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Abstract. Image demoiréing is a particular example of a picture restoration problem. Moiré is an
interference pattern generated by overlaying similar but slightly offset templates.

In this paper, we present a deep learning based algorithm to reduce moiré disruptions. The proposed
solution contains an explanation of the cross-sampling procedure – the training dataset management
method which was optimized according to limited computing resources.

Suggested neural network architecture is based on Attention U-Net structure. It is an exceptionally
effective model which was not proposed before in image demoiréing systems. The greatest improvement
of this model in comparison to U-Net network is the implementation of attention gates. These additional
computing operations make the algorithm more focused on target structures.

We also examined three MSE and SSIM based loss functions. The SSIM index is used to predict
the perceived quality of digital images and videos. A similar approach was applied in various computer
vision areas.

The author’s main contributions to the image demoiréing problem contain the use of the novel
architecture for this task, innovative two-part loss function, and the untypical use of the cross-sampling
training procedure.
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1. Introduction

Image demoiréing is a relatively new issue in the field of Computer Vision (CV). Essen-
tially, it is a specific case of picture restoration. The problem of moiré fringes appears
when an opaque ruled pattern with transparent gaps is overlaid on another similar pat-
tern. For this kind of interference pattern to emerge, the two patterns must not be
completely identical, but one should be slightly geometrically transformed with respect
to the other, or should have a slightly dissimilar pitch. Moiré patterns appear e.g. in
digital photography and television. In the first example, it occurs when a pattern on
an object being photographed interferes with the shape of the light sensors to generate
undesirable artifacts. The term originates from the French noun moiré, a type of textile,
traditionally made of silk (now also cotton or synthetic material) with a rippled appear-
ance. Examples of images from ultra-high-definition demoiréing dataset (UHDM) [27]
with moiré fringes are depicted in Fig. 1.

Nowadays, taking photos of electronic displays is a common way of transferring im-
age data and it is widely practiced in industries and everyday life. Because of signal
interference between the pixel matrix of the display screen and the Bayer filters (color
filter arrays (CFA) for arranging RGB color filters on a square grid of photosensors)
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4 Attention-based U-Net for image demoiréing

Fig. 1. Moiré examples from UHDM database [27]. Images with moiré patterns are presented on the
left. On the right images without disruption are shown.

in a camera sensor objectionable moiré patterns significantly disrupt captured screen
images. In this work, we tackle the problem of deep learning-based image demoiréing
capable of improving the quality of such images.

Recently, deep neural network-based solutions achieve great results in many CV-
related problems. Various image restoration and image deblurring issues were resolved
with the help of these machine learning algorithms. The presented approach is based
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on a type of U-Net convolutional neural network (CNN) [18]. The network consists
of two main paths (a contracting path and an expansive path) which gives it the u-
shaped architecture. Each contracting path is followed by blocks of activation functions
and max pooling operations. As a result, the spatial information is reduced while the
feature information is increased. The second path is intended to reverse this state. It is
a particular example of the symmetrical autoencoder architecture.

The author’s main contributions to the image demoiréing problem are the proposal
of an unused before and highly efficient architecture, the presentation of a loss function
implementation which is innovative for this area, and the untypical use of the cross-
sampling training procedure.

1.1. Related Works

Leading architectures dedicated to image deblurring and image restoration are built
on straight deep convolutional neural networks (DCNNs) [2, 13], generative adversar-
ial networks (GANs) [11, 23], Transformer-based blocks [21, 25, 28] and U-Net-shaped
hierarchical structures [22].

In the context of real-world (nonsynthetic) moiré removal, the number of studies is
meaningfully lower. The first real-world committed dataset was proposed in [26] (the
dataset is available from [20]) where authors used a multiresolution fully convolutional
neural network. In other papers, a dynamic feature encoding module [8] and a novel
multiscale bandpass convolutional neural networks were also suggested [29]. The al-
gorithms strictly dedicated to high-resolution images analysis are also available – the
multi-stage framework FHDe2Net [4] was applied to 1080p resolution image demoiréing
on the FHDMi database and the ESDNet [27] architecture was Performed well trained
and performed well on UHDM dataset. The first mentioned framework consists of two
branches. The global to local cascades branch removes moiré patterns from the picture
while the other part of the structure conserves high-resolution details. The second so-
lution is based on a semantic-aligned scale-aware module to address the scale variation
of moiré patterns. Most of the proposed deep learning algorithms have high computa-
tional complexity. We focused on developing a lightweight and effective model on lower
resolution images (512 · 512) to balance computational costs.

To solve the considered problem we propose a special variant of the U-Net architec-
ture [18]. It is a convolutional network originally designed for biomedical image segmen-
tation. The network is fast and it was successfully adopted in different areas of CV, like
super-resolution [9, 12], depth estimation [1, 6] and image denoising [5]. In our research
we used the Attention U-Net [14] – the U-Net-type architecture with attention gates ap-
plied. These extra operations automatically learn to focus on target structures without
additional supervision. The concept comes from Natural Language Processing (NLP)
for image captioning [3]. In this paper, we present our training procedure methods and
our results achieved on the test datasets.
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2. Experimental setup

2.1. Datasets

As there are few papers addressing the image demoiréing problem, there are also not too
many datasets for this task. Most of them are generated by moiré promoted software.
However, for some time real-world data is also available.

2.1.1. UHDM

The UHDM dataset [27] is a collection of ultra-high-definition images. It contains 5,000
pairs of images in resolution 4032 ·3024 and 4624 ·3274. The dataset was collected using
various mobile phones which affects resolution and quality diversity. To produce realistic
moiré images, authors shoot clean pictures displayed on the screen with a phone camera
, and the phone was fixed on a smartphone gimbal, which allows them to conveniently
and flexibly adjust the camera view through its control button. UHDM is randomly split
into 4,500 pairs for the training procedure and 500 pairs for validation. In our research
we used the same distribution of subsets.

2.1.2. TIP2018

Authors of the frequently cited publication [26] created a benchmark of 135 000 image
pairs available from [20]. Collected images have a wide variety of moiré effects. Each
pair contains an image contaminated with a moiré pattern and its corresponding uncon-
taminated reference image. Image references are enhanced with a black border which
is explained by the observation that dark colors are least affected by the moiré effect.
Displayed images were captured using a mobile phone. 90% of images are used as the
training set and 10% are used for validation and testing. During the validation, we used
these data to tune the parameters of a classifier when the test is executed to assess the
final performance [17]. We kept these proportions.

2.2. Proposed methods

2.2.1. Attention U-Net

In our research, we proposed widely respected Attention U-Net architecture [14]. The
algorithm uses self-attention gating modules that can be utilized in CNN-based standard
image analysis models for dense label predictions.

Mentioned gates are located in the standard U-Net architecture to highlight salient
features that are passed through the skip connections. Attention gates filter the neuron
activation during backward and forward passes to down-weighted background regions
and up-weighted spatial regions which are more relevant for a given problem.

This kind of neural network architecture has been never successfully used before in
image demoiréing or image restoration tasks.
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2.2.2. Loss function

In this paper, three loss functions are considered. First, we applied the mean squared
error (MSE) function which measures the average squared difference between the esti-
mated values and the actual value. Later, we experimented with combinations of MSE
loss and the structural similarity index measure (SSIM) loss [24]. We defined the second
one as the SSIM value according to (1). The SSIM measure is used to assess the per-
ceived quality of digital images and videos. The SSIM value remains between −1 and 1.
A value closer to 1 indicates better image quality. A similar approach was used in depth
estimation models [1] where authors empirically found and set 0.1 as a reasonable weight
for MSE part in the loss formula. We decided to start from the same value which might
be understood as a significant approximation. Achieved results were compared also with
the ten times bigger MSE-part multiplier. To determine the most accurate value the re-
markably wider range should be considered. Because of technical limitations, we decided
to investigate just these two cases. In [15] the author compares similarity and distance
measures. The author showed and explained the theoretical similarities between SSIM
and MSE functions which depend on the same parameters. Nevertheless, the experimen-
tal simulations showed a great difference between these two metrics. It can be observed
that MSE is quite insensitive to all types of distortions while SSIM responds considerably
to even minor blurriness and noise changes. By combining these two methods we can
control more output image parameters.

The equations crucial for our computations are presented below.

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (1)

where:

µx – the pixel sample mean of x,

µy – the pixel sample mean of y,

σ2
x – the variance of x,

σ2
y – the variance of y,

σxy – the variance of x and y,

C1, C2 – two variables to stabilize the division with weak denominator.

MSE(x, y) =
1

n

∑
n

(xn − yn)
2 , (2)

where:

n – number of pixels,

xn – ground truth pixel,

yn – predicted pixel.
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LSSIM(x, y) = 1− SSIM(x, y) . (3)

During experiments we applied and analysed three loss functions described by (4-6).

L1(x, y) = MSE(x, y) , (4)

L2(x, y) = 0.1 ·MSE(x, y) + LSSIM(x, y) , (5)

L3(x, y) = MSE(x, y) + LSSIM(x, y) . (6)

2.2.3. Training procedures

To train our implemented solutions we used ADAM optimizer [10]. It is an algorithm
for first-order gradient-based optimization of stochastic objective functions. The method
is efficient and requires less memory than fundamental stochastic gradient descent. The
training lasted 100 epochs and every single training epoch was followed by validation.
During the validation SSIM and peak signal-to-noise ratio (PSNR) metrics were moni-
tored. The equation for PSNR is shown below.

PSNR(x, y) = 20 · log10(Imax)− 10 · 10 log10(MSE(x, y)) (7)

where:

Imax – the maximum possible pixel value of the image. When the pixels are represented
using 8 bits per sample, this is 255.

To reduce computational costs we decided to use a cross-sampling technique. It is a
method used for balancing uneven or extensive datasets. During the training, we used all
elements from the UHDM training set and only 15 500 elements from TIP2018 training
set. After every epoch, the elements from the second-mentioned set were randomly
drawn. For comparison, we also trained one particular model on the whole training
dataset.

As a result of time-consuming prevention, the resolution of the whole collected
database (UHDM and TIP2018) was reduced to a dimension of 512 · 512 pixels. Tests
and validations were made on the UHDM and the TIP2018 datasets separately. During
the examination of our methods, the testing resolution also decreased to 512 · 512. The
final comparison with other algorithms was made on the images with original resolution.

We implemented our proposed network using PyTorch [16] and it was trained on the
NVIDIA TITAN V100 GPU with 32GB memory.
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3. Experimental results

3.1. Loss functions comparison

During epochs validating we monitored two main metrics: SSIM and PSNR. These two
measuring tools are widely used in image quality assessment. To minimize computational
costs we decided to use the cross-sampling method in experiments with loss functions.

In Figs. 2a and b we can see how the validation metrics change in the training time
for the UHDM validation dataset.

We can observe that by optimizing SSIM value – PSNR value increases slower than
without using SSIM-related loss function. It is explained by strong PSNR-MSE relation
which is presented in [15]. The two-part loss function minimizes MSE less efficiently
which is a necessary compromise if we want to maximize the SSIM measure. It is
a newer measurement tool that is designed based on three main factors, i.e., luminance,
contrast, and structure to better suit the operation of the human visual system [19].

Validation measures in function of epochs for the TIP2018 validation set are depicted
in Figs. 3a and b.

A similar tendency of the SSIM-PSNR dependence can be observed but the propor-
tions are slightly different. It is observed that with decreasing MSE part in the MSE –
SSIM combinational function – PSNR increase.

All results for test datasets are located in the Table 1. According these results, the
most proficient loss function is 0.1 · MSE+SSIM which achieves the best results with
SSIM measure for both datasets. On the other hand, the PSNR was not so underval-
ued as using MSE+SSIM minimizing. Choosing the most accurate loss function should
depend on task specification but we present the pros and cons of these calculations.

a b

Fig. 2. Validating with two measures in function of epochs for the UHDM validation dataset: (a) with
SSIM; (b) with PSNR. Graph color represents the loss function applied.
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a b

Fig. 3. Validating with two measures in function of epochs for the TIP2018 validation dataset: (a) with
SSIM; (b) with PSNR. Graph color represents the loss function applied.

The presented SSIM-related loss function includes point-wise differences but also opti-
mizes the process of distortion removal by looking at regions around each point. For the
optimization of the algorithm to be better suited to the operation of the human visual
system, we recommend the proposed cost function.

3.2. Influence of the cross-sampling implementation

We examined the influence of the cross-sampling method which reduced the training time
almost eight times. Because of a lack of resources was decided to train the model on
full TIP2018 and UHDM datasets just once. We made decision to use 0.1 ·MSE+SSIM
loss function to perform it. Later we compared the achieved measures with the cross-
sampling method.

Tab. 1. Final metrics for different datasets and loss functions.

DATASET METRIC LOSS FUNCTION VALUE
UHDM SSIM MSE 0.77

0.1 ·MSE+LSSIM 0.80
MSE+LSSIM 0.79

PSNR MSE 19.80
0.1 ·MSE+LSSIM 19.31

MSE+LSSIM 19.23
TIP2018 SSIM MSE 0.90

0.1 ·MSE+LSSIM 0.91
MSE+LSSIM 0.91

PSNR MSE 27.94
0.1 ·MSE+LSSIM 27.46

MSE+LSSIM 27.18
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a b

Fig. 4. Validating with two measures in function of epochs for the UHDM validation dataset: (a) with
SSIM; (b) with PSNR. Graph color represents the loss function applied.

a b

Fig. 5. Validating with two measures in function of epochs for the TIP2018 validation dataset: (a) with
SSIM; (b) with PSNR. Graph color represents the loss function applied.

Charts with measures in the function of epoch iterations for the UHDM dataset are
presented in Figs. 4a and b.

It can be noticed that differentials and rate of increase of the SSIM measure are
similar for both methods. The correlation between PSNR measures is shaped differently
and obtained efficiency gap is narrowed.

The corresponding charts for the TIP2018 dataset are shown in Figs. 5a and b.

Accurate results for both discussed training methods are presented in the Tab. 2.

We provided two versions of our model: cross-sampled Attention U-net for image
demoiréing (cs-AUid) and Attention U-net for image demoiréing (AUid). The first
solution is much less time-consuming and easier to train while the second one achieves
better results.
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Tab. 2. Comparison of the cross-sampling method and full-dataset training metrics.

DATASET METRIC CROSS-SAMPLING VALUE

UHDM
SSIM

YES 0.80
NO 0.82

PSNR
YES 19.31
NO 19.48

TIP2018
SSIM

YES 0.91
NO 0.94

PSNR
YES 27.46
NO 28.58

3.3. Comparison with other algorithms

In Tab. 3 we presented our results in comparison with the best available and documented
solutions. Based on the following outcome, we can conclude that our method outperforms
most of the other techniques in SSIM metric. We can suspect that it is an advantage
of the relatively innovative loss function and efficient Attention U-Net algorithm. The
results of cs-AUid model might be considered as a satisfying replacement that can easily
be trained even with second-rate computational resources. It is less time-consuming and
based on effective training procedures.

Notwithstanding, we need to remember that results presented in the previous chapter
were obtained for a resolution 512 · 512. For scientific cases, we tested our trained model
also on the benchmark images with a much higher number of image pixels.

In Figs. 6 and 7 the examples of the model outcome are shown. The images were
made with our cs-AUid approach. We can observe that moiré is barely visible.

4. Conclusions

In this work, we proposed a convolutional neural network based Attention U-Net for
image demoiréing. We presented two training procedures and we analyzed three loss
functions. Our innovation lies in efficient datasets management and proper architecture
choice. Our solution might be interpreted as an efficient alternative for more complex
and time-consuming models.

Tab. 3. Comparison with other state-of-the-art algorithms. cs-AUid corresponds to cross-sampling
method while AUid means large dataset used in the training. Both models were trained
with 0.1 ·MSE+LSSIM loss function. Compared solutions: TIP2018 [20], MopNet [7],
MBCNN [29], FHDe2Net [4], ESDNet-L [27].

DATASET MEASURE INPUT TIP2018 MopNet MBCNN FHDe2Net ESDNet-L cs-AUid AUid
SSIM 0.51 0.76 0.76 0.79 0.75 0.80 0.76 0.78

UHDM
PSNR 17.12 19.91 19.49 21.41 20.34 22.42 18.20 18.25
SSIM 0.74 0.87 0.89 0.89 0.90 0.92 0.88 0.90

TIP2018
PSNR 20.30 26.77 27.75 30.03 27.78 30.11 26.03 26.82

Number of parameters (millions) 1.4 58.6 15.2 13.6 10.6 6.4 6.4
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Fig. 6. Examples of images from UHDM dataset. From left: moiréd image, original image, demoiréd
image (cs-AUid output).

Machine GRAPHICS & VISION 31(1/4):3–17, 2022. DOI: 10.22630/MGV.2022.31.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2022.31.1.1


14 Attention-based U-Net for image demoiréing

Fig. 7. Examples of images from TIP2018 dataset. Image references are enhanced with a black border
which is explained by the observation that dark colors are least affected by the moiré effect.
From left: moiréd image, original image, demoiréd image (cs-AUid output).
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The next part of the research should be adapting models for higher resolutions.
Presented models were trained and validated on the 512 · 512 pixel maps. Basing on
the results collected in Tab. 3 we can notice that with the increase in image resolution
the quality of the images indicated with the respective quality measures significantly
decreased. We also could study the loss function in the wider range of SSIM-MSE
relation in the measure L2 according to (5) to optimize the model parameters. In the
next steps, the PSNR also should be maximized. In [15] its author presented a new
similarity measure denoted there as CMSC which can be examined as a loss function in
our further research.
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demoiréing. In S. Avidan, G. Brostow, M. Cissé, et al., editors, Computer Vision – Proc. ECCV
2022, volume 13678, Part XVIII of Lecture Notes in Computer Science, pages 646–662, Tel Aviv,
Israel, 23-27 Oct 2022. Springer Nature Switzerland. doi:10.1007/978-3-031-19797-0 37.

[28] S. W. Zamir, A. Arora, S. Khan, et al. Restormer: Efficient transformer for high-
resolution image restoration. In Proc. 2022 IEEE/CVF Conf. Computer Vision and Pat-
tern Recognition (CVPR), pages 5718–5729, New Orleans, Louisiana, 18-24 Jun 2022. IEEE.
doi:10.1109/CVPR52688.2022.00564.

[29] B. Zheng, S. Yuan, G. Slabaugh, and A. Leonardis. Image demoireing with learnable bandpass
filters. In Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), pages
3633–3642, Virtual conference, 14-19 Jun 2020. IEEE. doi:10.1109/CVPR42600.2020.00369.

Machine GRAPHICS & VISION 31(1/4):3–17, 2022. DOI: 10.22630/MGV.2022.31.1.1 .

https://doi.org/10.1007/978-3-031-19797-0_37
https://doi.org/10.1109/CVPR52688.2022.00564
https://doi.org/10.1109/CVPR42600.2020.00369
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2022.31.1.1



	Introduction
	Related Works

	Experimental setup
	Datasets
	UHDM
	TIP2018

	Proposed methods
	Attention U-Net
	Loss function
	Training procedures


	Experimental results
	Loss functions comparison
	Influence of the cross-sampling implementation
	Comparison with other algorithms

	Conclusions

