
Robust Line-Convex Polygon Intersection Computation in E2

using Projective Space Representation

Vaclav Skala
Dept. of Computer Science and Engineering, Faculty of Applied Sciences

University of West Bohemia, Pilsen, Czech Republic

www.VaclavSkala.eu

Abstract This paper describes modified robust algorithms for a line clipping by a convex polygon in
E2 and a convex polyhedron in E3. The proposed algorithm is based on the Cyrus-Beck algorithm
and uses homogeneous coordinates to increase the robustness of computation. The algorithm enables
computation fully in the projective space using the homogeneous coordinates and the line can be given
in the projective space, in general. If the result can remain in projective space, no division operation is
needed. It supports the use of vector-vector operations, SSE/AVX instructions, and GPU.

Keywords: computer graphics, line convex polygon intersection, line convex polygon clipping, Cyrus-
Beck algorithm, homogeneous coordinates, projective space, duality principle, vector-vector operations,
GPU computing.

1. Introduction

Algorithms for a line and line segment intersection computation with the convex polygon
in E2 and convex polyhedron in E3 are key parts of many geometrical packages, CAD
and GIS systems, etc. An extensive survey of intersection and clipping algorithms can
be found in [31]. Fundamental algorithms have been described in many textbooks, see
Appendix.

Due to the apparent simplicity of intersection algorithms, they might fail due to the
limited precision of computation of the Floating-Point Arithmetic (IEEE 754) used in
today’s computers. The Cyrus-Beck (CB) algorithm [5] is well known for solving the
intersection problem of a line with a convex polygon in the E2 case or a polyhedron in
the E3 case.

There are two basic principles in the E2 case:

• the edges of a convex polygon define lines and intersection computation is based on
direct intersection computation of the clipped line with an edge of the convex polygon,

• the given line defines a half-plane, which separates convex polygon vertices [20,24,28],
and positions of the polygon vertices are tested.

The first approach is used by the CB algorithm [5], and the second one was used in [17].

In both cases, the convex polygon can be given as a set of oriented edges with
all normal vectors pointing inside or outside the convex polygon and computational
complexity is O(N). It means, that the consecutive order of edges is not needed, resp.
this property is not used within the CB algorithm.

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://orcid.org/0000-0001-8886-4281
www.VaclavSkala.eu
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


4 Robust projective line-convex polygon intersection. . .

It should be noted, that in the case of E2 the convex polygon is given by an ordered
sequence of vertices, i.e. clockwise or anti-clockwise, and such property leads to algo-
rithms with O(lgN) [17]. In the E3 case an ordering of facets is not possible, however in
the triangular mesh case, where neighbors of a triangle are known, the algorithm with
O(

√
N) was described [18,19,25].

1.1. Cyrus-Beck line clipping algorithm in Euclidean space

The CB algorithm [5] in Euclidean space for a line clipping against a convex polygon in
E2 or against a convex polyhedron in E3 is well known. It is used in many computer
graphics systems and related courses due to its simplicity and applicability for the E3

case.

However, the CB algorithm has some assumptions:

• it was developed for Euclidean space, i.e. the polygon vertices or the points defining
the line p need are given generally in the homogeneous coordinates, they have to be
converted to the Euclidean space,

• consistent and known normal vectors orientation of edges, resp. facets, i.e. the normal
vectors should all be pointing out or inside,

• generally, an unordered set of edges in the E2 case, resp. facets in the E3 case is given.
In the E2 case a polygon is usually given as an ordered set of edges with clockwise or
anti-clockwise orientation,

• the given line, which is to be clipped, is given in the parametric form or by two points
in the case of line segment clipping.

The CB algorithm is based on direct intersection computation of the given line p
in the parametric form and a line on which the polygon edge ei lies, see Fig. 1, in the

Fig. 1. Cyrus-Beck clipping algorithm against the convex polygon in E2

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


V. Skala 5

implicit form. This leads to a solution of two linear equations (1) (the vector notation
is used):

p : x(t) = xA + s t , t ∈ (−∞,+∞) ,

ei : nT
i x+ ci = 0 , i = 0, . . . , N − 1 ,

aix+ biy + ci = 0 ,

(1)

where xA = [xA, yA]
T , s = [sX , sY ]

T is the directional vector of the line p, ni = [nX , nY ]
T

is the “normal” vector1 of the edge ei, and ci is related to the ei distance from the origin.

Solving (1), the parameter t for the intersection point is obtained as:

nT
i xA + nT

i s t+ ci = 0 . (2)

Then the ti is the parameter t value for the intersection of the line p and the line on
which the edge ei lies, see Fig. 1.

ti = −nT
i xA + ci
nT
i s

. (3)

The CB algorithm is of O(N) computational complexity with a fixed O(N) pre-computa-
tional cost, as coefficients of lines on which the polygon edges lie need to be pre-computed,
see Algorithm 1.

It can be seen that there is an instability of the algorithm as if the line p is parallel
or nearly parallel to the edge ei, the expression nT

i s → 0 and ti → ±∞. The fraction
computation might cause an overflow or high imprecision of the computed parameter t
value, see Fig. 1.

It is hard to detect and solve reliably such cases2 and programmers usually use a
sequence like:

if |nT
i s| < ε then a singular case , (4)

which is an incorrect solution as the value ε is a programmer’s choice and the value of
|nT

i s| might be also close to the value ε (3).

The CB algorithm for a line clipping is described by the Algorithm 1. It can be
easily modified for a line segment clipping just restricting the range of the parameter t
to < 0, 1 >, i.e.

< tmin, tmax >:=< tmin, tmax > ∩ < 0, 1 > . (5)

If the final interval of t is empty, i.e. < tmin, tmax >= ∅ (the case tmin > tmax), then the
line segment does not have an intersection with the convex polygon.

The known modifications of the CB algorithm use a separation function for more
reliable detection of “close to singular” cases were described in [16]:

1The “normal” vector is a bivector having different properties from a vector.
2However, many textbooks do not point out such dangerous construction as far as the robustness

and computational stability are concerned and consider it as a singular case.

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


6 Robust projective line-convex polygon intersection. . .

Algorithm 1 Cyrus-Beck Line Clipping Algorithm

1: for i := 0 to N-1 do ▷ computation for the given convex polygon
2: Compute (ai, bi : ci) ▷ [ai, bi : ci]

T = [nT
i : ci]

T for all polygon edges
3: end for
4:

5: procedure CB-Clip(xA,xB); ▷ line is given by two points xA,xB ∈ E2

6: tmin := −∞; tmax := ∞; ▷ set initial conditions for the parameter t
7: s := xB − xA; ▷ directional vector of the line
8: for i := 0 to N − 1 do ▷ for each edge
9: q := nT

i s;
10: if abs(q) < ε then
11: NOP; ▷ Singular or close to singular case
12: else
13: t = −(nT

i xA + ci)/n
T
i s;

14: if q < 0 then tmin := max{t, tmin};
15: else tmax := min{t, tmax};
16: end if
17: end if
18: end for ▷ all convex polygon edges processed
19: if tmin < tmax then ▷ intersection of a line and the polygon exists
20: { xB := xA + s tmax; xA := xA + s tmin; }
21: ▷ if tmin > tmax – NO intersection case
22: end if
23: end procedure

• a separation implicit function Fi(x) defined as
Fi(x) = nT

i x+ ci = aix+ biy + ci for the ith edge [20],

• the parametric form of the given line
x(t) = xA + (xB − xA) t
for intersection computation with found edges intersected (3).

It can be seen that the CB algorithm is of O(N) complexity and the division oper-
ation, which is the most consuming time operation in the floating point representation,
is used N times. Also, the division operations cause imprecision and lead to robustness
issues.3

3There is a possibility to postpone division operations if the homogeneous coordinates are used, but
comparison operations must be modified appropriately [28,30].

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


V. Skala 7

Fig. 2. Projective extension and dual space

2. Projective space

The projective extension of Euclidean space is not a part of standard computer science
courses. However, homogeneous coordinates are used in computer graphics and computer
vision algorithms, as they enable to represent geometric transformations like translation
and rotation by matrix multiplication and also offer to represent a point in infinity.

The mutual conversion between the Euclidean space and projective space in the case
of the E2 space:

X =
x

w
, Y =

y

w
, w ̸= 0 , (6)

where X = (X,Y ), resp. x = [x, y : w]T are coordinates in the Euclidean space E2, resp.
in the projective space P 2. The extension to the E3 is straightforward.

The geometrical interpretation of the Euclidean and the projective spaces is presented
in Fig. 2. It should be noted, that a distance of a point X = (X,Y ), i.e. x = [x, y : w]T ,
from a line p in the E2 is defined as:

dist =
aX + bY + c√

a2 + b2
=

ax+ by + cw

w
√
a2 + b2

, p = [a, b : c]T , (7)

where n = (a, b) is the normal vector (actually it is a bivector) of the line p and c is
related to the orthogonal distance of the line p from the origin. In the E3 case:

dist =
aX + bY + cZ + d√

a2 + b2 + c2
=

ax+ by + cz + dw

w
√
a2 + b2 + c2

, p = [a, b, c : d]T , (8)

where n = (a, b, c) is the normal vector (actually it is a bivector) of a plane ρ and d is
related to the orthogonal distance of a plane ρ from the origin.

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


8 Robust projective line-convex polygon intersection. . .

2.1. Principle of duality

A line p given by two points xA = [xA, yA : wA]
T ,

xB = [xB , yB : wB ]
T is given using the outer product as:4

p = xA ∧ xB =

∣∣∣∣∣∣
i j k
xA yA wA

xB yB wB

∣∣∣∣∣∣ =
∣∣∣∣∣∣
i j k

XA YA 1
XB YB 1

∣∣∣∣∣∣ , (9)

[yAwB − yBwA,−(xAwB − xBwA) : xAyB − xByA]
T
= [a, b : c]T ,

where wA > 0, wB > 0, p = [a, b : c]T are coefficients of the line p and i, j, k are the
orthonormal basis vectors of the projective space [10].5

The projective extension of the Euclidean space enables to use the principle of duality
for the intersection of two lines p1 and p2 in E2 using the outer product:

x = p1 ∧ p2 =

∣∣∣∣∣∣
i j k
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣ = (10)

[b1c2 − b2c1,−(a1c2 − a2c1) : a1b2 − a2b1]
T
= [x, y : w]T .

It is because lines and points are dual primitives in the P 2 projective extension [3,9,21,
22,23,26,27,32,33].

The outer-product xA ∧ xB is formally equivalent to the cross-product xA × xB in
the P 2 projective extension case and the non-normalized normal vector of the line p is
n = [a, b : 0]T .

In the E3 case, the dual primitives are points and planes, i.e.

x = ρ1 ∧ ρ2 ∧ ρ3 =

∣∣∣∣∣∣∣∣
i j k l
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

∣∣∣∣∣∣∣∣ = [x, y, z : w]T ,

ρ = xA ∧ xB ∧ xC =

∣∣∣∣∣∣∣∣
i j k l
xA yA zA wA

xB yB zB wB

xC yC zC wC

∣∣∣∣∣∣∣∣ = [a, b, c : d]T . (11)

It should be noted, that the non-normalized directional vector s of the line p in E2

is orthogonal to the normal bivector of the line and it is given as:

s = (XB −XA, YB − YA) = (sX , sY ) = (−b, a) , n = (a, b) . (12)

4In this case, the outer product is formally equivalent to the cross product
5There is a direct connection with the geometric product which is defined as ab = a · b+ a ∧ b, i.e.

ab = a · b+ a× b [10].

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


V. Skala 9

The line p splits the E2 plane into two half-planes:

Fp(x) = 0 , Fp(x) = p · x = pTx = ax+ by + cw , (13)

where w > 0. If w → ±∞ then the point x is closed or in infinity. It should be noted
that the dot-product (scalar product) is a single instruction on GPU.

3. Proposed clipping algorithm in projective space

The CB algorithm computes the parameter t value using division operation N times.
However, only two values are needed, if any. It means, that N − 2 computations of the
parameter t are unnecessary. Also, reliable detection of “singular or close to singular”
cases is difficult and time-consuming.

Let us consider the case, when the convex polygon vertices and points defining the
line p are given in projective space, i.e. in homogeneous coordinates with w ̸= 0. In
this case, a conversion of xA,xB and xi to Euclidean space using a division operation
is needed, if the CB algorithm is to be used. It means, that 2N + 4 division operations
would be needed for the conversion to Euclidean space.

Let us consider the case, when the polygon vertices are generally given in the pro-
jective space (6), i.e. using the homogeneous coordinates, as:

xi = [xi, yi : wi]
T , i = 0, . . . , N − 1 and w ̸= 0 , (14)

where wi are is homogeneous coordinate and points xA and xB define the line p, resp.
line segment to be clipped.

xA = [xA, yA : wA]
T , xB = [xB , yB : wB ]

T . (15)

Then the given line p, given by the points xi and xi⊕1, intersects the edge ei if and
only if :

Fp(xi) > 0 xor Fp(xi⊕1) > 0 , i = 0, . . . , N − 1 , (16)

i.e. the points xi and xi⊕1 are on the opposite sides of the line p6.

In the case of the line convex polygon intersection, two intersected edges are detected,
if any. It means, that N − 2 division operations are saved and no division operation is
needed to find out if the convex polygon edge is intersected by the line p.

In the case when the line p intersects the convex polygon edges ek and el the inter-
section points can be determined as:
• direct intersection computation using the homogeneous coordinates of points (10),
• using the parametric form of the line p (1), but modified for the projective space.

In both cases, all computations support vector-vector operations, and therefore they are
convenient for GPU or SSE instruction use.

6The operator ⊕ means addition modulo N, i.e. a⊕ b = (a+ b) mod N .

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


10 Robust projective line-convex polygon intersection. . .

3.1. Direct intersection coordinates computation

The direct computation of the intersection points is quite simple, as the intersected edges
ek and el have been determined in the previous step (16). Using the outer-product (10)
(in this case the cross-product) the points of intersections are given as, if any:

xA = p ∧ ek ≡ p× ek , xB = p ∧ el ≡ p× el ,

ek = xk ∧ xk⊕1 = [ak, bk : ck]
T , el = xl ∧ xl⊕1 = [al, bl : cl]

T , (17)

where xA = [xA, yA : wA]
T , xB = [xB , yB : wB ]

T and ⊕ means mod N operation.7

It should be noted that the dot product and cross products are single instructions on
GPU [32].

In the case of a line segment clipping, some additional logical conditions are to be
used to keep the line segment orientation and respect to situations, when an end-point
of the line segment is already inside the given convex polygon (5) [28,29,30].

3.2. Intersection using parametric form

Using the parametric form is similar to the CB algorithm. It is simple, but the projective
representation has to be respected.

There are two possibilities:

• linear interpolation conversion from Euclidean space to the projective space, which
leads to the linear parameterization of the parameter t;

• linear parameterization directly in the projective space, which leads to the non-linear
monotonic parameterization of the parameter.

The linear parameterization directly in the projective space has significant advantages
is this case, as it is simple and robust. The line π given by two points xA = [xA, yA :
wA]

T , xB = [xB , yB : wB ]
T and p = [a, b : c]T are coefficients of the line p, see Fig. 3.

In the projective space P 2, the line π is given by two points xA = [xA, yA : wA]
T ,

xB = [xB , yB : wB ]
T . It forms with the origin 0P a plane ρ : ax + by + cw = 0, where

the point [0, 0 : 0]T represents a point in infinity.

x(τ) = xA + (xB − xA) τ , τ ∈(−∞,+∞) , (18)

x(τ) = xA + (xB − xA) τ , y(τ) = yA + (yB − yA) τ , w(τ) = wA + (wB − wA) τ .

The interpolation (18) is linear but when results are converted to Euclidean space, the
parameterization is non-linear but monotonic.

The line p in E2 is given by two points XA = (XA, YA) and XB = (XB , YB) as:

X(t) = XA + (XB −XA) t , t ∈ (−∞,+∞) . (19)

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


V. Skala 11

Fig. 3. Parameterization of a line in E2 and P 2

Fig. 4. Intersection of the line π and an edge ei

It should be noted that t ̸= τ , except for t = τ = 0 and t = τ = 1.

In the case of the projective interpolation, see Fig. 4, the system of equations (20) is
to be solved:

ei : p
Tx = 0 , ax+ by + cw = 0 ,

π : x(τ) = xA + (xB − xA) τ , τ ∈ (−∞,+∞) . (20)

7It should be noted, that instead of using mod operation, one ”virtual” vertex is added so that
xN ≡ x0. This enables us to avoid mod operation, which is computationally expensive.

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


12 Robust projective line-convex polygon intersection. . .

It means, that also homogeneous coordinate w is parametrized (21).

x(t) = xA + (xB − xA) τ = xA + sx τ ,

y(t) = yA + (yB − yA) τ = yA + sy τ , (21)

w(t) = wa + (wB − wA) τ = wa + sw τ .

This leads to:

pTx(τ) = 0 , pTxA + pT (xB − xA) τ ,

τ = −pTxA

pT s
≜ [pTxA : pT s]T = [t : tw]

T , (22)

where s = xB − xA = [sx, sy : sw]
T and τ value can be expressed as a projective scalar

value in the projective form as τ = [t : tw]
T .

Now, the τ values of intersections for the intersected edges are determined. It should
be noted, that the τ interpolation is monotonic, but in Euclidean space (X,Y ) the
interpolation is linear with non-linear parameterization.

It can be seen that division operations are not needed if the result can remain in the
projective notation, i.e. no conversion to Euclidean space is required.

The proposed algorithm, with two possible modifications, described above is simple,
easy to implement, and convenient for vector-vector implementation. It is based on the
projective extension of Euclidean space.

Contrary to the CB algorithm, the algorithm does not require computation of the
edges’ implicit form, as it uses a separation function.

The first modification is based on the outer product application’s implicit represen-
tation. The second one is based on the parametric form of the clipped line p, which is
more convenient for line segment clipping cases.
It can be seen that in the projective case

• 2N division operations are eliminated, if the polygon vertices are given in the pro-
jective space, i.e. w ̸= 1, as the transformations of xi, yi to Euclidean space are not
needed,

• there is no need to compute edges’ coefficients, i.e. ai, bi, ci ,

•N −2 division operations are saved during the run-time and if the intersection points
can remain in the projective representation, no division operation is needed at all.

It leads to significant improvement in robustness and with additional speed-up as vector-
vector operations can be used.

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


V. Skala 13

4. Conclusion

This contribution presents a new fully projective algorithm, based on the Cyrus-Beck
algorithm, for a line and line segment clipping by a convex polygon using the vector-
vector operations and supporting GPU implementation, resp. SSE/AVX instructions.

The presented approach eliminates 2N division operations in preprocessing of the
polygon edges if the polygon vertices are given in the projective space and N−2 division
operations in the run-time. It also increases the numerical robustness especially in cases,
when the given line is parallel or close to parallel to an edge of the convex polygon.

If the computed results can remain in the projective space, i.e. the conversion to
the Euclidean space is not needed, no division operation is required by the proposed
algorithm. The proposed algorithm can be extended to the E3 case, i.e. line-convex
polyhedron intersection if intersections’ points are computed using the parametric form
of the given line; however, instead of the separation line two orthogonal planes, which
define the clipped line p have to be used, similarly as in [19]. For a deeper study of
intersection algorithms, a reader is advised to read “A brief survey of intersection and
clipping algorithms” [31].

In future work, the proposed algorithm is to be analyzed from the E3 case perspective,
i.e. line and line segment clipping by a convex polyhedron using the Plücker coordinates
[11,27,34].

Acknowledgment

The author thanks recent students and colleagues at the University of West Bohemia,
Pilsen, Zhejiang University, Hangzhou and Shandong University, Jinan in China for their
recent suggestions and constructive comments.

Thanks also belong to the anonymous reviewers, as their comments and hints helped
to improve this paper and to several authors of recently published relevant papers [31]
for sharing their views and hints provided.

Appendix

The following relevant books are recommended to a reader:

• Salomon, D.: The Computer Graphics Manual [13],

• Salomon, D.: Computer Graphics and Geometric Modeling [12],

•Agoston, M. K.: Computer Graphics and Geometric Modelling: Mathematics [2],

•Agoston, M. K.: Computer Graphics and Geometric Modelling: Implementation &
Algorithms [1],

• Lengyel, E.: Mathematics for 3D Game Programming and Computer Graphics [10],

• Foley, J. D., van Dam, A., Feiner, S., Hughes, J. F.: Computer graphics – Principles
and Practice [7],

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


14 Robust projective line-convex polygon intersection. . .

•Hughes, J. F., van Dam, A., McGuire, M., Sklar, D. F., Foley, J. D., Feiner, S. K.,
Akeley, K.: Computer Graphics – Principles and Practice [8],

• Ferguson, R. S.: Practical Algorithms for 3D Computer Graphics [6],

• Shirley, P., Marschner, S.: Fundamentals of Computer Graphics [15],

•Theoharis, T., Platis, N., Papaioannou, G., Patrikalakis, N.: Graphics and Visualiza-
tion: Principles & Algorithms [35],

•Comninos, P.: Mathematical and Computer Programming Techniques for Computer
Graphics [4],

• Schneider, P. J., Eberly, D. H.: Geometric Tools for Computer Graphics [14].

References

[1] M. K. Agoston. Computer Graphics and Geometric Modelling: Implementation & Algorithms.
Springer-Verlag, Berlin, Heidelberg, 2004. doi:10.1007/b138805.

[2] M. K. Agoston. Computer Graphics and Geometric Modelling: Mathematics. Springer-Verlag,
Berlin, Heidelberg, 2005. doi:10.1007/b138899.

[3] A. Arokiasamy. Homogeneous coordinates and the principle of duality in two dimensional clipping.
Computers and Graphics, 13(1):99–100, 1989. doi:10.1016/0097-8493(89)90045-9.

[4] P. Comninos. Mathematical and Computer Programming Techniques for Computer Graphics.
Springer-Verlag, Berlin, Heidelberg, 2005. doi:10.1007/978-1-84628-292-8.

[5] M. Cyrus and J. Beck. Generalized two- and three-dimensional clipping. Computers and Graphics,
3(1):23–28, 1978. doi:10.1016/0097-8493(78)90021-3.

[6] R. S. Ferguson. Practical Algorithms for 3D Computer Graphics. A. K. Peters, Ltd., USA, 2nd
edn., 2013. doi:10.1201/b16333.

[7] J. D. Foley, A. van Dam, S. Feiner, and J. F. Hughes. Computer Graphics – Principles and Practice.
Addison-Wesley, 2nd edn., 1990.

[8] J. F. Hughes, A. van Dam, M. McGuire, D. F. Sklar, J. D. Foley, et al. Computer Graphics –
Principles and Practice. Addison-Wesley, 3rd edn., 2014.

[9] M. Johnson. Proof by duality: or the discovery of “new” theorems. Mathematics Today,
December:138–153, 1996.

[10] E. Lengyel. Mathematics for 3D Game Programming and Computer Graphics. Course Technology
Press, Boston, MA, USA, 3rd edn., 2011.

[11] N. Platis and T. Theoharis. Fast ray-tetrahedron intersection using Plücker coordinates. Journal
of Graphics Tools, 8(4):37–48, 2003. doi:10.1080/10867651.2003.10487593.

[12] D. Salomon. Computer Graphics and Geometric Modeling. Springer-Verlag, Berlin, Heidelberg,
1st edn., 1999.

[13] D. Salomon. The Computer Graphics Manual. Springer, 2011. doi:10.1007/978-0-85729-886-7.

[14] P. J. Schneider and D. H. Eberly. Geometric Tools for Computer Graphics. The Morgan Kaufmann
Series in Computer Graphics. Morgan Kaufmann, San Francisco, 2003. doi:10.1016/B978-1-55860-
594-7.50025-4.

[15] P. Shirley and S. Marschner. Fundamentals of Computer Graphics. A. K. Peters, Ltd., USA, 3rd
edn., 2009. doi:10.1201/9781439865521.

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://doi.org/10.1007/b138805
https://doi.org/10.1007/b138899
https://doi.org/10.1016/0097-8493(89)90045-9
https://doi.org/10.1007/978-1-84628-292-8
https://doi.org/10.1016/0097-8493(78)90021-3
https://doi.org/10.1201/b16333
https://doi.org/10.1080/10867651.2003.10487593
https://doi.org/10.1007/978-0-85729-886-7
https://doi.org/10.1016/B978-1-55860-594-7.50025-4
https://doi.org/10.1016/B978-1-55860-594-7.50025-4
https://doi.org/10.1201/9781439865521
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


V. Skala 15

[16] V. Skala. An efficient algorithm for line clipping by convex polygon. Computers and Graphics,
17(4):417–421, 1993. doi:10.1016/0097-8493(93)90030-D.

[17] V. Skala. O(lg N) line clipping algorithm in E2. Computers and Graphics, 18(4):517–524, 1994.
doi:10.1016/0097-8493(94)90064-7.

[18] V. Skala. An efficient algorithm for line clipping by convex and non-convex polyhedra in E3.
Computer Graphics Forum, 15(1):61–68, 1996. doi:10.1111/1467-8659.1510061.

[19] V. Skala. A fast algorithm for line clipping by convex polyhedron in E3. Computers and Graphics
(Pergamon), 21(2):209–214, 1997. doi:10.1016/s0097-8493(96)00084-2.

[20] V. Skala. A new approach to line and line segment clipping in homogeneous coordinates. Visual
Computer, 21(11):905–914, 2005. doi:10.1007/s00371-005-0305-3.

[21] V. Skala. Duality and intersection computation in projective space with GPU support. In: Latest
Trends on Applied Mathematics, Simulation, Modelling – Proc. 4th International Conference on
Applied Mathematics, Simulation, Modelling (ASM’10), pp. 66–71. Corfu, Greece, 2010. http:

//hdl.handle.net/11025/11797.

[22] V. Skala. Duality, barycentric coordinates and intersection computation in projective space with
GPU support. WSEAS Transactions on Mathematics, 9(6):407–416, 2010. http://afrodita.zcu.
cz/~skala/PUBL/PUBL_2010/2010_NAUN-journal.pdf.

[23] V. Skala. Geometry, duality and robust computation in engineering. WSEAS Transactions on
Computers, 11(9):275–293, 2012.

[24] V. Skala. S-clip E2: A new concept of clipping algorithms. SIGGRAPH Asia Posters, SA, pp. 1–2,
2012. doi:10.1145/2407156.2407200.

[25] V. Skala. Algorithms for line and plane intersection with a convex polyhedron with O(sqrt(N))
expected complexity in E3. In: SIGGRAPH Asia 2014 Posters, SA ’14. Association for Computing
Machinery, New York, NY, USA, 2014. doi:10.1145/2668975.2668976.

[26] V. Skala. Geometric transformations and duality for virtual reality and haptic systems. Communi-
cations in Computer and Information Science, 434 PART I:642–647, 2014. doi:10.1007/978-3-319-
07857-1 113.

[27] V. Skala. Projective geometry, duality and plücker coordinates for geometric computations with
determinants on GPUs. ICNAAM 2017, 1863, 2017. doi:10.1063/1.4992684.

[28] V. Skala. Optimized line and line segment clipping in E2 and geometric algebra. Ann. Math. Inf.,
52:199–215, 2020. doi:10.33039/ami.2020.05.001.

[29] V. Skala. A new coding scheme for line segment clipping in E2. Lecture Notes in Computer Science,
LNCS-accepted for publication ICCSA 2021:16–29, 2021. doi:10.1007/978-3-030-86976-2 2.

[30] V. Skala. A novel line convex polygon clipping algorithm in E2 with parallel processing modification.
Lecture Notes in Computer Science, LNCS 12953 ICCSA 2021:3–15, 2021. doi:10.1007/978-3-030-
86976-2 1.

[31] V. Skala. A brief survey of clipping and intersection algorithms with a list of references (including
triangle-triangle intersections). Informatica (Lithuania), 34(1):169–198, 2023. doi:10.15388/23-
INFOR508.

[32] V. Skala, S. A. A. Karim, and E. A. Kadir. Scientific computing and computer graphics with
GPU: Application of projective geometry and principle of duality. International Journal of Math-
ematics and Computer Science, 15(3):769–777, 2020. http://ijmcs.future-in-tech.net/15.3/

R-Skala-AbdulKarim.pdf.

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://doi.org/10.1016/0097-8493(93)90030-D
https://doi.org/10.1016/0097-8493(94)90064-7
https://doi.org/10.1111/1467-8659.1510061
https://doi.org/10.1016/s0097-8493(96)00084-2
https://doi.org/10.1007/s00371-005-0305-3
http://hdl.handle.net/11025/11797
http://hdl.handle.net/11025/11797
http://afrodita.zcu.cz/~skala/PUBL/PUBL_2010/2010_NAUN-journal.pdf
http://afrodita.zcu.cz/~skala/PUBL/PUBL_2010/2010_NAUN-journal.pdf
https://doi.org/10.1145/2407156.2407200
https://doi.org/10.1145/2668975.2668976
https://doi.org/10.1007/978-3-319-07857-1_113
https://doi.org/10.1007/978-3-319-07857-1_113
https://doi.org/10.1063/1.4992684
https://doi.org/10.33039/ami.2020.05.001
https://doi.org/10.1007/978-3-030-86976-2_2
https://doi.org/10.1007/978-3-030-86976-2_1
https://doi.org/10.1007/978-3-030-86976-2_1
https://doi.org/10.15388/23-INFOR508
https://doi.org/10.15388/23-INFOR508
http://ijmcs.future-in-tech.net/15.3/R-Skala-AbdulKarim.pdf
http://ijmcs.future-in-tech.net/15.3/R-Skala-AbdulKarim.pdf
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1


16 Robust projective line-convex polygon intersection. . .

[33] V. Skala and M. Kuchař. The hash function and the principle of duality. In: Proc. Com-
puter Graphics International Conference (CGI’01), pp. 167–174. Hong Kong, China, 2001.
doi:10.1109/CGI.2001.934671.

[34] V. Skala and M. Smolik. A new formulation of Plücker coordinates using projective representation.
In: Proc. 2018 5th International Conference on Mathematics and Computers in Sciences and
Industry (MCSI 2018), pp. 52–56. Corfu, Greece, 2018. doi:10.1109/MCSI.2018.00020.

[35] T. Theoharis, N. Platis, G. Papaioannou, and N. Patrikalakis. Graphics and Visualization: Prin-
ciples & Algorithms (1st ed.). A K Peters/CRC Press, 2008. doi:10.1201/b10676.

Vaclav Skala is a professor at the Dept. of Computer Science and Engi-
neering, University of West Bohemia (UWB), Pilsen [Plzen]. He has been
with Brunel University in London, U.K., Gavle University, Sweden, Moscow
Power Engineering Institute, Russia, etc. His current research is targeted at
fundamental algorithms for computer graphics, geometric algebra, meshless
(meshfree) methods for scalar and vector fields interpolation and approxi-
mation, and applied mathematics. He is the Editor-in-Chief of the Journal
of WSCG and Computer Science Research Notes [CSRN].
Vaclav Skala has published over 160+ research-indexed papers with more
than 800+(WoS/Publons), 1300+(Scopus), and 2600+(Scholar Google) ci-
tations.

Machine GRAPHICS & VISION 32(3/4):3–16, 2023. DOI: 10.22630/MGV.2023.32.3.1 .

https://doi.org/10.1109/CGI.2001.934671
https://doi.org/10.1109/MCSI.2018.00020
https://doi.org/10.1201/b10676
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.1

	Introduction
	Cyrus-Beck line clipping algorithm in Euclidean space

	Projective space
	Principle of duality

	Proposed clipping algorithm in projective space
	Direct intersection coordinates computation
	Intersection using parametric form

	Conclusion

