a joint spectral-spatial information of the 3D convolution layer developed to discover the
joint spatial-spectral correlations in the input data. The proposed network significantly
improved the accuracy of shadow and cloud detection and could even distinguish between
high-albedo objects (snow and ice) and low-albedo objects (water and mountain shadow).

In the paper [39] the researchers combined wavelet transform and deep learning tech-
nology to remove deep haze in remote sensing images where the haze was not evenly
distributed in the image. First, the input image information is extracted from the first-
order low-frequency Subband of its 2D stationary wavelet transform. Then, the network
learns the more abundant image features and improves the overall ability to detect non-
uniform haze in remote sensing images. Qualitatively and quantitatively, the proposed
approach has superior advantages over traditional methods for removing non-uniform
haze in remote sensing images.

The techniques for detecting noise in satellite images are summarized in Table 1,
where the techniques used, the databases, the form of noise as well as the reference of
each article and its year of publication are described.

5.2. Elimination techniques

Remote sensing images are frequently degraded, which minimizes the efficiency and
accuracy of image interpretation. The removal of degradation from satellite images is
an essential task after its detection. For this reason, many research efforts have been
directed towards the removal of degradation from satellite images such as:

• Spatial Procedures for the Automated Removal Cloud and cloud Shadow (SPARCS) [8].

•Multi-Scale Residual Convolutional Neural Network (MRCNN) [11].

•Convolutional Neural Network (CNN) [15]. Progressively Spatio-Temporal Patch
Group Deep Learning [29].

• Sentinel-1/2 Cloud Removal Time Series (SEN12MS-CR-TS) [31].
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Tab. 1. Summary of detection techniques

Techniques used Databases Forms of
noise

Ref. Year

• Multilayer Perceptron Neural
Networks (MLP)

Meteosat Second Generation
Spinning Enhanced Visible

and Infrared Imager
(MSG-SEVIRI)

Cloud [4] 2015

• Fuzzy Logic
• Neural Network

Meteosat Second Generation
Spinning Enhanced Visible
and Infrared Imager (MSG

SEVIRI)

Cloud [5] 2018

• Fully Convolutional Neural Networks
(FCN)

Landsat 8 Cloud [10] 2018

• Multiscale Features Convolutional
Neural Network (MF-CNN)

Landsat 8 Cloud [12] 2018

• Fully Convolutional Network
(CloudFCN)

Carbonite-2
Landsat 8

Cloud [13] 2018

• Spectral Rationing
• Fuzzy C-Means Clustering (FCM)

Landsat ETM+ Cloud [17] 2013

• Cloud Detection Neural Network
(CDnet)
• Deep Convolutional Neural Network
(DCNN)

ZY-3
GF-1 WFV
Landsat 8

Cloud [18] 2019

• Deep Convolutional Neural Network
• SegNet

Landsat 7
Landsat 8

Cloud and
cloud
shadow

[18] 2019

• Remote Sensing Network (RS-Net)
• Deep Learning

Landsat 8 Biome, SPARCS Cloud [20] 2019

• Simple Linear Iterative Clustering
(SLIC)
• Deep Convolutional Neural Networks
(CNNs)

Quickbird Cloud [21] 2016

• Simple Linear Iterative Clustering
(SLIC)
• Convolutional Neural Networks (CNN)

NOAA/AVHRR Cloud [23] 2017

• Automatic method SPOT5-HRS Cloud [28] 2012
• Simple Linear Iterative Clustering
(SLIC)
• Convolutional Neural Networks (CNN)

Sentinel-2A Cloud and
snow

[30] 2018

• Adaptive Simple Linear Iterative
Clustering (A-SCLI)
• Multiple Convolutional Neural
Networks (MCNNs)

GF-1
GF-2
ZY-3

Cloud [33] 2018

• Multilevel Feature Fused
Segmentation Network (MFFSNet)

GF-1 Cloud and
cloud
shadow

[34] 2018

• Machine Learning
• Multi-Features

GF-1
GF-2

Cloud [35] 2016

• Linear Stripe Noise Detection (LSND) GF-2 Noise [36] 2022
• Convolutional Neural Network
• 3D Multiscale (3D-CNN)

GF-1
WFV
ZY-3

Cloud and
cloud
shadow

[37] 2020

• Wavelet Transform
• Deep Learning

AID
RSSCN7

BH

Haze [39] 2021
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•Wavelet Transform, Deep Learning [39].

•Reliable Cloudy Image Synthesis Model [41].

•Hyper Spectral Image denoising by Network (HSI-DeNet), Convolutional Neural Net-
work (CNN) [43].

Spatial Procedures for Automated Removal of Cloud and Shadow (SPARCS) was the
methodology proposed by the paper [8] using Landsat TM and ETM+ single date satel-
lite images. This approach firstly uses a neural network to determine the membership of
each pixel of an image scene to the classification of clouds, cloud shadow, water, snow/ice
and clear sky. Then, it applies a series of spatial procedures to determine pixels with
questionable membership using data, e.g., membership values of adjacent pixels and an
estimate of the location of cloud shadows from solar geometry. For this approach to be
applicable, it must meet the following rules: SPARCS uses only single-date images, and
does not depend on auxiliary data sets. Furthermore, this strategy is fully computer-
ized and does not require the determination of new boundaries for different scenes. The
usefulness of the SPARCS method is demonstrated by comparing it to a state-of-the-art
method used, FMask.

In the articles [9] and [11] the authors were able to efficiently remove haze in each
band of Landsat 8 OLI (Operational Land Imager) multi-spectral images using a combi-
nation of a Convolutional Neural Network (CNN) with Residual and Multi-Scale Residual
Convolutional Network (MRCNN) architecture respectively. These two techniques are
similar. The basic idea of these algorithms is as follows. Starting with, haze removal
based on Convolutional Neural Network (CNN), where different CNN individuals are
connected to each other to learn the correspondence between the hazy image and the
clear image, and a fusion unit is used to adaptively integrate the outputs of these in-
dividuals to generate the restored image. Then, through multi-scale convolutional the
multi-scale features of the haze are extracted and the residual architecture to minimize
the learning difficulty is adopted. Finally, the haze as a function of wavelength to gen-
erate a haze very close to the real conditions is simulated, thus training the designed
network. The experimental results showed the validity of the proposed algorithm com-
pared to the existing algorithms, to remove the haze in each band of multi-spectral
images under different scenes with remarkable accuracy.

The paper [15] focuses on thin cloud removal in multi-spectral remote sensing images
using Convolutional Neural Network (CNN) and a traditional imaging model. U-Net is
used to estimate the reference thin cloud thickness map, while, the Slope-Net is used
to estimate the thickness coefficient of each band. Thus, the cloud thickness maps of
different bands are obtained. Finally, using the traditional thin cloud imaging model,
the thin cloud thickness maps are subtracted from the cloud image. In order to evaluate
the reliability and credibility of this experiment, a qualitative and quantitative analysis
was performed on synthetic and real Landsat 8 OLI satellite images. The results showed
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that the suggested method can keep a better color quality by removing thin clouds in
multi-spectral images with various land cover types.

The fundamental concept of the paper [29] is the combination of global and local
spatiotemporal information from remote sensing images with the nonlinear learning ca-
pability of the Deep Neural Network for the removal of thick clouds and their shadows
in multi-temporal images from the Sentinel-2 MSI and Landsat 8 OLI satellites. The
significant advantages of this method over previous methods are: thick cloud coverage
over large-scale areas, all temporal images have clouds or shadows and the deficient use
of a single temporal image. A global-local DCNN network provided to optimize the
formation model across cloudy and non-cloudy regions, taking into account global con-
sistency and local particularity. The proposed system applied a global-local loss function
in the supervised learning technique to optimize the training model across cloud-covered
and non-cloud regions. In addition, weighted aggregation and progressive generation
are used to reconstruct the holistic results. Experimental analysis proved the accuracy
of removing thick clouds and their shadows from single and multi-temporal images of
small/large scale scenes.

The authors of [31] designed an algorithm known as SEN12MS-CRTS for the recon-
struction of Sentinel-1 and Sentinel-2 optical satellite images and the removal of multi-
modal and multi- temporal clouds. The validity and efficiency of SEN12MS-CRTS has
been proven by considering two methods: first, a 3D multi-modal and multi-temporal
Convolutional Neural Network that predicts a cloud-free image from a time series cov-
ered with clouds. Second, a network for sequence-to-sequence cloud removal which is
the first case where a model preserving temporal information has been predicted in
the context of cloud removal. Both strategies take advantage of the presence of co-
registered and matched SAR (Synthetic Aperture Radar) measurements contained in
the data set. Interestingly, the benefits of using multi-modal and multi-temporal data
to reconstruct noisy data have highlighted the contribution of the dataset to the remote
sensing community. The reliable model for cloudy image synthesis is the Convolutional
Neural Network (CNN) based cloud removal approach in satellite images was proposed
in reference [41]. First, the extraction of cloud masks from real cloud images by the
layer separation method and the dark channel selection method. Second, the refinement
of cloud masks by reflecting the color of the background surface as a function of cloud
thickness. Finally, using the synthesized cloud images the hierarchical cloud suppression
network is trained with a multi-scale scheme. An experimental evaluation indicated the
validity of the proposed technique compared to state-of-the-art methods for accurate
cloud removal in satellite images.

To improve the quality of multi-spectral remote sensing images contaminated by haze,
the authors of [42] developed an efficient and reliable haze removal algorithm based on
a learning framework. A linear regression model with relevant haze features was estab-
lished, and the gradient descent methodology applied to the training model. From a hazy
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image, a correct transmission map was obtained by learning the coefficients of the linear
model. Similarly, this algorithm estimated the atmospheric light in order to limit the
influence of highlighting surfaces on the acquisition of atmospheric light. This method
has shown its reliability to obtain a better image quality in the context of removing
fine haze while preserving colors compared to the traditional strategies. The authors
of [43] performed noise removal in hyper-spectral images (HSI), including random noise,
structural stripe noise and dead pixels/traces, based on the deep Convolutional Neural
Network (CNN) through the (HSI-DeNet) approach. The objective of this algorithm
has overcome the problems faced by researchers of the same concern, which are the
following. First, the proposed HSI-DeNet technique can be taken as a tensor method
using filter learning in each layer without destroying the spectral and spatial structures.
Secondly, the HSI-DeNet can take into account both different forms of noise in the HSI.
Furthermore, this approach can be adapted for single and multiple images by slightly
changing the filter channels of the first and last layer. Finally, the excessive speed of this
method for testing, made it more practical for real applications. The quantitative and
qualitative evaluation of HSI-DeNet on different types of simulated and real HSI images
proved its high performance and extreme restoration runtime compared to the compared
methods.

The methods for noise removal in satellite images are summarized in Table 2, where
the techniques used, the datasets, the form of noise and the reference of each paper and
its year of publication are indicated.

5.3. Detection and suppression techniques

As degradation detection and removal are exceptionally interrelated and complementary,
there is a need for an integrated framework that handles both tasks simultaneously. An-
other rich family of techniques to solve the remote sensing image detection and removal
problem using machine and deep learning is described below:

•Cloud Detection Network (CDN), Cloud Removal Network (CRN) [14].

• Spatial-Temporal-Spectral based on a Deep Convolutional Neural Network (STS-
CNN) [16].

• Image Restoration Based on Generative Adversarial Networks (RestoreGAN) [22].

•Deep PnP Low-Rank Tensor Approximation (DPLRTA) [44]. Multiple Convolutional
Deep Neural Networks (ConvNets), Conditional Random Field (CRF) [45].

• Image restoration via deep learning (RestoreNet-Plus) [46].

The technique of detecting and removing clouds and cloud shadows simultaneously
in Landsat-8 remote sensing bitemporal images through cascaded convolutional neural
network (CNN) has been the proposed topic by [14]. Its design is organized as follows:
the cloud images and the corresponding temporal images are processed by two fully
convolutional networks (FCN) in cascade that structure the fundamental body of the
system. The first FCN with multi-scale aggregation and channel attention mechanism,
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Tab. 2. Summary of removal techniques

Techniques used Databases Forms of
noise

Ref. Year

• Spatial Procedures for Automated
Removal of Cloud and Shadow
(SPARCS)

Landsat TM
Landsat ETM+

Cloud and
cloud
shadow

[8] 2014

• Convolutional Neural Network (CNN)
• The residual structure

Landsat 8 OLI Haze [9] 2018

• Multi-Scale Residual Convolutional
Neural Network (MRCNN)

Landsat 8 OLI Haze [11] 2018

• Convolutional neural network (CNN)
combined with an imaging model

Landsat 8 OLI Thin cloud [15] 2021

• Progressively Spatio-Temporal Patch
Group Deep Learning

Sentinel-2 MSI
Landsat 8 OLI

Thick cloud
and cloud
shadow

[29] 2020

• Sentinel-1/2 Cloud Removal Time
Series (SEN12MS-CR-TS)

Sentinel-1
Sentinel-2

Landsat 8 OLI

Cloud [31] 2022

• Convolutional Neural Network (CNN)
• Reliable Cloudy Image Synthesis
Model

Satellite images Cloud [41] 2019

• Learning Framework Remote Sensing
Multispectral Images

Haze [42] 2019

• Hyperspectral Image denoising
byNetwork (HSI-DeNet)
• Convolutional Neural Network (CNN)

Hyperspectral Images Noise [43] 2018

aims to detect clouds and shadows using the Cloud Detection Network (CDN), while the
second FCN with the detected cloud and shadow masks, the cloud image and a temporal
image, is used for cloud removal and reconstruction of missing data provided by the
Cloud Removal Network (CRN). The restoration was accomplished by a methodology
of self-training designed to learn the correspondence between pairs of clean pixels of
bitemporal images, thus avoiding the need for manual labels. The experimental aspect
showed that the suggested algorithm was able to simultaneously detect and remove clouds
and shadows from remote sensing images, thus outperforming traditional methods in all
indicators, with a significant margin.

A pioneering work is done in the paper [16]. In this paper, the author adopts the
Spatial- Temporal-Spectral (STS-CNN) method based on Deep Convolutional Neural
Network, which reconstructed the missing data in a Landsat ETM + (Enhanced The-
matic Mapper Plus) remote sensing image through a unified spatial-temporal-spectral
(STS) framework based on a deep convolutional neural network (CNN). The basic idea
of this paper is to use the unified framework to solve the following three problems:
first, recovering deadlines in the Aqua Moderate Resolution Imaging Spectroradiome-
ter (MODIS) band 6, second, correcting the scan lines (SLC) of Landsat ETM+, and
third, removing thick clouds. Although existing methods can only handle a single task of
reconstructing missing information, the proposed strategy was found to be effective in re-
covering deadlines in Aqua MODIS band 6, solving the SLC problem and removing thick
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clouds. The STS-CNN approach had some shortcomings such as, spectral distortion and
blurring appeared during the removal of thick clouds by using temporal information.

The paper [22] proposed RestoreGAN architecture for jitter detection and restoration
of remote sensing image, based on a Generative Adversarial Network (GAN) to learn and
correct in an automatic way the features of the contaminated scene from a single remote
sensing image. While two Convolutional Neural Networks (CNN) are designed, the first
one serves to separate the inputs and the second one to adjust the distortions. After the
validation and verification proofs of the RestoreGANmethod on PatternNet, UCMerced,
WHU-RS19 and Yaogan-26 databases respectively, the proposed system demonstrated its
performance in terms of Deformation Metric (DM) compared to UnrollingCNN, GenCNN
and ContGAN methods.

The topic of [38] presents a deep learning based method for the detection and removal
of thick clouds from optical images of the ZY-3 satellite. For the first task convolutional
neural network (CNN) architecture is used, while for the second one which is the recovery
of image information under the clouds, content, texture and spectrum generation (CTS)
networks based on classical CNN are used. It should be noted that the framework of the
proposed CNN structure can use multi-source data (content, texture and spectrum) as
a unified input. Although, the experimental results on simulated and real images have
shown the effectiveness is robustness of the approach to remove particular types of thick,
thin and shadow clouds. But it stands helpless in front of the changing land cover.

For hyper-spectral image recovery (HSI), the authors of [44] treated the Plug-and-
Play (PnP) framework, due to its scalability and flexibility, as a bridge between tra-
ditional HSI restoration techniques and deep noise removal networks. The proposed
approach, Deep PnP Low-Rank Tensor Approximation (DPLRTA), is a three-step pro-
cess: Tensor Modeling, Low-Rank Tensor Decomposition, and Noise Removal by Implicit
Convolutional Neural Network (ICNN) by regularization. PnP is a bridge that connects
these three steps. Simulation and real experiments on Pavia City Centre and HYDICE
Urban data respectively proved that DPLRTA can effectively preserve the detail, funda-
mental shape and texture data of HSI.

The authors of [45] automatically detected and removed shadows in real-world scenes
from a single image using a fusion of Convolutional Deep Neural Networks (ConvNets)
and a Conditional Random Field (CRF). The approach aims to automatically learn the
most relevant features in a supervised manner for shadow detection based on multiple
networks (ConvNets). Properties were also learned at the super-pixel level and on the
dominant boundaries of the image. Posterior predictions based on the learned features
introduced in a field model (CRF) to obtain shadow masks. With the help of the
detected shadow masks, a Bayesian formulation that constitutes the concept of this
shadow elimination process was used to appropriately extract the shadow matte with the
recovered image, and then eliminate it. The proposed framework proved its performance
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Tab. 3. Summary of detection and suppression techniques

Techniques used Databases Forms of
noise

Ref. Year

• Cloud Detection Network (CDN)
• Cloud Removal Network (CRN)

Landsat 8 Cloud and
cloud
shadow

[14] 2020

• Spatial-Temporal-Spectral based on a
Deep Convolutional Neural Network
(STS-CNN)

Landsat ETM+ Thick
Cloud

[16] 2018

• Image Restoration Based on
Generative Adversarial Networks
(RestoreGAN)

PatternNet
UC Merced
WHU-RS19
Yaogan-26

Jitter [22] 2021

• Detection: Convolutional Neural
Network (CNN)
• Removal: Content-Texture-Spectral
(CTS-CNN)

ZY-3 Thick
Cloud

[38] 2019

• Deep PnP Low-Rank Tensor
Approximation (DPLRTA)
• Convolutional Neural Network (CNN)

Pavia City Centre (data
simulation)

HYDICE Urban (data real)

Noise [44] 2020

• Multiple Convolutional Deep Neural
Networks (ConvNets)
• Conditional Random Field (CRF)

UCF
CMU
UIUC

Shadow [45] 2015

• Image restoration via deep learning
(RestoreNet-Plus)

Optical Synthetic Aperture
Imaging (OSAI)

Noise and
Blur

[46] 2021

on various databases (UCF shadow, CMU shadow and UIUC shadow) unlike previous
research.

The paper [46] suggested an improved RestoreNet-Plus network for image restoration
of a synthetic aperture optical imaging system based on deep learning. To establish a
hidden nonlinear correspondence between the output and input without analytical ex-
pression, a neural network is used. While learning, the neural network is able to fit an
input model to an output model that approximates the inverse problem process. Anal-
ysis of the experimental results indicated that RestoreNet-Plus is a better alternative
compared to other methods in terms of noise suppression and restoration of synthetic
aperture optical imaging.

The strategies for detecting and suppressing or removing noise in satellite images are
summarized in Table 3, which shows the approaches used, the databases, the form of
noise as well as the reference of each paper and its year of publication.

6. Conclusion

The bibliographic survey carried out between 2012 and 2022 on the techniques of restau-
ration of satellite imagery data by machine and deep learning is analyzed. The satellites
used in each work, the recognition of different forms of degradation, including clouds,
haze and shadows are examined. The type of technique suitable for their treatment;
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detection, elimination and algorithms that process both are studied. The study of the
literature shows that the most used databases are, in descending order, the American
satellites (Landsat), the Asian satellites (GF-1/2 and ZY-3), then the European satellites
(Spot, Sentinel, Meteosat). In terms of the most processed type of degradation, clouds
come first, followed by clouds and their shadows, and haze. The most widely used tech-
niques are primarily the simple iterative linear cluster (SLIC) with convolutional neural
networks (CNN) and fully convolutional neural networks (FCN). In addition, we note
that the methods that deal with detection are more than those of suppression. It should
be noted that, despite the great success and wide dissemination of American databases,
there has recently been competition between Asia and America in terms of launching
remote sensing satellites. Although AI-based strategies are pioneering in all areas com-
pared to traditional algorithms, complementary efforts are needed to achieve promising
results and performance in terms of reliability and calculation time. The accuracy of
degradation detection and suppression can be increased by integrating special zones and
time conditions according to various weather models. In addition, to overcome the con-
straints and disadvantages of current algorithms, it is crucial to combine atmospheric
parameters with the artificial neural networks.
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