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Abstract. Mushrooms are a rich source of antioxidants and nutritional values. Edible mushrooms,
however, are susceptible to various diseases such as dry bubble, wet bubble, cobweb, bacterial blotches,
and mites. Farmers face significant production losses due to these diseases affecting mushrooms. The
manual detection of these diseases relies on expertise, knowledge of diseases, and human effort. There-
fore, there is a need for computer-aided methods, which serve as optimal substitutes for detecting and
segmenting diseases. In this paper, we propose a semantic segmentation approach based on the Ran-
dom Forest machine learning technique for the detection and segmentation of mushroom diseases. Our
focus lies in extracting a combination of different features, including Gabor, Bouda, Kayyali, Gaussian,
Canny edge, Roberts, Sobel, Scharr, Prewitt, Median, and Variance. We employ constant mean-variance
thresholding and the Pearson correlation coefficient to extract significant features, aiming to enhance
computational speed and reduce complexity in training the Random Forest classifier. Our results indi-
cate that semantic segmentation based on Random Forest outperforms other methods such as Support
Vector Machine (SVM), Näıve Bayes, K-means, and Region of Interest in terms of accuracy. Addition-
ally, it exhibits superior precision, recall, and F1 score compared to SVM. It is worth noting that deep
learning-based semantic segmentation methods were not considered due to the limited availability of
diseased mushroom images.

Key words: mushroom diseases, semantic segmentation, computer aided, Machine Learning, sig-
nificant feature extraction, Random Forest classifier.

1. Introduction

To enhance mushroom yields, farmers frequently invest in controlled environment culti-
vation rooms. Despite these earnest endeavours, the persistence of diseases in substrates
and mushrooms remains a challenge [1,2]. Even with precautionary measures in place, a
lack of knowledge, crop management skills, and occasional human errors can contribute
to the onset of diseases affecting both mushrooms and their substrate bags. Among
the most prevalent mushroom diseases are cobweb, wet bubble, bacterial blotches, dry
bubble, and mites. These diseases not only affect individual mushrooms but also have
the potential to spread from one mushroom to another. Over time, they can proliferate
throughout the cultivation bag, extending to other bags in the room, resulting in signif-
icant losses for the farmer. Timely detection and proactive measures are paramount for
mitigating the impact of these diseases. The manual identification of mushroom diseases
poses a formidable challenge, necessitating a profound expertise in disease recognition
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and the capacity to implement effective corrective actions. Farmers frequently find them-
selves compelled to seek guidance from scientific experts, and any oversight in this process
can result in significant losses. Moreover, the early-stage detection of diseases with the
naked eye proves to be a daunting task, underscoring the imperative for computer-aided
detection methods. Traditional methods for identifying diseases in mushrooms often de-
pend on non-computer-aided techniques that utilize chemical and biological approaches
in scientific laboratories. Nevertheless, these methodologies are often time-consuming.
In response to this challenge, we introduce an innovative computer-aided methodology
that harnesses the power of machine learning, particularly an Enhanced Random Forest
technique. Our proposed method integrates an optimized selection of features to reduce
complexity and elevate overall effectiveness in implementation.

The subsequent sections of this article are structured as follows: Section 2 presents
a comprehensive literature review that encompasses mushroom diseases, various disease
detection methods, and the application of machine learning techniques in disease seg-
mentation. In Section 3, the design methodology is detailed, incorporating established
segmentation methods such as K-Means clustering, Region of Interest extraction, Colour
Threshold, Support Vector Machine (SVM), and the proposed Enhanced Random Forest
method, with a specific focus on parameter optimization techniques. Section 4 provides
a presentation of results and a discussion on mushroom disease segmentation, cover-
ing both existing standard methods and the newly proposed approach, followed by a
comparative analysis. Finally, the conclusions of the work are summarized in Section 5.

2. Related work and motivation

The literature review outlines various methods and approaches employed in the detec-
tion and segmentation of mushroom diseases, emphasizing both manual and computer-
aided techniques and also outlines some of the different disease detection methods. The
proposed research aims to address the existing gap in automated mushroom disease
segmentation by introducing a semantic segmentation method based on Enhanced Ran-
dom Forest. This method is compared against established state-of-the-art techniques
such as SVM, Näıve Bayes, K-means, ROI, and Colour Threshold methods. The review
begins by discussing manual segmentation methods involving chemical and biological
processes, such as Biological Material-RNA [3] analysis and Isolation of dsRNA [4] cou-
pled with electron microscopy. These methods are noted for their time-consuming na-
ture. Computer-aided methods, as outlined in [5] and [6], leverage techniques like Näıve
Bayes, Sequential Minimal Optimization, and Ripple Down Rules (RIDOR) for classify-
ing 16 images of diseased mushrooms. Human intervention is required in the conversion
of these images to a suitable file format for classification. Additionally, an automated
pixel-to-pixel image processing-based software, proposed by [7] and [8], is designed to
inspect white button mushroom crops and detect signs of illness and pests.

For diagnosing mushroom diseases, [9] and [10] have developed a rule-based expert
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system. This system necessitates text-based responses from farmers as inputs to detect
diseases. While these methods utilize computer-aided techniques, it is important to
emphasize that human intervention is still required to detect diseased mushrooms in a
given image. The various image segmentation approaches [11] in general are threshold,
edge and region based applied for disease segmentation in different fields like agriculture
or medical diagnosis. In [12] the region growing method is used to segment disease spots
on leaf and eliminate background by interactively selecting growing seeds in the ACCF
map. Then morphological operation is used on the region growing method results.

In the identification of diseases in Arecanut, a two-step procedure is employed, in-
corporating K-Means clustering and the Otsu approach, as outlined in [13]. The colour-
based K-Means clustering method is applied during pre-processing to effectively isolate
Arecanut from the background. Subsequently, the Otsu thresholding method is em-
ployed to transform RGB images into monochrome images, facilitating the detection of
diseases. The diseased area of the Arecanut is then accurately determined using the
connected components method.

In addition to conventional state-of-the-art methods, numerous machine learning ap-
proaches have been proposed for disease classification in plants and fruits. For instance,
in the segmentation and classification of plant leaf diseased areas, image thresholding,
K-Means clustering, and Neural networks are utilized [14]. In the case of apple fruits, the
identification of infected areas involves employing a Global threshold for segmentation.
Further classification of the infected areas on apple fruits is accomplished using a Machine
Learning Technique, specifically the multi-class Support Vector Machine (SVM) [15].

The random forest, as introduced in [17], operates on an ensemble of trees, each
dependent on the values of a random vector. This vector is sampled independently, yet
uniformly, across all trees within the forest. This strategic approach embodies a diversi-
fied learning mechanism, cultivating robustness against noise and enhancing adaptability
in predictive modelling. T. K. Ho, in [18], proposed tree-based classifiers to arbitrarily
increase capacity, thereby improving accuracy for both training and testing data. The
approach involves developing multiple trees in randomly selected subspaces, particularly
effective for handwritten digits.

Achieving accurate and effective semantic segmentation poses a challenge due to
the necessity of classifying each pixel, a computationally demanding task. In addressing
this challenge, [19] presents a random forest-based semantic segmentation algorithm that
achieves precise and effective pixel-wise classification of body poses. The Random Forest
(RF) approach [20] for pixel-level segmentation in images contributes in three significant
ways. First, it demonstrates the applicability of Nearest Neighbour Matching and Texton
Class Histograms to the Random Forest structure. Second, it underscores the importance
of discriminative learning and geographic context for Random Forest, emphasizing how
the architecture can enhance classifier performance. Lastly, segmentation performance
is elevated by utilizing Random Forest to integrate multiple features, including colour,
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textons, HOG features, and filter banks. A Flexible Random Forest model [21] has been
developed to address a diverse and extensive range of video and image tasks, presenting
a discussion that combines both theoretical insights and practical implementations.

In addition to employing machine learning techniques for segmenting diseases across
various fields, deep learning methods are also utilized in disease segmentation. Several
convolutional neural network-based techniques presented in [22] aim to enhance the ac-
curacy of semantic segmentation. Deep learning approaches excel over other methods,
partially due to their ability to learn intricate representations, coupled with hierarchical
structures and non-linear activations. Notable deep learning-based semantic segmenta-
tion models such as DeepLab, CCNet, SegNet, ICNet, and RefineNet [23,24,25,26,27,28]
have been developed for segmenting images of various types, including high-resolution
and real-time image segmentation.

From the existing literature, it follows evidently that there is limited research on
mushroom disease segmentation, and the current studies in this domain require human
intervention rather than an automated approach. In response to this gap, a semantic seg-
mentation method is proposed based on Enhanced Random Forest (ERF) for mushroom
disease segmentation. This method is compared against standard state-of-the-art tech-
niques such as SVM, Näıve Bayes, K-means, ROI, and colour threshold methods. Due
to the scarcity of diseased mushroom images from diverse sources, deep learning-based
semantic segmentation methods like DeepLab, SigNet, ICNet, etc., were not considered
in the comparative analysis.

3. Methodology and methods

3.1. Existing standard methods of segmentation

Image processing is a multidisciplinary field encompassing the manipulation, analysis,
and interpretation of visual information extracted from considered images. Within this
domain, diverse approaches are employed to extract insightful information and enhance
image quality for various applications. Noteworthy methods in digital image processing
include K-Means clustering, Region of Interest (ROI) extraction, the colour threshold
method, and the application of Näıve Bayes, as well as SVM classification techniques,
which are subject to comparative analysis. These techniques find application across
various domains such as computer vision, remote sensing, medical imaging, and the
detection of diseases in agricultural crops.

3.2. Random Forest-based semantic segmentation

In the proposed approach for segmenting mushroom diseases, we employ Random Forest-
based semantic segmentation. Throughout this segmentation process, the initial pre-
processing of image data is conducted to enhance both its quality and relevance. Fol-
lowing this, feature estimation procedures are implemented to capture pertinent image
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attributes. Subsequently, significant features are extracted to facilitate the discrimina-
tion of key regions. To attain the final segmentation results, a pixel-wise Random Forest
classifier is applied.

3.2.1. Data set

Firstly, the collection process involves gathering images of both diseased and healthy
mushrooms for training purposes. Ground truth images are subsequently generated with
the input of experts, who provide valuable insights into the distinctive characteristics
of mushroom diseases. Subsequently, the images undergo a pre-processing stage before
feature extraction. Each image considered for training is represented by the notation
Ipxq, where ’p’ and ’q’ denote the row and column of the matrix ’I.’ In this matrix, every
element, designated as Ii, corresponds to a pixel with an intensity value.

3.2.2. Image pre-processing

The original images are in the RGB colour model, but they have been converted to
a single grayscale representation using the green channel for ease of processing. This
conversion is advantageous due to the contrast property, which is particularly beneficial
over the red (R) and blue (B) channels. The green channel response exhibits a lower
contrast, while the blue channel demonstrates a less dynamic range.

3.2.3. Feature estimation

The preprocessing of training images involves the consideration of both diseased and
non-diseased classes for feature estimation, aiming to accurately segment the diseased
portions. Various features are computed from the training images, including Canny
and Sobel edge detectors, as well as Roberts, Scharr, Prewitt, Bouda, and Kayyali edge
detectors, which are derived from the Sobel operator. Additionally, Gaussian features
with σ values of 3 and 7, Median with a size of 3, and Gabor filters with a kernel size
of 9×9 and variations in orientation (ϕ), scaling (σ), and wavelength (γ) are employed.
These features, each assigned corresponding weights, play a pivotal role in node splitting
and classification decision within the random forest framework. The computation of
features involves the mathematical operation of convolution between the input image
and the filter, as expressed as follows

Y (i, j) =

m∑
k=1

n∑
l=1

I(i+ k − 1, j + l − 1)K(k, l) , (1)

where i = {1, 2, . . . , M − m + 1} and j = {1, 2, . . . , N − n + 1}, M × N is the size
of input image, m,n is the size of the filter (kernel). The kernel or filter coefficient of
Roberts, 3× 3 Sobel, 3× 3 Prewitt, 3× 3 Kayyali [29], Bouda [30] are as follows
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KRoberts =

[
0 1
−1 0

]
, KSobel =

−1 0 1
−2 0 2
−1 0 1

 , KPrewitt =

−1 0 1
−1 0 1
−1 0 1

 ,

KKayyali =

−1 0 1
−1 0 1
−1 0 1

 , KBouda =

√
2 0 −

√
2

2
√
2 0 −2

√
2√

2 0 −
√
2

 , KScharr =

 −3 0 3
−10 0 10
−3 0 3

 .

The Gaussian filter kernel of size (2k + 1) × (2k + 1) convolved with input image is
given by

Kij =
1

2πσ2
e

−(i−(k+1)2+j−(k+1)2)

(2σ2) 1 ≤ i, j ≤ 2k + 1 . (2)

Canny edge filter works with derivatives in direction of the edge textures on Gaussian
filtered output [31]. Gabor filter function [31] is represented by the product of Gaussian
function and exponential function given as

gθ,γ,λ,ϕ,σ(x, y) = exp

[
−(x2 + γ2y2)

(2σ2)

]
exp

[
i2πx

λσ + ϕ

]
, (3)

where θ gives rotation of Gabor envelope, λ Regulates the width of the Gabor function
strips, γ regulates the Gabor filter height, σ regulates the Gabor filter overall size, ϕ is
phase offset of sinusoid and is equal to zero in the considered case.

3.2.4. Significant features extraction

The features assessed in Section 3.2.3 lack significance. Extracting significant features
proves beneficial in alleviating the computational burden during both training and test-
ing phases, leading to time savings. To achieve this, we advocate for feature extraction
through constant mean-variance thresholding. This approach helps eliminate features
with low variance and zero-valued variables. Additionally, employing the Pearson cor-
relation coefficient aids in identifying highly correlated features, which may result in
feature duplication. By avoiding such redundancies, we aim to enhance computational
efficiency.

Constant mean-variance thresholding

A non-constant feature extraction method employs mean-variance thresholding. This
technique aids in discerning features that are either constant, approximately constant,
or zero-valued. Such features lack significance in determining the pixel’s class within a
given image.

Let V represent a variable (one of the features among the total set of features). It
becomes a significant feature if it satisfies the following condition

if vi ≤ (m− 2σ2) vi is not significant (4)

otherwise vi is significant ,
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where vi is feature considered at that instant, m is mean and σ2 is variance of the feature
set, respectively.

Pearson correlation coefficient

The Pearson correlation coefficient is a widely utilized statistical measure that gauges
the strength of the relationship between two variables. This measure is particularly
prevalent in the context of linear regression analysis. When employed for feature reduc-
tion purposes, the Pearson correlation coefficient (5), denoted as pr, is calculated for two
features, f1 and f2.

pr =
N(

∑
f1 ∗ f2)− (

∑
f1)(

∑
f2)√

[N
∑

f2
1 − (

∑
f1)2][N

∑
f2
2 − (

∑
f2)2]

, (5)

where f1 is first feature set and f2 is adjacent feature set under consideration. N is
number of elements in the feature set. Higher the pr value between f1 and f2, higher
the correlation, and it indicates duplication of these features, which is not effective for
training.

3.2.5. Random Forest pixel-wise classifier

It constitutes an ensemble of decision trees, trained through the bagging method, typ-
ically with the maximum number of samples set to the size of the training set. This
algorithm yields greater tree diversity, introducing a higher bias for lower variance and
consequently leading to a superior model. In a Random Forest, during the splitting pro-
cess at each node, a random subset of features is considered to grow the tree, searching
for the best feature among this random subset. Moreover, it is possible to enhance the
randomness of trees by also employing random thresholds for each feature, instead of
searching for the best possible threshold as done in a traditional decision tree.

Let the dataset be denoted as D = {f1, f2, . . . , fn}, where each point represents
a feature. We randomly select a subset of features (pixels) from this dataset, with
the pixels, in turn, corresponding to the class labels originally present in the dataset.
A feature is represented by fi [32] and is given by

fi(p, P, V ) =

n∑
i=1

wiP(p+ui/Vp,h) , (6)

where p is a pixel under consideration, P is the input image, w is weight, V is depth
map, h is channel index of P , u is offset parameter vector.

Bootstrap data setsDi|i = 1, 2, . . . , B are generated from the data setD, by randomly
selecting the significant features discussed in Section 3.2.4, where repeating is allowed.
Each randomly chosen Bootstrap set Di helps in constructing Decision Tree Ti. Root
node of the Tree can be any one of the features inDi. At each decision tree nodes splitting
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Sj is done and and the best split is chosen as that which has the highest information
gain:

Sj = SL
j ∪ SR

j , (7)

where SL
j is left split, SR

j is right split. Information gain in terms of entropy for the
node split is given by (8), where entropy at the node is given by (9):

Ij = H(sj)−
∑

i∈(L,R)

Si
j

sj
H(Si

j) , (8)

H(s) =

C∑
i

−Pi(s) log2 Pi(s) , (9)

where Sj is target population before the split, H(s) is entropy of s, H(Si
j) is entropy

of Si
j , S

i
j are data points falling into right or left subtree based on i ∈ (L,R). Pi is the

probability of a class i in the data s. The conditional probability from each tree Ti for
a data point p being a class c considered at each node is given by

PTi(c/p, P, V ) < Q or PTi(c/p, P, V ) > Q , (10)

where Q is the threshold. Then, the majority voting out of the total decision trees is
considered to decide the p being class c.

Algorithmic steps

Mushroom images, both diseased and non-diseased, are initially divided into training
and test sets. Subsequently, mask images are generated for the training dataset. The
algorithmic flow can be outlined in the following steps:
Step 1:Consider mushroom images
Step 2: Image Preprocessing – Convert the image from RGB to grayscale and resize it

to a standard size of 128× 128.
Step 3: Feature Extraction – Extract features such as Gabor features, original image

pixels, Canny edge, Roberts, Sobel, Scharr, Prewitt, Bouda, Kayyali, Gaussian (σ = 3
and σ = 7), Median (σ = 3), and variance with a size of 3 from the mushroom images.

Step 4:Extract significant features using a constant mean-variance threshold and Pear-
son correlation for training.

Step 5: Image Pre-processing for Labelled Mask Images – Convert the images to grayscale
and resize them to a standard size of 128× 128.

Step 6: Split the Data into Train and Test sets – The data is split with a train size of
70% and a test size of 30%. The random state parameter is set to 20.

Step 7:Build a Random Forest (RF) Classifier model. The RF model is trained using
significant features, and 20 estimators are employed, representing twenty decision
trees with a depth of 10.

Step 8:Test the model by predicting on the test data, and calculate the accuracy.
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4. Results and discussions on mushroom disease segmentation

The proposed method has been employed on a dataset comprising mushroom diseases to
effectively segment diseases from input mushroom images. Non-diseased images, along
with diseases such as Dry Bubble, Wet Bubble, Cobweb, Bacterial Blotch, and mites on
mushroom images, were selected for experimentation using the Random Forest semantic
segmentation algorithm. The proposed approach, founded on a random forest classifier
combined with a robust feature extraction process, outperforms the SVM classifier, Näıve
Bayes, and other methods, including the K-Means clustering method, Region of Interest,
and Colour Threshold method.

Approximately 250 mushroom images, encompassing both diseased and non-diseased
instances, were gathered from diverse organizations and a popular website (i.e., from
[33,34,35]). These images were subsequently divided into training (70%) and test (30%)
datasets. Ground truth images were generated for the training set to characterize the
diseases present in mushrooms and distinguish the background parts of the images.

Features from the Gabor filter are extracted from the mushroom image using a kernel
size of 9x9. The parameters for extraction include theta values ranging from 0 to 45
degrees, γ values of 0.05 and 0.5, σ with values of 1 and 3 and λ values of 0, 45, 90, and
135. In addition to Gabor features, other features extracted include original image pixels,
and edges by Canny, Roberts, Sobel, Scharr, Prewitt, Bouda, and Kayyali (extracted
from the Sobel operator), Gaussian with σ = 3 and 7, median and variance in the
windows of size 3× 3.

The total number of features amounts to 43, with 32 originating from the Gabor
filter and the remaining 11 from other filters. Since some of these features are not sig-
nificant, a process involving Pearson correlation and a constant mean-variance threshold
is applied to extract meaningful features. This process eliminates constant and highly
correlated features, thereby enhancing the performance of the Random Forest semantic
segmentation results. Additionally, it contributes to the reduction of computation time
and complexity.

The Random Forest semantic segmentation model is constructed using 20 decision
trees with a depth of 10. The results of the Random Forest simulation on the mushroom
diseased image dataset are compared with the Näıve Bayes method, basic standard
methods such as Region of Interest, Colour Threshold method, unsupervised K-means
clustering algorithm, and other supervised machine learning techniques. Support Vector
Machine with a Radial Basis Function kernel is employed in the comparison process.

4.1. Subjective analysis

The experiment produced a series of images, showcasing both the original input images
and the resulting images, as illustrated in Figure 1. The first row denotes the disease
names, the second row displays the original images of diseased mushrooms, and the
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Tab. 1. Summary on number of diseases segmented correctly by various segmentation methods.

Segmentation
method

Cobweb
Diseases
(total 65)

Dry
bubble
Diseases
(total 70)

Wet
bubble
Diseases
(total 41)

Mites Dis-
eases (to-
tal 24)

Bacterial
blotch
Diseases
(total 50)

Enhanced Random
Forest

64 69 40 22 49

SVM 59 69 39 21 43
Näıve Bayes 58 68 38 22 45
K-means 61 64 36 22 47
Region of Interest 58 68 35 22 47
Colour Threshold 59 65 36 22 43

third row exhibits the resultant images generated by the proposed Enhanced Random
Forest. Following suit, the fourth row presents Näıve Bayes’ resultant images, the fifth
row displays SVM’s resultant images, the sixth row exhibits K-means’ resultant images,
and the seventh row illustrates the ROI resultant images. Additionally, the seventh
row showcases resultant images corresponding to the Colour Threshold method [16], all
aligned with the respective diseased images are shown in the 8th row.

Upon subjective analysis, it is discerned that the Enhanced Random Forest excels in
accurately segmenting disease areas for cobweb, dry bubble, wet bubble, and bacterial
blotch diseases, outperforming Näıve Bayes, SVM, K-means, ROI, and Colour Threshold
techniques. However, it exhibits suboptimal performance in some mite images, occasion-
ally extracting background elements alongside the diseased portions.

4.2. Objective analysis

To evaluate the performance of the proposed Enhanced Random Forest, a comparative
analysis was conducted with several other methods, including Näıve Bayes, Support Vec-
tor Machine, K-means, ROI, and colour threshold. The dataset used for this assessment
comprised 250 images depicting various mushroom diseases. Table 1 presents the statis-
tics for the number of correctly segmented mushroom disease images out of the total
250, categorized as cobweb (65), dry bubbles (70), wet bubbles (41), mites (24), and
bacterial blotches (50). The graphs illustrating the segmentation results obtained by
different methods across various mushroom disease categories are shown in Figure 2.

Table 2 shows accuracies derived from statistics from Table 1, calculated as

ACC = NiC/Ni , (11)

where ACC – accuracy, NiC – number of images correctly identified, and Ni – total
number of images. Notably, the Enhanced Random Forest outperforms Näıve Bayes,
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Mushroom
disease

Cobweb Dry bubble Wet bubble Mites Bacterial
blotch

Original
image

Enhanced
RF based
disease

segmented

Näıve Bayes
based
disease

segmented

SVM based
disease

segmented

K-means
based
disease

segmented

ROI based
disease

segmented

Colour
Threshold

based
disease

segmented

Fig. 1. Comparative results of Enhanced RF (ERF), Näıve Bayes, SVM, K-Means, ROI, Colour Thresh-
old methods for different diseases. 1st row: a1-a5 – sample original input images; 2nd row: b1-b5
– ERF methods results; 3rd row: c1-c5 – RF methods results; 4th row: d1-d5 – SVM method
results; 5th row: e1-e5 – K-Means method results; 6th ro: f1-f5 – ROI method results; and
7th row: g1-g5 – Colour Threshold method results for the corresponding input diseased images
a1-a5.

Machine GRAPHICS & VISION 32(2):129–146, 2023. DOI: 10.22630/MGV.2023.32.2.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.2.7


140 Semantic Segmentation of Diseases in Mushrooms using Enhanced Random Forest. . .

Tab. 2. Accuracy of ERF, RF and SVM classifier based semantic segmentation and other standard
segmentation methods.

Segmentation method Accuracy

Enhanced Random Forest 0.98
SVM 0.93
Näıve Bayes 0.92
K-means 0.92
Region of Interest 0.90
Colour Threshold 0.92

Fig. 2. Bar graph of number of diseases segmented correctly by different segmentation methods.

achieving the highest accuracy of 98%. This suggests that the Enhanced Random For-
est, utilizing features selected through constant mean-variance thresholding and Pearson
correlation coefficient, is more effective in mushroom disease segmentation tasks com-
pared to SVM, widely-used supervised machine learning technique which achieved an
accuracy of 93%. The second-highest accuracy of SVM indicates its correct classifica-
tion of 93% pixels or regions in mushroom disease images. Näıve Bayes also a supervised
machine learning technique used for disease segmentation, demonstrated an accuracy of
92.4%, performing well but slightly less accurately than SVM and the Enhanced Ran-
dom Forest in segmenting mushroom diseases. K-means is an unsupervised machine
learning clustering algorithm, achieved a respectable accuracy of 92% and almost equals
Näıve Bayes, showcasing its effectiveness in a classification context, albeit slightly behind
other machine learning techniques. Region of Interest (ROI), a conventional segmenta-
tion technique for identifying specific areas in an image, achieved an accuracy of 90%,
indicating its lesser effectiveness compared to other methods in mushroom disease seg-
mentation tasks. Colour Thresholding, a basic method relying on colour information for
image object segmentation, attained an accuracy of 92%, aligning with K-means, Näıve
Bayes and slightly below other machine learning methods.
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Fig. 3. Bar graph of accuracies attained by the tested methods.

The accuracy results of the proposed enhanced Random Forest and other standard
segmentation methods are shown as a bar graph in Figure 3.

The metrics of precision, recall, and F1 score are taken into account, offering a
comprehensive perspective on the effectiveness of the proposed semantic segmentation
methods in identifying regions affected by mushroom diseases in a given image. Specif-
ically, the metric of specificity evaluates the model’s capability to accurately predict
non-disease regions. It’s worth noting that, in the context of semantic segmentation for
disease detection, True Negatives (TN) are of lesser relevance, leading to the infrequent
use of specificity as a metric in this particular domain.

PRE = TP/(TP + FP ) , (12)

REC = TP/(TP + FN) , (13)

F1 = (2 ∗ PRE ∗ REC)/(PRE + REC) , (14)

where PRE – precision, REC – recall, F1 – F1 score.

Table 3 presents the confusion matrix, while Table 4 displays the performance met-
rics of pixel-based classifiers for ERF, SVM, and NB. Additionally, Figure 4 illustrates
the corresponding bar graph. The objective analysis of ERF, SVM, and NB pixel-level
classifiers employs performance metrics such as Precision, Recall, and F1 score, as out-
lined in equations (12), (13) and (14), respectively. These metrics are computed based
on the False Positive (FP), False Negative (FN), True Positive (TP), and True Negative
(TN) values derived from the confusion matrix. TP represents pixels correctly identified
by the semantic segmentation model as part of the actual mushroom diseased area in
a given image, while FP signifies pixels identified by the model as part of the disease
region but not belonging to the actual diseased area. FN corresponds to pixels within the
mushroom disease region that are incorrectly classified as not belonging to the disease
by the semantic segmentation model, and TN represents pixels correctly identified as
not belonging to the mushroom disease region when they actually do not belong. It is
noteworthy that semantic segmentation models typically emphasize the identification of
positive mushroom diseased regions more than the negative (healthy) regions, rendering
True Positive less relevant in the context of semantic segmentation.
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Tab. 3. Confusion matrix of Enhanced Random Forest – ERF, Näıve Bayes – NB, and Support Vector
Machine – SVM.

Classes Correctly Segmented labels Incorrectly Segmented labels

class ERF SVM NB ERF SVM NB

1 (diseased) 5246 5172 5031 98 178 312
2 (undiseased) 1039 1042 1061 171 162 150

Tab. 4. Classifier performance metrics at pixels level: ERF – Enhanced Random Forest, NB – Näıve
Bayes, SVM – Support Vector Machine methods.

Class Precision Recall F1-Score

class ERF SVM NB ERF SVM NB ERF SVM NB

1 (diseased) 0.97 0.95 0.95 0.99 0.97 0.98 0.98 0.97 0.97
2 (undiseased) 0.91 0.85 0.88 0.87 0.87 0.79 0.89 0.85 0.83

Fig. 4. Bar graph of pixels level classifier performance metrics of ERF – Enhanced Random Forest, NB
– Näıve Bayes, SVM – Support Vector Machine.
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5. Conclusion

In mushroom cultivation, the segmentation of mushroom diseases stands out as a crucial
task, playing a pivotal role in estimating disease severity, suggesting necessary preventive
actions, and mitigating potential losses for farmers. This work presents a novel approach
to automatically perform semantic segmentation specifically for identifying various mush-
room diseases, employing the Enhanced Random Forest method. Despite the existence of
advanced deep learning methods for semantic segmentation in image object recognition,
the decision to utilize machine learning methods in this context stems from the limited
availability of data. This proposed method is further strengthened by the integration
of substantial feature extraction, achieved through constant mean-variance thresholding
and the Pearson correlation coefficient. The effectiveness of the proposed method is
underscored by its impressive accuracy rate of 98 percent, outperforming Näıve Bayes,
SVM, k-means, ROI, and colour threshold methods. A comprehensive comparative anal-
ysis, based on confusion matrices and performance metrics such as precision, recall, and
F1-score values, further highlights the superiority of our approach over Näıve Bayes and
SVM. These metrics serve as reliable indicators of the efficiency of our semantic segmen-
tation approach in accurately identifying and delineating mushroom diseases in images.
This study substantiates the efficacy of the Enhanced Random Forest approach as a
valuable tool for managing and preventing mushroom diseases, emphasizing the impor-
tance of employing machine learning techniques in situations characterized by limited
data availability.
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