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Abstract In this paper we propose a novel algorithm based on the use of Principal Components
Analysis for the determination of spherical coordinates of sampled cosmic ray flux distribution. We
have also applied a deep neural network with encoder-decoder (E-D) architecture in order to filter-off
variance noises introduced by sampling. We conducted a series of experiments testing the effectiveness
of our estimations. The training set consisted of 92 250 images and validation set of 37 800 images. We
have calculated mean absolute error (MAE) between real values and estimations. When E-D is applied,
the number of cases (estimations) where MAE < 10 increases from 48% to 79% for θ and from 62% to
65% for ϕ, MAE < 5 increases from 24% to 45% for θ and from 47% to 52% for ϕ, MAE < 1 increases
from 6% to 9% for θ and from 12% to 16% for ϕ, where θ is the zenith angle, and ϕ is the azimuthal
angle. This is a significant change and it demonstrates the high utility of the E-D network use and
shows the accuracy of the PCA-based algorithm. We also publish the source code used in our research
in order to make it reproducible.

Keywords: cosmic-ray shower, spherical coordinates, detector grid, Principal Component Analysis,
Encoder-Decoder network.

1. Introduction

The ultra-high-energy cosmic radiation reaching the Earth’s atmosphere is extensively
studied because of its still unknown sources and mechanisms of acceleration as well as be-
cause of the implications for the dynamics of the atmosphere, life on Earth, interferences
with electronic systems and even possible correlations with seismic phenomena [25], to
name just a few [5]. Practical exploration of these phenomena is based on observations
obtained from specialized detectors capable of detecting secondary jets produced in the
atmosphere and reaching the Earth’s surface. These jets can arise due to atmospheric
collisions of either single primary high-energy particles or cosmic ray ensembles (CRE),
i.e., groups of cosmic rays generated in outer space.

Such observations are made primarily by large-scale infrastructure detectors in pro-
jects such as Pierre Auger Observatory in Argentina [48], IceCube in Antarctica [1, 2]
or Baikal-GVD at Lake Baikal in Russia [6, 44]. Due to their fixed location, such in-
stallations have a limited detection area. To expand the possibilities in this regard,
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observational structures involving small-scale detectors distributed around the world
have been proposed. Projects such as CRAYFIS [32], DECO [51], CREDO [9,24] incor-
porate widely available mobile devices like smartphones and webcams into the citizen
science paradigm. Projects allied within the CREDO consortium aggregate observations
obtained from a variety of simple and low-cost detectors that can be densely distributed
over a local area [29]. The novel image processing algorithms make it possible to detect
potential cosmic ray events using even off-the-shelves CMOS cameras [21].

Recently, advanced AI methods have been widely used to analyze such data. The
potential of such techniques is used both for low-level recognition of detector signals [8,
19, 37, 53] and globally to detect features and correlations for surface or distributed
detector networks [13, 28, 31, 45, 49]. The latest scientific and implementation research
allows for real-time detection of potentially anomalous particle tracks and similar particle
tracks detection in big data image datasets acquired by CMOS sensors [22, 38]. We
need simulations to understand spatial distribution of showers [16, 34]. In this paper,
we propose an AI-based method to disentangle the directional information from sparse
lateral distributions.

AI methods used in detection of ultra-high-energy particles are basically determined
by the types of measurement sensors that are used to detect cosmic rays. Stationary
observatories such as Pierre Auger, IceCube or Baikal-GVD use a well-defined spatial
arrangement of homogeneous detectors. For this reason, this is a fundamentally differ-
ent research problem than the one considered in our work, which is a feasibility study
aimed at proving that the jet geometry can be reconstructed with non-homogeneous
but very flexible cosmic rays detectors set-up. This set-up may consist of various types
of detectors, both industrial made and amateur constructions, with almost arbitrary
localizations which fit into the general notion of Citizen Science paradigm. The paper
proves that it is possible and our method is directly useful in the design of small-scale
complex cosmic-ray exposure (CRE) secondary flux detection systems which can be a
part of distributed cosmic ray observatories like CREDO.

To the best of our knowledge, the results presented in this work are pioneering in the
design of small-scale complex CRE secondary flux detection systems, and it is difficult
to point out research results with which to contrast our proposed method.

2. Material and methods

2.1. Muon lateral distribution

In order to generate the simulated cosmic shower, we used the approach previously
described in the paper [20]. The equation describing the muon distribution is shown in
equation (1) (muon is an elementary particle similar to the electron but with a much
greater mass). According to this equation the distribution is singular at r = 0 for typical

Machine GRAPHICS & VISION 33(2):29–45, 2024. DOI: 10.22630/MGV.2024.33.2.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.2.2


T. Hachaj, M. Piekarczyk, Ł. Bibrzycki, J. Wąs 31

values of the age parameter s, thus needs to be truncated for distances smaller than
rmin [12, 17].

ρµ(r) =
{

ρµ(rmin), r < rmin ,
Nµ

2πr2
0

Γ(4.5−s)
Γ(s)Γ(4.5−2s)

(
r
r0

)s−2 (
1 + r

r0

)s−4.5
, r≥rmin ,

(1)

where s is the age parameter [52], Nµ is the shower size parameter, and r0 describes the
characteristic size of the shower.

It should also be taken into account that the cosmic shower can hit the ground at
different angles, which can be defined using the spherical coordinates θ ∈ [0, π/2] and
ϕ ∈ [0, π] (r is constant), θ is the zenith angle, and ϕ is the azimuthal angle [12]. There
is no need to consider a larger range of angles, since the distributions in them at the
ground are periodic (see visualizations in [20]). Example distributions depending on the
angles of (θ, ϕ) can be seen later in this paper (Figures 6, 7); a detailed analysis can be
found in [20]. The paper [20] also presents the relationship between spherical coordinates
θ, ϕ and the distribution of projection of cosmic ray shower registered on ground.

Finding a pair of angles (θ, ϕ) on the basis of statistical analysis of the distribution of
cosmic shower particles on the earth’s surface makes it possible to determine the direction
from which the cosmic shower came. The proposition and evaluation of the algorithm for
determination of spherical coordinates of sampled cosmic ray flux distribution using data
acquired by grid of detectors in the presence of background noise is the main objective
of this paper.

2.2. Calculation of angles (θ, ϕ) based on analysis of cosmic ray particle dis-
tribution using Principal Components Analysis

Determining the (θ, ϕ) pair of angles allows us to determine from which direction the
cosmic rays came.

An Img matrix of size n×m is given, which represents a discrete measurement grid of
cosmic rays. The value in each grid field is equal to the number of particles that have been
recorded in that grid field. Suppose there is a recorded cosmic shower inside the grid with
a distribution consistent with (1) but with unknown values of (θ, ϕ). The Algorithm 1
allows us to estimate these unknown angles using PCA [27]. PCA is a popular and proven
technique, which in different variants allows analyzing the distribution of data depending
on angular parameters for example in geodesic [18,33,41,42] or climatological data [40].
Paper [47] reports successful application of PCA-based analysis of cosmic-ray data for
extraction of Hale Cycle. In [43] authors perform fully empirical atmospheric correction
of cosmic ray data using PCA. Because of those facts, PCA seems to be promising for
analysis of another natural phenomena like analysis of spherical coordinates of cosmic
ray flux distribution.
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Data: Input: Img – input image with dimensions n×m
Result: (θ, ϕ) – a pair of spherical coordinates.
// Resample image to range [0,255] making values discrete
Img = Integer(255 · (Img - min(Img)) / max(Img));
// Create empty list of points
Points ← ∅;
// Iterate through all grid points and add as many times a point with the

given coordinates as the number of times a particle has been registered
in it

for x = 0; x < n; x + + do
for y = 0; y < m; y + + do

for c = 0; c < Img[x, y]; c + + do
Points.Append((x, y));

end
end

end
// mean1, mean2 - mean points value; v1, v2 - PCA components; exv1, exv2 -

explained variance
[mean, v0, v1, exv0, exv1] = PCA(Points);
// modify the first vector in order to have first coordinate positive
if v1[0] < 0 then

v1 = −1 ∗ v1;
end
θ = arccos(exv1/exv0);
ϕ = π − arctan2(v1[0], v1[1]);
return (θ, ϕ);

Algorithm 1: Estimating the angles (θ, ϕ) of the distribution (1).

In practice, however, we will not have such a dense measurement grid to be able
to measure the distribution of particles at discrete points in contact. Suppose we have
a square grid in which the distance between the particle detectors horizontally and
vertically is constant at d (see Figure 1. Let us denote the sampled Img grid as Imgd.

Analysis of variance based on a set of relatively distant samples might be biased. To
increase the spatial density of the samples, we can use a convolution with a Gaussian
kernel with a size proportional to the sampling d [26]. In our case, we proposed a filter
size equal to 4 · d + 1 with σ = 0, which has a large enough diameter to cancel out the
sampling “holes” (2):

Imgd,Gauss = Img ⊗ GaussianKernel(4·d+1,4·d+1) , (2)

where ⊗ denotes convolution. For the purpose of performing variance analysis with the
Algorithm 1, it is not necessary to use a high-resolution grid. If the distribution is inside
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Fig. 1. An illustrative drawing showing a 7×7 grid of detectors, spaced by d in both directions. The
detectors are black squares that are equally spaced along the x and y axes. A hypothetical
histogram of the density of the particle distribution is shown in the background.

the sampled area, which preserves its spatial contour, it may be possible to resampling
the original grid to a given lower resolution. This can be done using, for example, the
following proposed Algorithm 2. It allows us to create fewer samples while preserving
the sum of the detected particles.

2.3. Enhancing sampled distribution image by deep convolutional encoder-
decoder

The method proposed in the previous section for determining the parameters of (θ, ϕ)
consists of three steps: registration of radiation samples, Gaussian filtering (2), resam-
pling with the Algorithm 2, and estimation of angles using the Algorithm 1. We can try
to improve the reconstruction of the original particle distribution by using an encoder-
decoder (E-D) neural network [14, 15, 23, 46]. The role of this network will be to re-
construct the original pre-sampled signal, but after applying Gaussian filtering (2) and
rescaling with Algorithm 2. For this purpose, we used the following network:

• Encoder:
◦Convolution layer with 16 3×3 filters followed by ReLU activation and max pooling 2×2;
◦Convolution layer with 8 3×3 filters followed by ReLU activation and max pooling 2×2;
◦Convolution layer with 8 3×3 filters followed by ReLU activation and max pooling 2×2;

• Decoder:
◦Convolution layer with 8 3×3 filters followed by ReLU activation and up-sampling 2×2;
◦Convolution layer with 8 3×3 filters followed by ReLU activation and up-sampling 2×2;
◦Convolution layer with 16 3×3 filters followed by ReLU activation and up-sampling 2×2;
◦Convolution layer with 1 3×3 filter followed by sigmoid activation.
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Data: Input: Img – input image with dimensions n×m; scale – resampling factor
(scale > 1)

Result: Imgres – resampled image.
// calculate the size of the resampled image
xSize = Integer(n / scale);
ySize = Integer(m / scale);
// initialize the resulting matrix with zeros
Imgres = zeros(xSize, ySize);
// iterate through all grid points
for x = 0; x < xSize; x + + do

for y = 0; y < ySize; y + + do
sum = 0;
for a = 0; a < scale; a + + do

for b = 0; b < scale; b + + do
sum = sum + Img[(scale ∗ x) + a, (scale ∗ y) + b];

end
end
Imgres[x, y] = sum;

end
end
return Imgres;

Algorithm 2: Resampling with preservation of the sum of detected particles.

In training, we will use the binary cross entropy loss function. The training data
consisted of pairs:

• as an input Img filtered by (2), resampled by Algorithm 2 and scaled to discrete
(integer) range [0,255]

• as an output Imgd filtered by (2), resampled by Algorithm 2 and scaled to discrete
(integer) range [0,255]
The resulting image generated by the encoder-decoder described in this section is

then subjected to the Algorithm 1 to estimate the (θ, ϕ) angle pair. In Figure 2 we
present a diagram that explains the proposed method.

3. Results

In this section, we will describe the validation tests of our PCA-based Algorithm 1 and
how the use of E-D network affects the resulting angle pair estimates (θ, ϕ).

To test the performance of our method, we specified the following particle flux param-
eters (1): Nµ = 106 (corresponds to a primary particle energy of more than 1016 eV [39]),
r0 = 100 (this value is compatible with the Molière radius in the Earth’s atmosphere at
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UHECR

Atmosphere

Earth surface

Detectors

Sampled jet
with background radiation

Reconstructed jet

Application Gaussian filtering
and deep encoder-decoder

Algorithm 1,
PCA-based analysis

Principal axes

Spherical coordinates of cosmic ray flux distribution

Physical phenomenon Data processing and analysis

Unknown spherical
coordinates

Fig. 2. Diagram that explains the proposed method. Ultra-high energy cosmic ray (UHECR) with
unknown spherical coordinates generates a jet that is observed on Earth surface by the detectors.
Data registered by detectors is sampled and mixed with background radiation (noise). After
applying Gaussian filtering, deep encoder-decoder network reconstructs the original jet and
Algorithm 1 is used to calculate spherical coordinates of the cosmic ray flux distribution.

the ground level [3, 4]), s = 1.3 [20]. We assumed that the particle flux is recorded over
an area of 800×800 cm. The area is divided by a 1x1 cm grid. This means that the
initial Img image has a resolution of 800×800 (n = m = 800). Let us assume that in the
800×800 cm area at intervals of d = 25 cm there are detectors equally spaced horizon-
tally and vertically, each with an area of 1×1 cm. This means that we sample Img with
32×32 = 1024 samples (detectors) thus obtaining Imgd. We assume that each detector
is capable of recording all the radiation particles that hit it during a single event. We
have assumed the value of background radiation according to [35, 36], where the muon
flux density at the earth’s surface is 1 muon

cm2·min . Thus, we can assume that over a period
of 1 second, the background radiation density at 1 cm2 of the earth’s surface averages
ρ = 1

60
muons
s·cm2 = 0.01(6) muons

s·cm2 .
We conducted a series of experiments testing the effectiveness of the Algorithm 1.

1. Angle estimation based on Img with resolution 800×800;
2. Angle estimation based on Img filtered by (2) and resampled with Algorithm 2 to a

resolution of 80×80 pixels.
3. Angle estimation based on Imgd filtered by (2) and resampled with the Algorithm 2

to a resolution of 80×80 pixels.
4. Angle estimation based on Imgd filtered by (2) and resampled with Algorithm 2 to a

resolution of 80×80 pixels and reconstructed by E-D network.
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Fig. 3. A plot of loss function value during training.

The last two cases in the list above (3 and 4) are real-life scenarios. Cases 1 and 2 are
used to check the validity of the Algorithm 1 assumptions, since in practice in these
cases we have a very densely sampled distribution, which is not very realistic.

In order to train the E-D network, we generated distributions (1) in which the angle
of θ ∈ {0, 2, 4, ..., 80}, ϕ ∈ {0, 2, 4, ..., 178} (a total of 3690 distributions). We then
discretized the distributions to an 800×800 grid by adding offsets along the x and y axes
of {0, 3, 6, 9, 12} cm. Thus, the final training set consisted of 92 250 discrete images. We
filtered the 800×800 image (2) and resampled with the algorithm 2 to resolution 80×80.
These images were the input to the E-D network. In the output we used the same
data Imgd where d = 25. We filtered Imgd by (2) and resampled with Algorithm 2 to
resolution 80×80. In this case, the validation set was not needed because the validation
was done as part of the validation of the entire Algorithm 1 (see discussion below). We
used the optimization algorithm Adam [30] with learning rate = 0.001. The training
lasted 50 epochs. A plot of loss function is presented in Figure 3.

We implemented our approach in Python 3.8 using Keras/Tensorflow 2.8, scipy 1.8
and opencv-python 4.5 libraries. Significant speed-ups in generating distributions (1)
were achieved using the numba 0.56 library. The entire experiment including data gen-
eration, network training and validation Algorithm 1 on a PC computer with Intel Core
i7 3.00 Ghz; 64 GB RAM, Windows 10 OS took more than 3 days to execute. Some of
the figures were made in R 3.6 language using dplyr 0.8 library and ggplot2 3.4.

In order to test the performance of our method, we generated a validation set of
distributions (1) in which the angles θ ∈ {1, 3, 5, ..., 83}, ϕ ∈ {1, 3, 5, ..., 179}. In addition,
we introduced a random offset of the distribution along the x and y axes in the range
of values [0,12] cm which corresponds to half the distance between the positions of the
simulated particle detectors. For each test configuration of the (θ, ϕ) pair, we performed
10 independent simulations (1) and background radiation with random offset values.
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There were 37 800 images in total. We then applied the Algorithm 1 to each test case
1, 2, 3 and 4. The results for each pair (θ, ϕ) were averaged and the estimated angles
(θ, ϕ) are shown in Figures 4 and 5. All the results are shown in degrees.

The source codes we have written can be downloaded from [10]. That online repos-
itory contains all source codes that are required to replicate the study including data
generation script, network training, evaluation and plotting the results. All calculations
included in this work were made using source codes from that repository.

The examples of results form the presented analysis made with the Algorithm 1 are
shown in Figs. 6 and 7.

4. Discussion

The training of the E-D network, which changes in the loss function in successive itera-
tions can be seen in Figure 3 was stable. After 50 epochs, loss had a binary cross entropy
value of 0.080, which has remained virtually unchanged since epoch 40.

As can be seen in the Figures 6 and 7, the Algorithm 1 using PCA to detect the
directions along which the largest variance is found works as expected. The axes are
found with relatively small error, so that the estimation of the angle θ, which is calculated
directly from the first axis of the PCA, is precise. In the case of the angle ϕ, for the
calculation of which the variance ratio along the PCA axis is used, images that have
more noise such as Img+sampled+Gauss and Img+sampled+Gauss+resampled have a
less precise estimate of the ϕ angle than the img+Gauss+resampled and Img+sam-
pled+Gauss+resampled+E-D example. Figures 6 and 7 also show that the proposed
E-D is effective in cleaning Img+sampled+Gauss+resampled from measurements that
cause disturbances in the variance estimation, which directly translates into improved
estimation of θ.

These conclusions are supported by detailed statistic studies, the results of which we
present in Figures 4 and 5. These figures show mean absolute error (MAE) estimates
of (θ, ϕ). In the case of the full Img image, the θ angle estimate is very accurate and
decreases due to resampling. The largest error in determining the angle θ is in the
area of small value of this angle (less than 10 to 20 degrees) because then the change
in the statistical distribution of radiation particles is not large enough to be accurately
estimated by PCA. A similar phenomenon also occurs in the case of the angle ϕ, when
the largest estimation error is in the interval [0, 10] and [170, 180]. This is due to
trigonometric periodicity. Both of the phenomena discussed above are expected and
easily explained, which proves the stability of our proposed method. As can be seen in
Figure 5, the use of the E-D network significantly improves the accuracy of the angle θ
estimate, which is calculated based on the variance along the PCA axis sometimes by as
much as 20 degrees on average, compared to the estimate without the E-D architecture.
The larger the actual θ angle is, the more the particle distribution is “stretched” in space
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(a) Estimation of θ on Img (800×800).
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(b) Estimation of ϕ on Img (800×800).
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(c) Estimation of θ on Img convolved by Gaussian
and resampled (80×80).
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(d) Estimation of ϕ on Img convolved by Gaussian
and resampled (80×80).

Fig. 4. MAE of estimations of (θ, ϕ) from Algorithm 1. Each measurement is averaged over 10 trials.
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(a) Estimation of θ on Imgd convolved by Gaussian
and resampled (80×80).
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(b) Estimation of ϕ on Imgd convolved by Gaussian
and resampled (80×80).
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(c) Estimation of θ on Imgd convolved by Gaussian,
resampled (80×80) and processed by E-D.

0

50

100

150

0 20 40 60 80

theta [degrees]

p
h

i 
[d

e
g

re
e

s
]

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

phi (est.)

80x80 sampled + E−D image

(d) Estimation of ϕ on Imgd convolved by Gaussian,
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Fig. 5. MAE of estimations of (θ, ϕ) from Algorithm 1. Each measurement is averaged over 10 trials.
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Fig. 6. Examples of results of Algorithm 1 for (θ = 62, ϕ = 85). From left to right, from top to
bottom (see also the titles of images): estimation of these angles for Img (800×800) equals
(θ = 62.64, ϕ = 85.15), for Img convolved by Gaussian it is (θ = 60.96, ϕ = 85.38), for Img
convolved by Gaussian and resampled to 80×80 it is (θ = 60.77, ϕ = 85.21), for sampled Imgd
convolved by Gaussian (800×800) it is (θ = 50.17, ϕ = 84.34), for sampled Imgd convolved by
Gaussian and resampled to 80×80 it is (θ = 49.43, ϕ = 84.19), for sampled Imgd convolved by
Gaussian, resampled to 80×80 and processed by E-D it is (θ = 56.55, ϕ = 84.84).

and more noise appears on Imgd through the sampling process. The E-D network does
an excellent job of reducing this unfavorable phenomenon. As in the previously discussed
cases, this phenomenon is expected and easily explained, which proves the stability of
Algorithm 1. When E-D is applied for Imgd convolved and resampled, the number of
cases (estimations) where MAE < 10 increases from 48% to 79% for θ and from 62% to
65% for ϕ, MAE < 5 increases from 24% to 45% for θ and from 47% to 52% for ϕ, MAE
< 1 increases from 6% to 9% for θ and from 12% to 16% for ϕ. This is a significant
change and demonstrates the high utility of the E-D network used.

5. Conclusion

The proposed algorithm based on the use of PCA for the determination of spherical
coordinates of sampled cosmic ray flux distribution proved to be an effective and precise
method in the experiment we conducted. The additional use of a deep neural network
with an encoder-decoder architecture significantly increases its efficiency in the area of
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Fig. 7. Examples of results of Algorithm 1 for (θ = 76, ϕ = 170). From left to right, from top to
bottom (see also the titles of images): estimation of these angles for Img (800×800) equals
(θ = 75.87, ϕ = 169.54), for Img convolved by Gaussian it is (θ = 72.96, ϕ = 169.85), for Img
convolved by Gaussian and resampled to 80×80 it is (θ = 72.85, ϕ = 169.81), for sampled Imgd
convolved by Gaussian (800×800) it is (θ = 57.13, ϕ = 169.97), for sampled Imgd convolved by
Gaussian and resampled to 80×80 it is (θ = 57.04, ϕ = 170.01), for sampled Imgd convolved by
Gaussian, resampled to 80×80 and processed by E-D it is (θ = 72.00, ϕ = 173.06).

high values of angles (θ, ϕ) making the proposed approach even more effective. Our Al-
gorithm 1, together with the E-D network, is a very important method that will find its
application in the research related to physical observations of fundamental astronomical
processes. In particular, the introduced scheme can be directly useful in the design of
small-scale complex CRE secondary flux detection systems. As we mentioned earlier,
to the best of our knowledge, the results presented in this paper are pioneering in the
field of small-scale complex CRE secondary flux detection systems, and it is difficult to
point out research for the direct comparison. However, based on published research de-
scribing the use of a deep encoder-decoder for image denoising and original probabilistic
distribution reconstruction [7, 11, 50, 54] we obtained the expected results, that is, the
removal of unwanted noise at various frequencies while enhancing the signal with the
desired statistical distribution. The effect of this denoising was an increased accuracy in
estimating the rotation angles of the particle distribution described by the equation (1).

Several research problems have arisen in the preparation of this study that need to
be addressed in future work. These include the effect of the topology of the detector grid
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on the efficiency of estimating the angles (θ, ϕ), the estimation of the appropriate grid
density on the correctness of the estimate, and the dependence of the estimate on the
energy of the particle flux and the offset of the flux center with respect to the detector
grid center. These issues will be the subject of future research; nevertheless, it can
already be summarized that our proposed method is a very effective approach.

References

[1] M. G. Aartsen, M. Ackermann, J. Adams, J. Aguilar, M. Ahlers, et al. The IceCube Neutrino
Observatory: instrumentation and online systems. Journal of Instrumentation, 12(03):P03012,
2017. doi:10.1088/1748-0221/12/03/P03012.

[2] M. G. Aartsen, M. Ackermann, J. Adams, J. Aguilar, M. Ahlers, et al. Erratum: The IceCube Neu-
trino Observatory: instrumentation and online systems. Journal of Instrumentation, 19(05):E05001,
2024. doi:10.1088/1748-0221/19/05/E05001.

[3] J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, E. Ahn, et al. Atmospheric effects on extensive air
showers observed with the surface detector of the Pierre Auger observatory. Astroparticle Physics,
32(2):89–99, 2009. doi:10.1016/j.astropartphys.2009.06.004.

[4] J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, E. Ahn, et al. Erratum to “Atmospheric ef-
fects on extensive air showers observed with the surface detector of the Pierre Auger obser-
vatory” [Astroparticle Physics 32(2) (2009), 89–99]. Astroparticle Physics, 33(1):65–67, 2010.
doi:10.1016/j.astropartphys.2009.10.005.

[5] R. Aloisio. Ultra High Energy Cosmic Rays an overview. Journal of Physics: Conference Series,
2429(1):012008, 2023. Proc. 12th Cosmic Ray International Seminar (CRIS 2022), 12-16 Sep 2022,
Napoli, Italy. doi:10.1088/1742-6596/2429/1/012008.

[6] A. D. Avrorin, A. V. Avrorin, V. M. Aynutdinov, R. Bannash, I. A. Belolaptikov, et al. Baikal-
GVD. EPJ Web of Conferences, 136:04007, 2017. Proc. 6th Roma International Conference on
Astroparticle Physics (RICAP16), 21-24 Jun, Roma, Italy. doi:10.1051/epjconf/201713604007.

[7] K. Bajaj, D. K. Singh, and M. A. Ansari. Autoencoders based deep learner for image denois-
ing. Procedia Computer Science, 171:1535–1541, 2020. Proc. 3rd International Conference on
Computing and Network Communications (CoCoNet’19), 18-21 Dec, Trivandrum, Kerala, India.
doi:10.1016/j.procs.2020.04.164.

[8] O. Bar, Ł. Bibrzycki, M. Niedźwiecki, M. Piekarczyk, K. Rzecki, et al. Zernike moment based
classification of cosmic ray candidate hits from CMOS sensors. Sensors, 21(22):7718, 2021.
doi:10.3390/s21227718.

[9] Ł. Bibrzycki, D. Burakowski, P. Homola, M. Piekarczyk, M. Niedźwiecki, et al. Towards a global
cosmic ray sensor network: CREDO detector as the first open-source mobile application enabling
detection of penetrating radiation. Symmetry, 12(11):1802, 2020. doi:10.3390/sym12111802.

[10] browarsoftware. cosmic_ray_spherical. GitHub. https://github.com/browarsoftware/cosmic_
ray_spherical.

[11] Y. Choi, S. Park, and S. Kim. Development of point cloud data-denoising technology for earthwork
sites using encoder-decoder network. KSCE Journal of Civil Engineering, 26(11):4380–4389, 2022.
doi:10.1007/s12205-022-0407-8.

[12] M. T. Dova, L. N. Epele, and A. G. Mariazzi. Particle density distributions of inclined air show-
ers. Nuovo Cimento C, 24(4–5):745–750, 2001. https://www.sif.it/riviste/sif/ncc/econtents/
2001/024/04-05/article/5.

Machine GRAPHICS & VISION 33(2):29–45, 2024. DOI: 10.22630/MGV.2024.33.2.2 .

https://doi.org/10.1088/1748-0221/12/03/P03012
https://doi.org/10.1088/1748-0221/19/05/E05001
https://doi.org/10.1016/j.astropartphys.2009.06.004
https://doi.org/10.1016/j.astropartphys.2009.10.005
https://doi.org/10.1088/1742-6596/2429/1/012008
https://doi.org/10.1051/epjconf/201713604007
https://doi.org/10.1016/j.procs.2020.04.164
https://doi.org/10.3390/s21227718
https://doi.org/10.3390/sym12111802
https://github.com/browarsoftware/cosmic_ray_spherical
https://github.com/browarsoftware/cosmic_ray_spherical
https://doi.org/10.1007/s12205-022-0407-8
https://www.sif.it/riviste/sif/ncc/econtents/2001/024/04-05/article/5
https://www.sif.it/riviste/sif/ncc/econtents/2001/024/04-05/article/5
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.2.2


T. Hachaj, M. Piekarczyk, Ł. Bibrzycki, J. Wąs 43

[13] D. Droz, A. Tykhonov, X. Wu, and M. Deliyergiyev. Neural networks for TeV cosmic electrons
identification on the DAMPE experiment. In: Proc. The European Physical Society Conference
on High Energy Physics PoS(EPS-HEP2021), vol. 398 of Proceedings of Science, p. 045. Online –
Hamburg, Germany, 26-30 Jul 2021, published in 2022. doi:10.22323/1.398.0045.

[14] V. Dutta, M. Choraś, M. Pawlicki, and R. Kozik. A deep learning ensemble for network anomaly
and cyber-attack detection. Sensors, 20(16):4583, 2020. doi:10.3390/s20164583.

[15] V. Dutta, M. Pawlicki, R. Kozik, and M. Choraś. Unsupervised network traffic anomaly
detection with deep autoencoders. Logic Journal of the IGPL, 30(6):912–925, 2022.
doi:10.1093/jigpal/jzac002.

[16] J. Glombitza, M. Erdmann, M. Vieweg, and M. Dohmen. Deep learning based air shower recon-
struction at the Pierre Auger Observatory. In: Proc. DPG Spring meeting 2019, vol. Aachen 2019
issue of Verhandlungen der Deutschen Physikalischen Gesellschaft. Aachen, Germany, 25-29 Mar
2019. https://inis.iaea.org/records/dwvnb-hhf07.

[17] K. Greisen. Cosmic ray showers. Annual Review of Nuclear Science, 10(1):63–108, 1960.
doi:10.1146/annurev.ns.10.120160.000431.

[18] Y. Guo and B. W.-K. Ling. Spherical coordinate-based kernel principal component analysis. Signal,
Image and Video Processing, 15(3):511–518, 2021. doi:10.1007/s11760-020-01771-8.

[19] T. Hachaj, Ł. Bibrzycki, and M. Piekarczyk. Recognition of cosmic ray images obtained from
CMOS sensors used in mobile phones by approximation of uncertain class assignment with deep
convolutional neural network. Sensors, 21(6):1963, 2021. doi:10.3390/s21061963.

[20] T. Hachaj, Ł. Bibrzycki, and M. Piekarczyk. Fast training data generation for machine learning anal-
ysis of cosmic ray showers. IEEE Access, 11:7410–7419, 2023. doi:10.1109/ACCESS.2023.3237800.

[21] T. Hachaj and M. Piekarczyk. The practice of detecting potential cosmic rays using CMOS cameras:
Hardware and algorithms. Sensors, 23(10):4858, 2023. doi:10.3390/s23104858.

[22] T. Hachaj, M. Piekarczyk, and J. Wąs. Searching of potentially anomalous signals in cosmic-ray
particle tracks images using rough k-means clustering combined with eigendecomposition-derived
embedding. In: Proc. International Joint Conference on Rough Sets (IJCRS 2023), vol. 14481
of Lecture Notes in Computer Science, pp. 431–445. Springer, Kraków, Poland, 5-8 Oct 2023.
doi:10.1007/978-3-031-50959-9_30.

[23] P. Hasiec, A. Świtoński, H. Josiński, and K. Wojciechowski. Anomaly detection of motion capture
data based on the autoencoder approach. In: Proc. International Conference on Computational
Science (ICCS 2023 2023), vol. 14074 of Lecture Notes in Computer Science, pp. 611–622. Springer,
3-5 Jul 2023. doi:10.1007/978-3-031-36021-3_59.

[24] P. Homola, D. Beznosko, G. Bhatta, Ł. Bibrzycki, M. Borczyńska, et al. Cosmic-ray extremely
distributed observatory. Symmetry, 12(11):1835, 2020. doi:10.3390/sym12111835.

[25] P. Homola, V. Marchenko, A. Napolitano, R. Damian, R. Guzik, et al. Observation of large
scale precursor correlations between cosmic rays and earthquakes with a periodicity similar
to the solar cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 247:106068, 2023.
doi:10.1016/j.jastp.2023.106068.

[26] J. Jaworek-Korjakowska and R. Tadeusiewicz. Determination of border irregularity in dermoscopic
color images of pigmented skin lesions. In: Proc. 2014 36th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, pp. 6459–6462. IEEE, Chicago, IL, USA,
26-30 Aug 2014. doi:10.1109/EMBC.2014.6945107.

[27] H. Josiński, D. Kostrzewa, A. Michalczuk, A. Świtoński, and K. Wojciechowski. Feature extraction
and HMM-based classification of gait video sequences for the purpose of human identification. In:

Machine GRAPHICS & VISION 33(2):29–45, 2024. DOI: 10.22630/MGV.2024.33.2.2 .

https://doi.org/10.22323/1.398.0045
https://doi.org/10.3390/s20164583
https://doi.org/10.1093/jigpal/jzac002
https://inis.iaea.org/records/dwvnb-hhf07
https://doi.org/10.1146/annurev.ns.10.120160.000431
https://doi.org/10.1007/s11760-020-01771-8
https://doi.org/10.3390/s21061963
https://doi.org/10.1109/ACCESS.2023.3237800
https://doi.org/10.3390/s23104858
https://doi.org/10.1007/978-3-031-50959-9_30
https://doi.org/10.1007/978-3-031-36021-3_59
https://doi.org/10.3390/sym12111835
https://doi.org/10.1016/j.jastp.2023.106068
https://doi.org/10.1109/EMBC.2014.6945107
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.2.2


44 Determination of spherical coordinates. . .

A. Nawrat and Z. Kuś, eds., Vision Based Systemsfor UAV Applications, vol. 481 of Studies in
Computational Intelligence, pp. 233–245. Springer, 2013. doi:10.1007/978-3-319-00369-6_15.

[28] O. Kalashev, I. Kharuk, G. Rubtsov, on behalf of the Baikal-GVD Collaboration, et al. Machine
learning based background rejection for Baikal-GVD neutrino telescope. Journal of Physics: Con-
ference Series, 2438:012099, 2023. Proc. 20th International Workshop on Advanced Computing
and Analysis Techniques in Physics Research, 29 Oct – 3 Dec 2021, Virtual and Daejeon, South
Korea. doi:10.1088/1742-6596/2438/1/012099.

[29] M. Karbowiak, M. Orzechowski, T. Wibig, Ł. Bibrzycki, P. Kovacs, et al. Small shower array for
education purposes-the CREDO-Maze Project. In: Proc. 37th International Cosmic Ray Confer-
ence PoS(ICRC2021), vol. 395 of Proceedings of Science, p. 219. Online – Berlin, Germany, 21-23
Jul 2021, published in 2022. doi:10.22323/1.395.0219.

[30] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In: Proc. 3rd Int.
Conf. Learning Representations, ICLR 2015. San Diego, CA, 7-9 May 2015. Accessible in arXiv.
doi:10.48550/arXiv.1412.6980.

[31] P. Koundal, R. Abbasi, M. Ackermann, J. Adams, IceCube Collaboration, et al. Composition anal-
ysis of cosmic-rays at IceCube Observatory using graph neural networks. In: Proc. 27th European
Cosmic Ray Symposium – PoS(ECRS), vol. 423 of Proceedings of Science, p. 085. Nĳmegen, The
Netherlands, 25-29 Jul, 2022, published in 2023. doi:10.22323/1.423.0085.

[32] R. Kumar. Tracking cosmic rays by crayfis (cosmic rays found in smartphones) global detector.
In: Proc. The 34th International Cosmic Ray Conference PoS(ICRC2015), vol. 236 of Proceed-
ings of Science, p. 1234. The Hague, The Netherlands, 30 Jul – 6 Aug 2015, published in 2016.
doi:10.22323/1.236.1234.

[33] R. Nirwan and N. Bertschinger. Rotation invariant householder parameterization for Bayesian PCA.
In: K. Chaudhuri and R. Salakhutdinov, eds., Proc. 36th International Conference on Machine
Learning, vol. 97 of Proceedings of Machine Learning Research, pp. 4820–4828. PMLR, Long Beach,
CA, USA, 9-15 Jun 2019. https://proceedings.mlr.press/v97/nirwan19a.html.

[34] R. D. Parsons and S. Ohm. Background rejection in atmospheric Cherenkov telescopes using
recurrent convolutional neural networks. The European Physical Journal C, 80(5):363, 2020.
doi:10.1140/epjc/s10052-020-7953-3.

[35] Particle Data Group, R. L. Workman, V. D. Burkert, V. Crede, E. Klempt, et al. Review
of particle physics. Progress of Theoretical and Experimental Physics, 2022(8):083C01, 2022.
doi:10.1093/ptep/ptac097.

[36] Particle Data Group, P. A. Zyla, R. M. Barnett, J. Beringer, O. Dahl, et al. Review of
Particle Physics. Progress of Theoretical and Experimental Physics, 2020(8):083C01, 2020.
doi:10.1093/ptep/ptaa104.

[37] M. Piekarczyk, O. Bar, Ł. Bibrzycki, M. Niedźwiecki, K. Rzecki, et al. CNN-based classifier as an
offline trigger for the CREDO experiment. Sensors, 21(14):4804, 2021. doi:10.3390/s21144804.

[38] M. Piekarczyk and T. Hachaj. On the search for potentially anomalous traces of cosmic ray particles
in images acquired by CMOS detectors for a continuous stream of emerging observational data.
Sensors, 24(6):1835, 2024. doi:10.3390/s24061835.

[39] J. S. Pryga, W. Stanek, K. W. Woźniak, P. Homola, K. Almeida Cheminant, et al. Analysis of the
capability of detection of extensive air showers by simple scintillator detectors. Universe, 8(8):425,
2022. doi:10.3390/universe8080425.

[40] D. B. Reusch, R. B. Alley, and B. C. Hewitson. Relative performance of self-organizing maps
and principal component analysis in pattern extraction from synthetic climatological data. Polar
Geography, 29(3):188–212, 2005. doi:10.1080/789610199.

Machine GRAPHICS & VISION 33(2):29–45, 2024. DOI: 10.22630/MGV.2024.33.2.2 .

https://doi.org/10.1007/978-3-319-00369-6_15
https://doi.org/10.1088/1742-6596/2438/1/012099
https://doi.org/10.22323/1.395.0219
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.22323/1.423.0085
https://doi.org/10.22323/1.236.1234
https://proceedings.mlr.press/v97/nirwan19a.html
https://doi.org/10.1140/epjc/s10052-020-7953-3
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.3390/s21144804
https://doi.org/10.3390/s24061835
https://doi.org/10.3390/universe8080425
https://doi.org/10.1080/789610199
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.2.2


T. Hachaj, M. Piekarczyk, Ł. Bibrzycki, J. Wąs 45

[41] K. Sargsyan, J. Wright, and C. Lim. GeoPCA: a new tool for multivariate analysis of dihedral
angles based on principal component geodesics. Nucleic Acids Research, 40(3):e25–e25, 2012.
doi:10.1093/nar/gkr1069.

[42] K. Sargsyan, J. Wright, and C. Lim. GeoPCA: a new tool for multivariate analysis of dihedral
angles based on principal component geodesics. Nucleic Acids Research, 43(21):10571–10572, 2015.
(This is a correction to [41]). doi:10.1093/nar/gkv1000.

[43] M. Savić, A. Dragić, D. Maletić, N. Veselinović, R. Banjanac, et al. A novel method for atmospheric
correction of cosmic-ray data based on principal component analysis. Astroparticle Physics, 109:1–
11, 2019. doi:10.1016/j.astropartphys.2019.01.006.

[44] J. Stasielak, P. Malecki, D. Naumov, V. Allakhverdian, on behalf of the Baikal-GVD Collaboration,
et al. High-energy neutrino astronomy—Baikal-GVD neutrino telescope in Lake Baikal. Symmetry,
13(3):377, 2021. doi:10.3390/sym13030377.

[45] Z. Szadkowski and K. Pytel. Trigger based on a fuzzy logic for a detection of very inclined cosmic
rays in the surface detector of the Pierre Auger Observatory. In: Proc. 2019 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–5. IEEE, Auckland,
New Zealand, 20-23 May 2019. doi:10.1109/I2MTC.2019.8827075.

[46] R. Tadeusiewicz, R. Chaki, and N. Chaki. Exploring neural networks with C#. CRC Press, Boca
Raton, 2015. doi:10.1201/b17332.

[47] J. Takalo. Extracting hale cycle related components from cosmic-ray data using principal compo-
nent analysis. Solar Physics, 297(9):113, 2022. doi:10.1007/s11207-022-02048-8.

[48] The Pierre Auger Collaboration. The Pierre Auger Cosmic Ray Observatory. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 798:172–213, 2015. doi:10.1016/j.nima.2015.06.058.

[49] The Pierre Auger Collaboration, A. Aab, P. Abreu, M. Aglietta, J. Albury, et al. Extraction
of the muon signals recorded with the surface detector of the Pierre Auger Observatory using
recurrent neural networks. Journal of Instrumentation, 16(07):P07016, 2021. doi:10.1088/1748-
0221/16/07/P07016.

[50] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, et al. Deep learning on image denoising: An overview.
Neural Networks, 131:251–275, 2020. doi:10.1016/j.neunet.2020.07.025.

[51] J. Vandenbroucke, S. BenZvi, S. Bravo, K. Jensen, P. Karn, et al. Measurement of cosmic-ray
muons with the distributed electronic cosmic-ray observatory, a network of smartphones. Journal
of Instrumentation, 11(04):P04019, 2016. doi:10.1088/1748-0221/11/04/p04019.

[52] T. Wibig. Small shower CORSIKA simulations. Chinese Physics C, 45(8):085001, 2021.
doi:10.1088/1674-1137/ac0099.

[53] M. Yu, T. B. Anderson, Y. Chen, S. Coutu, T. LaBree, et al. Machine learning applications on
event reconstruction and identification for ISS-CREAM. In: Proc. 37th International Cosmic Ray
Conference PoS(ICRC2021), vol. 395, p. 061. Proceedings of Science, Online – Berlin, Germany,
21-23 Jul 2021, published in 2022. doi:10.22323/1.395.0061.

[54] D. Zheng, S. H. Tan, X. Zhang, Z. Shi, K. Ma, et al. An unsupervised deep learning approach for
real-world image denoising. In: Proc. 8th International Conference on Learning Representations
(ICLR). Virtual, 26 Apr – 1 May 2020. Published in OpenReview. https://openreview.net/
forum?id=tIjRAiFmU3y.

Machine GRAPHICS & VISION 33(2):29–45, 2024. DOI: 10.22630/MGV.2024.33.2.2 .

https://doi.org/10.1093/nar/gkr1069
https://doi.org/10.1093/nar/gkv1000
https://doi.org/10.1016/j.astropartphys.2019.01.006
https://doi.org/10.3390/sym13030377
https://doi.org/10.1109/I2MTC.2019.8827075
https://doi.org/10.1201/b17332
https://doi.org/10.1007/s11207-022-02048-8
https://doi.org/10.1016/j.nima.2015.06.058
https://doi.org/10.1088/1748-0221/16/07/P07016
https://doi.org/10.1088/1748-0221/16/07/P07016
https://doi.org/10.1016/j.neunet.2020.07.025
https://doi.org/10.1088/1748-0221/11/04/p04019
https://doi.org/10.1088/1674-1137/ac0099
https://doi.org/10.22323/1.395.0061
https://openreview.net/forum?id=tIjRAiFmU3y
https://openreview.net/forum?id=tIjRAiFmU3y
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.2.2



	Introduction
	Material and methods
	Muon lateral distribution
	Calculation of angles (, ) based on analysis of cosmic ray particle distribution using Principal Components Analysis
	Enhancing sampled distribution image by deep convolutional encoder-decoder

	Results
	Discussion
	Conclusion

