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Abstract Human iris classification remains an active research area in the fields of biometrics as well
as computer vision. In iris biometrics, most of the visible or near-infrared (NIR) eye images suffer from
multiple noise sources, and the dispersive spectrum changes hugely. These changes occur due to spat-
tering, albedo, and spectrum absorbance selectively. However, accurate iris classification for distance
images is still a challenging task. To solve it effectively, we propose a machine learning (ML)-based
iris classification employing a dense feature extraction method with various distance metrics. More
specifically, this learning model focuses on the Histogram of Oriented Gradients (HOG) descriptor and
K-Nearest Neighbour (K-NN) classifier with various distance metrics. The HOG descriptor has some
advantages for this proposed distant-based iris classification, for example, insensitive to multiple lighting
and noises, shift invariance, capacity to tolerate iris variations within the classes, etc. Additionally, this
study investigates the most reliable distance metric that is less affected by different levels of noise. A
publicly accessible CASIA-V4 distance image database is conducted for the experimental evaluation.
To evaluate the performance of the classification models, we consider different measures such as recall,
precision, F1-score, and accuracy. The reported results are tabulated as well as optimized through
Receiver Operating Characteristic (ROC) curves. The experimental results demonstrate that the Can-
berra distance metric with low dimensional HOG features provides better recognition accuracy (90.55%)
compared to other distance metrics.

Keywords: iris classification, image gradient, Histogram of Oriented Gradient features, distance met-
rics, confusion matrix, ROC curves.

1. Introduction

Iris recognition is a cutting-edge biometric technique that recognizes or confirms the
identity of a person swiftly and efficiently by performing a set of mathematical operators
on the stored biometric characteristics. Besides, physical contact is completely absent
here to isolate iris images and analyze their patterns because this identification process
is completely non-invasive. As a result, the demands for reliable security in offline and
online authentications are constantly growing. In our networked society, biometric tech-
nologies have a variety of applications namely, ATM card authentication, e-commerce,
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banking, access control to restricted zones, border-crossing, access to control comput-
ers, database access control in distributed systems, verification of suspects in crowds at
airports and stations, identification of missing children, law enforcement activities and
so on [34]. Without specific tools or automatic machine-learning techniques, it is very
tough for a human operator to maintain high-security surveillance in these cases at a
distance.

Nowadays the security fields follow different types of technologies to verify individual
identities. Token-based and knowledge-based methods are two traditional ways of identi-
fying an individual. The knowledge-based identifiers like personal identification numbers
(PINs), usernames, and passwords can be forgotten or guessed by a third party. The
token-based identifiers, for example, driver’s licenses, passports, smart cards, ATM cards,
and identification cards may be stolen or lost [39]. Recently, several studies have demon-
strated that biometric traits are the most reliable and accurate authentication systems
than conventional knowledge-based and token-based techniques. Even if it cannot be
forgotten, stolen, or borrowed, and practically, forging is not possible. Among various
physical traits, the iris has more advantages over other fingerprints, faces, eyes, ears,
retina, DNA, palm print recognition, etc. [38]. Since iris is an externally visible inter-
nal organ that is highly protected from varied environmental conditions. It has unique
patterns for an individual that are not related to any genetic factor. Iris texture has
a high degree of randomness and individuality and remains unchanged from the age of
three through the whole life, which is observed through the clinical evidence in [16]. In
real life, there is no chance of a person having the right and left iris patterns or identical
twins, or even two human iris textures being identical [38]. The above characteristics
make it a promising biometric trait to verify and authenticate individual identities. How-
ever, this biometric technology has only been utilized in highly secure applications for
government and civil society because of real-time constraints. Though the iris is a vis-
ible biometric characteristic like an eye, face, or finger, it is not as easy to recognize as
those recognitions due to environmental conditions. The camera distances make it more
challenging to capture clear iris texture during eye image acquisition. Capturing eye
images in controlled or under less controlled conditions affects the quality of iris images
greatly because of uncontrolled light sources. Under less controlled environments, the
eye images captured at long distances with near-infrared imaging have multiple sources
of noises, for instance, partial eye images, eyelids, glasses, eyelashes, defocus blur, etc.,
as illustrated in the Fig. 1. These types of noises demote drastically the image quality,
pose difficulties in depicting distinct iris textures, and influence the further stages. In
a controlled environment, the quality of eye images is high due to capturing at a close
distance.

The previous attempts were only focused on close-distant images with controlled
environments and global feature descriptors like wavelet filters. Those descriptors cannot
extract the below-mentioned enormous iris patterns. Even, the local intensity color
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Fig. 1. Long-range eye images from CASIA-v4 database.

density, and pixel position of an image are not utilized there. While iris textures provide
high distinctiveness, freckles, wrinkles, a variety of colors, zigzag patterns, etc. [3]. In
reality, these features of various forms like textural, structural, and statistical features
are highly required to recognize an individual at a distance. This work emphasizes block-
based representation of local image contrast to overcome the limitations of wavelet filters.
Herein, image gradient characterizes the structure or shape of iris patterns using local
intensity gradient distributions and edge detection. More specially, the gradient features
pool the edge orientations into small spatial regions to retrieve both micro-structures
and macro-structures of iris patterns.

To consider the iris’s textural characteristics and imaging conditions, this paper pro-
poses a Histogram of Oriented Gradient feature descriptors to retrieve the spatial char-
acteristics strategically from the local illumination variations of an iris image. The next
stage is to explore a classifier that can recognize swiftly the iris features, which have
the lowest implications on a variety of noises as well as enhance the classification perfor-
mance. The classification stage perfect for a distance-based classifier because of being
our experimental database imbalance [21,35]. The instances of minority subjects/classes
are often sparse and scattered in imbalanced datasets and the majority subjects domi-
nate the feature space. Consequently, misclassifications may occur as a result of higher
distances between the instances of minority subjects and lower distances between the
majority subjects. To address this issue, it is urgent to investigate deeply the influ-
ence of choosing various distance metrics during the classification of a large number of
real-time images. For example, Euclidean distance is effective for numerical features
like weight, height, salary, etc., that have equal importance over the continuous feature
space. While Manhattan distance works effectively with categorical or binary feature
points like DNA sequences. Manhattan distance is less affected by outliers compared to
Euclidean distance. In this perspective, the mix of categorical and numerical features for
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each type can be handled by the K-Nearest Neighbour classifier (K-NN) with a weighted
distance metric. A perfect distance metric aids in the learning of the input iris patterns
by computing the similarity between iris images and concluding informative decisions.
The primary objective of the work is to consistently overcome existing shortcomings and
find a supervised algorithm for remote iris recognition in less constrained environments.

The following sections organize the rest of this work: Section 2 reviews a few recent
studies on the iris. Section 3 designs the architectural diagram of the iris classification
approach. Experimental settings and evaluations are done sequentially in section 4. A
statistical analysis is given graphically in section 5. Lastly, a brief conclusion is provided
in section 6.

2. Related works

This section reviews a few recent research findings that are very similar to image gradient
and distance-based iris recognition. The integrated stages of effective iris recognition are
eye image capturing, iris region segmentation, normalization, feature extraction, clas-
sification, and iris recognition. The initial stage of eye image acquisition faces various
challenges, for example, low resolution, off-axis, blur, motion, occlusion, and specular
reflections in real-time environments and degrade the further processes [26]. Special-
ized, hybrid, and deep learning methods are enlisted to address these challenges [2].
Specialized methods use prior information about iris shape like annular iris/ elliptical
shape, and dark area of the pupil. The iris trait features are identified unambiguously
in the iris image [11, 15, 43]. These methods are fast without training images and effec-
tive for high-quality constrained iris images but not for completely unconstrained irises.
Hybrid methods combine the specialized methods with ML algorithms to enhance iris
segmentation performance [19,32,33,42]. The ML algorithms produce coarse segmenta-
tion, and then a specialized approach is employed to generate the desired segmentation.
The hybrid method adjusts these ML algorithms relying on the training process and
the conditions of iris images. They can be more accurate due to employing iris priors
and ground truth but not fast like specialized methods. However, these approaches are
not enough to meet the challenges that arise in unconstrained iris images as still those
are heavily dependent on iris priors. Recently, deep learning methods [2, 36, 47], follow
semantic segmentation methods to alleviate the influence of unreliable iris priors. These
methods provide more accuracy compared to previous methods as well as do not need to
handcrafted features. Typically, they are slower due to tuning more parameters, required
large-scale training data, and high computational cost.

The earlier approaches were developed based on wavelet filters and distance metrics
for iris recognition. The drawbacks of these works are to ensure equal good-quality
eye images from constraint environments [3]. Also, the recognition performance reduces
significantly due to noisy artifacts, visible iris images, uncontrolled light sources, etc.
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Pourreza et al. [7]. noticed that most of the wavelet transforms cannot extract spatial
information practically and introduced contourlet transform to address such issues.

Tan and Kumar devised several approaches in [22,23,43,44] to deal with the existing
problems for both visible and near-infrared imaging. Among them, the integration of in-
tegrating fragile bit [18] and weight map methods [12] through a weighted sum technique
obtained the highest accuracy of 93.8% on the CASIA-V4 distance database.

Li et al. provided a weighted histogram of co-occurrence phases to extract the charac-
teristics of local iris texture [25]. Bhattacharyya distance matched these distinctive and
insensitive phase histograms with varying levels of illumination and noises. To overcome
the challenge of matching low-resolution probe iris images with high-resolution enrolled
iris images, Liu et al. developed a metric learning system [27]. The process has been
carried out by learning the Mahalanobis distance and measuring appropriate pairwise
similarities on the training set to minimize the divergence between the learned matching
results and ideal matching outcomes.

The above-mentioned methods lost distinctive information on iris images due to en-
vironmental challenges and iris texture deformation. Ali et al. modified the contrast-
limited adaptive histogram to alleviate the loss of information that helps to retrieve
informative characteristics with speeded-up robust feature descriptor [4]. The proposed
SURF-based algorithm achieved 99% and 99.5% recognition accuracy for left and right
irises respectively using the CASIA-V4 distance database. Additionally, they noticed
that fusion rule selection influences the classification performance at a certain level. The
prior wavelet descriptor cannot account for singularities along lines or curves. To capture
two-dimensional singularities, Ali et al. designed a feature-level fusion that concatenates
the gradient, contourlet, Log-Gabor wavelet, and deep features with equal dimension [5].
The simple feature concatenation shows robustness against different physical challenges.
To get over the drawbacks of wavelet and contourlet transforms, Ali et al. developed
the Log-Gabor wavelet-based contourlet transform [6]. The merged descriptor extracts
the edge and texture information in a variety of directions more compactly than the
Log-Gabor or contourlet transform. The concept of remote iris recognition was first
presented by Fancourt et al. for high surveillance. The eye images were captured at
a 10-meter distance from the acquisition device and obtained an accuracy of 95-100%
taking only 50 iris images [14]. Umer et al. retrieved the coarse and spatial properties
of iris texture patterns efficiently using textural edges descriptors [46]. The recognition
rate of the linear support vector machine (SVM) was 95% with k-fold cross-validation
on the UBIRIS.v1 dataset.

Most of the feature-level fusions cannot integrate the discriminative iris patterns
efficaciously with optimizing fused features of multimodal approaches due to a lack of
homogeneity, adaption, and flexibility. To address these problems, Zhang et al. adopted
an adaptive weighted sum method to concatenate the periocular and iris features for
enhancing recognition performance [48]. In real-life situations, it is automatically learned
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by neural networks to find out the optimum weights of iris-periocular fusion. Severo et
al. proposed an approach that can encompass the iris region as the delimitation of the
smallest squared bounding box [40]. This approach retrieves firstly multi-scale features
of the iris and then a multi-SVM classifier utilizes the concatenation of HOG and cell
mean intensity features. Recently, a few authors have focused on different types of
Fourier transform (FT) for enhancement, analysis, restoration, and compression. FT
decomposed the iris image into its sine and cosine components, which are considered
as features. The authors in [17] evaluate the effects of applying principal component
analysis (PCA) on FT except for accurate iris segmentation and feature properties using
three distance metrics. Among the distance metrics, Manhattan distance achieved the
highest accuracies of 96% and 94% for FT and PCA approaches using only 300 iris
images of 50 persons from the CASIA-v1.0 database [2018].

Tarhouni et al. integrated the Fourier histograms of uniform local binary patterns
(LBP) and pyramid histograms of gradient magnitudes through PCA [13]. The experi-
ments show a promising result for challenging the CASIA-v4 database by mitigating the
effects of the noisy artifacts from multiple sources like reflections, illumination variations,
obstacles, and so on. Szymkowski adopted discrete fast FT components selected by PCA
to describe iris texture [41]. The database was composed of 510 iris images from CASIA-
IrisV4 and the reported average accuracies were 82.8% for K-NN, 86.6% for SVM, and
78.7% for ANN classifiers. The drawbacks of all the Fourier transforms are sensitivity to
noise, boundary effects, and computationally intensive, especially for multi-dimensional
images, which lead to retrieving inaccurate iris features. Arnab et al. introduced the
local adaptive threshold method and k means clustering based color image segmenta-
tion to consider background clutter, changes in scale, partial occlusions, illumination,
and color variation, which are common phenomenons for distant images [20, 28]. The
author also developed a human identification scheme using an oriented autocorrelation
feature descriptor and correlation distance classifier. The method performs effectively
for distant captured iris images with losing shift-invariance but shows robustness against
various noisy artifacts, rotation, occlusion, and illumination variation challenges [31].

As discussed above, remote iris classification is still very challenging for visible and
near-infrared imaging at a distance in the fields of biometrics. The aim of combining
HOG and K-NN with various distances is to find an appropriate balance that can over-
come those shortcomings. Hope, this work contributes to selecting the perfect distance
metric for further studies depending on the specific characteristics of data points, espe-
cially distance-based algorithms. This work is motivated by the computational simplicity
of HOG descriptor [10], the robustness of various distance metrics in [29, 31], and the
gradient strengthens against local illumination changes, etc.
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Fig. 2. The proposed architectural framework.

3. Methodology

This section provides a summary of the suggested machine learning algorithm, which
integrates the HOG and distance classifier. Firstly, a reflection removal technique, a
single-scale retinex algorithm is adopted to suppress the influence of different reflections.
Secondly, the annular iris is separated using a random walker scheme from an eye image
with low computational complexity. Thirdly, the segmented iris image is remapped by
Daugman’s rubber sheet model into a fixed dimension i.e., iris normalization to make a
direct comparison between the iris images. Then, the images are sent to the automated
HOG descriptor to extract distinctive iris patterns as feature vectors. Finally, the recog-
nition accuracy is attained using the extracted feature vectors as input to the distance
classifier. In the training phase, the model learns to train from the training images, and
its performance is measured in the testing phase using test images. The architectural
framework depicts the iris recognition system consecutively in Fig. 2.

3.1. Image pre-processing

Non-uniform illumination is a familiar phenomenon for distantly acquired eye images
in real environments caused by uncontrolled light sources and multiple sources of noise.
These certain noises create obstacles to separate accurate iris from the eye images. So,
iris image pre-processing is required to address these issues. We adopt a single-scale
retinex algorithm to improve image quality through high dynamic range compression [42].
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Mathematically, the algorithm can be expressed as the following equation.

RIm(p, q) = log Im(p, q)
Gτ ∗Im(p, q) . (1)

Here, Im(p, q) is a grey scale eye image, Gτ (p, q) = C exp[−(p2 + q2)/τ2] is a Gaussian
kernel ,“∗” denotes the convolution operator and τ = 1.5 refers to the standard deviation.

3.2. Iris segmentation

Iris segmentation refers to the scheme of iris localization and separation automatically
from the eye images. Due to poor segmentation, the feature descriptor fails to extract
iris textures from the less discriminative regions which leads to incorrect iris recognition.
The further stages such as feature extraction, classification, and recognition intricately
rely on the quality of iris segmentation. To consider those issues, a graph theory-based
random walker algorithm is employed to obtain the coarsely segmented binary iris masks
in this work. The binary iris masks from the coarse iris segmentation are utilized to know
detailed information about the estimation of iris center. The initial center of the iris and
pupil is fixed using both the iris image and the corresponding binary mask. After that,
the flash-points of papillary and limbic are approximately located with the help of a
circular model. The iris segmentation stage is finished after eliminating occlusion noises.
To understand more about the random walker segmentation algorithm deeply, the work
in [6, 43] might be seen at a glance.

3.3. Iris normalization

The size and shape of the irises may change due to varying imaging distances and rotation
of the acquisition device or eye. Illumination variation is also the cause of iris contraction
or dilation. So, it is more conducive to removing the dimensional inconsistencies for
matching two irises. Once a segment iris image is obtained, we follow the most commonly
used Daugman’s rubber sheet model to make up elastic deformation of iris textures [11].
It is performed by re-mapping every pixel Im(p, q) of the iris region from raw cartesian
coordinates (p, q) to a pairwise non-concentric polar coordinates (r, θ) i.e., r ∈ [0, 1] and
θ ∈ [0, 2π]. Mathematically, the re-mapping process may be expressed as:

Im(p(r, θ), q(r, θ)) → Im(r, θ)
p(r, θ) = (1 − r)ppu(θ)rpbp(θ)
q(r, θ) = (1 − r)qpu(θ)rqbp(θ)

 (2)

where Im(p, q) represents the intensity value of the iris region image at each point (p, q).
The parameters p(r, θ) and q(r, θ) denote the co-ordinates of pupil (ppu(θ), qpu(θ)) and
iris boundary points (pbp(θ), qbp(θ)) along the θ direction. The outcomes of noise removal
from eye images, iris separation, and normalization are illustrated sequentially in Fig. 3.
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Fig. 3. Iris image pre-processing flow chart.

3.4. Gradient feature extraction

The researchers of INRIA (French National Institute for Research in Computer Sci-
ence and Automation), Dalal, and Triggs devised the Histograms of Oriented Gradients
feature descriptor [10]. This descriptor has been derived from scale-invariant feature
transforms, and also parallels edge orientation histograms as well as shape contexts.
The details of local object shape and appearance by capturing the edge or gradient
structure using regional intensity variations are the primary purpose of this descriptor.
Practically, this is done by splitting the localized image into blocks (grid) and each block
is subdivided into smaller connected cells. All the locally oriented gradients within the
cell are reshaped into a cell histogram. The cell histograms must be locally normalized
within a block to account for the variations in illumination and contrast.

In addition, it does not change with photometric and geometric transformations
because of local cell operation. The HOG feature scheme follows the steps in a local
portion of an image to count the occurrences of oriented gradients.

Step 1: Gradient computation
In an image, the gradient strengths and orientations rely on the local properties of each
pixel i.e., directional sub-divided color or intensity. The gradient values are computed
along the vertical and horizontal directions by convolving the input image Im(p, q) with
1D centered point discrete derivative masks Dp = [1 0 − 1] and Dq = [1 0 − 1]T . If the
horizontal and vertical gradients are Gp(p, q) = Im(p, q)∗Dp and Gq(p, q) = Im(p, q)∗Dq,
respectively, the gradient magnitude MG and orientation θG will be computed at the
point(p, q) as follows:

MG(p, q) =
√

(Gp(p, q))2 + (Gq(p, q))2 , (3)

θG = tan−1(Gp(p, q)/Gq(p, q)) = tan−1
(

∂G

∂q
/

∂G

∂p

)
. (4)

Step 2: Orientation binning
The cell histogram is to be constituted in step 2. The 1D histogram is constructed
by reshaping the local gradient orientations over the pixels of a cell into angular bins
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(ranging from 0 to 360◦). The local orientations are assigned to the nearest bins by
voting weights for each pixel over the local spatial region, i.e., a cell. Then, the gradient
orientations of all pixels Im(p, q) in a cell α are distributed into N bins. The gradient
magnitudes with a gradient angle of ∆θ degree are accumulated in the respective bin hl,
which denotes the heights of the bins. Finally, the discretization of orientations into N
bins each of ∆θ degrees constructs the 1D histogram Hi as follows:

Hi = [hl]Nl=1 =
∑

Im(p,q)∈α

MG(p, q); θG(p, q) ∈ ∆θ , (5)

where ∆θ = 360◦/N .

Step 3: Block descriptor
Step 3 requires grouping the cell histograms into larger spatial connected blocks Fi.

Step 4: Block normalization
The cell histograms are to be locally normalized within a block for counting the variations
in illumination, and contrast [10]. As each block is composed of a group of cells, a cell
may be contained in various block normalizations for the overlapping block.

Step 5: Concatenation of histogram features
Finally, the histogram of oriented feature vectors ϑ is constituted by integrating cell
histograms across from all the normalized blocks in a sliding window, which represents
a one-dimensional array of histograms.

To obtain fixed feature dimensions, the input images must be resized with 64 × 64
pixels. The size of blocks is set to 2 × 2 cells and every single cell consists of 8 × 8 pixels.
9 orientation bins between −180◦ and +180◦ (signed gradients) are used to construct
histogram bins so that the HOG features can be organized sequentially according to
their properties. A total of 49 blocks is computed for an image with 64 × 64 pixels. The
final HOG feature descriptor is formulated as follows:

ϑ = [F1, F2, ...., Fi, ....F36] , (6)

where ϑ denotes the HOG feature descriptor, and Fi is the normalized block vector in ith
block. Every block has four cell histograms with nine bins, Fi = [h1,i, h2,i, .., hi,j , ..h36,i],
where hi,j is the jth normalized value of ith block. The flow diagram of the HOG feature
extraction is given systematically in Fig. 4.

3.5. K-Nearest Neighbour classification

K-Nearest Neighbour (K-NN) is a distance-based supervised machine learning algorithm
that performs pattern recognition tasks for classifying objects based on various features.
It ensures better performance in bio-informatics, data mining, and image classification
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Fig. 4. The flow diagram of HOG feature extraction.

when the features are labeled prior with low dimensionality as well as scaled in equal
weight. The main advantage over the other classifiers is that there’s no need for pre-
training, the model does not learn in the training phase, even needs not to tune more
parameters. It also assumes that similar things exist nearby and classifies the test iris
images based on the similarity measure of prior stored feature vectors. To supervise the
HOG model for such properties, the K-NN algorithm compels us to follow instead of the
other classification methods. Besides, K-NN functions as an outlier detector by locating
feature points that have few or no neighbours within a fixed radius.

The review section 2 shows that the Euclidean and Hamming distances are used
widely in classification problems but in most of the cases, accurate predictions de-
pend on feature properties, distance metrics, and so on. The following metrics are
utilized to compare and measure the distances between test and training images [29]
as there is no comparative study of distance metrics. Let p = (p1, p2, p3, ......, pn) and
q = (q1, q2, q3, ......, qn) ∈ Rn be the two feature vectors in n-dimensional space. The
distance measure between p and q vectors may be defined as

Euclidean distance (Eucl) It is a straight line distance, which represents the sum of
the squared differences of two attribute vectors by taking the square root.

DEucl(p, q) =

√√√√ n∑
j=1

(pj − qj)2 , (7)
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where pj is the jth component in the vector p and qj is the jth component in the
vector q.

Sokalmichener distance (Soka) The distance computes the Sokal-Michener dissim-
ilarity between Boolean 1D arrays p and q. The Boolean array p is a sequence of
numerics that consists of 0 (false) and 1 (true) and has no intermediate values. The
Boolean 1D arrays with a threshold value and Sokalmichener distance are defined as

p =
{

1 if pj ≥ 0.1667 ,
0 if pj < 0.1667 ,

(8)

DSoka(p, q) = 2(m10 + m01)
m11 + m00 + 2(m10 + m01) . (9)

Here, mxy counts the number of occurrences of pj = x and qj = y for j < n, and
n defines the total number of points in a feature vector p.

Yule distance (Yule) Yule distance is a measure of dissimilarity between two proba-
bility distributions based on their overlap. The Yule dissimilarity is defined as

DYule(p, q) = 2m10m01

m11m00 + m10m01
. (10)

Jaccard distance (Jacc) It is a statistical metric that is generated from the Jaccard
index and measures the diversity of iris patterns. The Jaccard dissimilarity between
boolean 1D arrays p and q is defined as

DJacc(p, q) = m10 + m01

m11 + m10 + m01
. (11)

Dice distance (Dice) The distance is close to the Jaccard index which measures the
dissimilarity of two patterns. The Dice dissimilarity between p and q iris vectors is

DDice(p, q) = m10 + m01

2m11 + m10 + m01
. (12)

Bray-Curtis distance (Bray) The Braycurtis distance is the absolute differences be-
tween two attribute vectors with taking the summation, which differences are divided
by their summed attribute values.

DBray(p, q) =
∑n

j=1 |pj − qj |∑n
j=1 |pj | +

∑n
j=1|qj |

. (13)

Canberra distance (Canb) It is an extension of L1 distance that includes weights
and measures the dissimilarity of ranked lists. The sum of absolute differences is
divided by their summation between a pair of points over a vector space.

DCanb(p, q) =
n∑

j=1

|pj − qj |
|pj |+|qj |

. (14)
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Manhattan distance (Manh) It is the sum of absolute differences of two opposite
attributes over the normed vector space. It is most preferable for high dimensionality
and provides more reliable results due to the absolute value of distance.

DManh(p, q) =
n∑

j=1
|pj − qj | . (15)

Cosine distance (Cosi) This distance measures the angle between two vectors of in-
ner product space with magnitude and is computed from one minus the cosine of the
included angle between two attribute vectors.

DCosi(p, q) = 1 −
∑n

j=1 pjqj√∑n
j=1 pj

2 ∑n
j=1 qj

2
, (16)

where pj is the jth value in the vector p and qj is the jth value in the vector q.
Correlation distance (Corr) Between two feature vectors, the linear relationship is

measured in this case by subtracting Pearson’s correlation coefficient from one.

DCorr(p, q) = 1 −
∑n

j=1(pj − p)(qj − q)√∑n
j=1(pj − p)2 ∑n

j=1(qj − q)2
(17)

where p is the mean of a feature vector p, i.e., p = 1
n

∑n
j=1 pj and p is the mean of a

feature vector q, i.e., q = 1
n

∑n
j=1 qj .

4. Database and experimental setup

In this section, a publicly accessible database of remotely captured face images, CASIA-
v4 is employed to conduct all of the experiments. The Chinese Academy of Science’s
Institute of Automation (CASIA), Beijing, China has provided the database to explore
iris-based biometric recognition [45]. The facial images are acquired remotely with the
help of near-infrared cameras. The distance is three meters away from the subjects under
less controlled environments. The full database comprises 142 subjects including 2 567
facial images. First, all right and left eyes were separated from the face images and
a total of 5 134 eye images were obtained. After that, the imbalanced eye images are
categorized into 142 subjects i.e., each subject has not an equal number of images, and
most of the subjects include regular-irregular images. From the facial images, all the
images of the eye cannot locate or isolate exactly owing to having obstruction of glasses
and occlusion of eyelids or eyelashes. We only use the regular iris images of the first
14 subjects for parameter tuning and explore that Canberra distance performs the best.
Further experiments are conducted using this distance metric. We selected randomly
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3 233 images as training data from each of the subjects 15-142 to learn the classification
model. Similarly, we select 742 images to evaluate the performance of the model as
testing data. All the experiments are conducted by dint of Python 3.7 and MATLAB
R2018a (Intel Core i5).

K-NN classifier treats all features equally by default to contribute to the distance
calculations. Otherwise, the distance measurement will be dominated by the larger fea-
ture points if they are on different scales and ranges. Min-max normalization helps to
address this issue without distorting the larger differences of those features. Addition-
ally, weighted distances assign higher weights to privilege the important features. The
histogram-oriented gradient features V including training and test features from (6) are
normalized with the help of the following equation.

V = (ϑj − ϑmin)/(ϑmax − ϑmin) , (18)

where ϑj denotes the jth value of feature vector ϑ with maximum value ϑmax and mini-
mum value ϑmin. Challenges such as data sparsity, distance loss of meaning, overfitting,
and increased computation cost arise in high dimensional spaces. Therefore, it is more
convenient to lessen the dimensionality of HOG features using PCA without loss of use-
ful information. For this purpose, the PCA transform matrix is obtained from training
features and then utilized in test features. These low dimensional, labeled, and scaling
features help to train the K-NN model effectively, otherwise affect the majority voting
in classification.

4.1. Performance measure

The effectiveness of a classification model may be measured using a variety of assessment
indicators. The most often used confusion matrix is utilized to determine the model’s
accuracy and correctness. Accuracy measures the effectiveness of the classifier by its
percentage of samples classified accurately. Classification accuracy is defined by

Accuracy = Number of accurate classified samples
Number of all samples . (19)

The evaluation systems are designed by calculating the following measures to assess
the recognition performance within each class of the database.

(i) True positives (tp): number of positive (p) predictions that are true (t).
(ii) True negatives (tn): number of negative (n) predictions that are true (t).
(iii) False positives (fp): number of positive (p) predictions that are false (f).
(iv) False negatives (fn): number of negative (n) predictions that are false (f).
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Tab. 1. Performance measurement for each distance metric.

Distance Metrics Avg. Precision Avg. Recall F1-measure Accuracy (%)
Euclidean distance 0.7931 0.7647 0.7543 75.70
Sokalmichener distance 0.8452 0.8311 0.8193 82.32
Braycurtis distance 0.8772 0.8535 0.8483 85.02
Canberra distance 0.9190 0.9102 0.9053 90.55
Manhattan distance 0.8564 0.8333 0.8262 82.86
Yule distance 0.8622 0.8397 0.8309 83.53
Jaccard distance 0.8508 0.8363 0.8250 83.13
Dice distance 0.8508 0.8363 0.8250 83.13
Cosine distance 0.7951 0.7623 0.7519 75.70
Correlation distance 0.7966 0.7605 0.7505 75.70

The average precision, recall, and F1-measure values and accuracy of a multi-class clas-
sification system are defined by

Average Precision = 1
Nc

Nc∑
j=1

tpj

tpj + fpj

, (20)

Average Recall = 1
Nc

Nc∑
j=1

tpj

tpj + fnj
, (21)

F1-measure = 2 × Precision × Recall
Precision + Recall , (22)

Accuracy = 1
Nc

Nc∑
j=1

tpj + tnj

tpj + tnj + fpj + fnj
, (23)

where Nc is the number of classes; tpj , fnj , fpj and tnj are the number of true positive,
false negative, false positive, and true negative classifications for class j, respectively.
The confusion matrix helps to derive these performance measures, which are illustrated
graphically in both predicted and actual classification [30] corresponding to their sub-
jects or classes. The performance of dense HOG descriptor with K-NN classifier is
computed for each distance metric by measuring average precision, recall, F1-measure,
and classification accuracy as enlisted in Table 1.

We observe that Canberra distance metric provides the highest average precision
(0.9190), recall (0.9102), F1-measure (0.9053), and overall classification accuracy (90.55%)
among the 10 distance metrics from the Table 1 in case of using HOG features. It is
visible from Fig. 5 that the iris feature vector consists of several criteria such as bi-
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Fig. 5. The HOG feature distribution.

nary features – has any iris shape or not; ordered categorical features – iris shape very
densely/iris shape moderately densely/iris shape not densely; numerical features – a
measurement like color density in dpi. Canberra Distance utilizes the criteria to rec-
ognize the test images in their subjects according to how similar or dissimilar they are
with training images. Also, the distance metric deals with mixed types of feature points
and sorts the iris features into groups that are more closely or distantly related to each
other. Due to appropriate balance, the HOG descriptor shows better performance with
the weighted Canberra distance over the other distance metrics.

In addition, we have experimented with edge orientation histograms (EOH), con-
tourlet transform (CT), and uniform gradient local binary patterns (GLBP) features
to compare the discriminatory power of HOG features utilizing the Canberra distance
metric. These experimental outcomes are enlisted in Table 2 in terms of precision, recall,
F1-measure, and classification accuracy. It can be found from Table 2 that the Canberra
distance-based classification provides the highest result for HOG features compared to
the other three feature descriptors. Therefore, it is confident that the HOG descriptor
locally extracted more relevant iris textures from the complicated images due to the
orientation of the iris image gradient.

4.2. Performance study

This sub-section depicts the performances of feature descriptor as well as the impacts
of various parameter selection for optimal classification. The Receiver Operating Char-
acteristic (ROC) curves are plotted concerning false positive rate and true positive rate
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Tab. 2. Efficacy of HOG with other feature descriptors.

Feature Descriptors Avg. Precision Avg. Recall F1-measure Accuracy (%)
EOH 0.7129 0.6175 0.6132 61.40
CT 0.7444 0.7107 0.6880 69.63
GLBP 0.8249 0.7818 0.7709 77.32
HOG 0.9190 0.9102 0.9053 90.55

a b
Fig. 6. True versus false positive rates for (a) gradient operators; (b) orientation bins.

with the help of classification threshold values. The performance is indicated by the
closed curve to the top-left corner. The study explains the influence of HOG descriptor
with the help of ROC curves graphically and confusion matrix from Fig. 6a to Fig. 8a,
and obtain the optimal parameters to extract the gradient features like as 64 × 64 pixels
sliding window, one-dimensional derivative masks [1 0 − 1]; 9 orientation bins between
−180◦ and +180◦ (signed gradients); 2 × 2 pixel blocks of four 8 × 8 pixel cells and
L1-sqrt normalization scheme respectively. The effects of chosen distances are shown
not only graphically Figs. 8b, 9a but also numerically in Tables 1, 2.

Gradient computation
Image gradient computation is the first step of retrieving gradient features. Roberts,
1D centered derivatives [1 0 − 1], Sobel and Prewitt operators are followed to compute
image gradient. The one-dimensional derivatives perform best among those operators
with the lowest computational cost. The 3 × 3 Prewitt and Sobel masks reduce the
classification performance by around 4% and 5% compared to 1D derivatives. Whereas,
the centered 2D derivative masks i.e., 2 × 2 diagonal Roberts’s filter slightly improves
the performance by 2% than 3 × 3 derivative masks. The performances are reduced
significantly in Fig. 6a with increasing the size of derivative masks.

Machine GRAPHICS & VISION 33(3-4):97–124, 2024. DOI: 10.22630/MGV.2024.33.3.5 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.3.5


114 Human iris classification through Histogram of Oriented Gradient features. . .

a b
Fig. 7. (a) Misclassification rates. (b) True versus false positive rates for block normalization.

Orientation binning
In the next step, we compute the weighted votes for every pixel to form a histogram based
on the oriented vector of iris texture patterns. Then, the computed votes are gathered
into orientation bins as cells from the local spatial regions. Regarding rectangular cells,
the orientation values of the gradient are evenly spaced in bins between 0◦ and +180◦

(unsigned gradients) or between −180◦ and +180◦ (signed gradients). The orientation
bins of the gradient can be allocated into several bins. The number of orientation bins
changes from 8 bins to 10 bins to visualize their performances and the signed gradients
of 9 bins perform better among them as shown in Fig. 6b.

Blocks descriptor
The variations of gradient strength occur extensively due to illumination changes and
local contrast. So, it is more convenient to find an effective local contrast normalization
that contributes to integrating all the cells into larger spatial blocks. Each block normal-
izes the local contrast individually. We use square R-HOG blocks, which are formulated
by ζ × ζ cells per block with α × α pixels per cell and each cell consists of β orientation
bins per cell histogram with the ζ, α, β parameters.

A 3D bar graph is plotted to visualize the misclassification rate for cell size and block
size in cells in Fig. 7a. The variation of block sizes is shown with the help of different
colors. The 2 × 2 cell blocks of 8 × 8 pixel cells work best with a 9.45% misclassification
rate among the block descriptors. The 1×1, 3×3 and 4×4 blocks with their corresponding
cells 6 × 6, 8 × 8 perform also good but decrease performance around 1% compared to
2 × 2 blocks.

Block normalization
The block normalization techniques are adopted for better invariance to illumination
and shadowing. If ϑ is the non-normalized feature vector that holds all the histogram
of orientations in a block, the normalization schemes ||ϑ||b are defined as (a) L2-norm is
the square root of the sum of squared values, i.e., ||ϑ||b=2 = (

∑n
j=1 ϑ2

j )1/2 and L2-norm:
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a b
Fig. 8. True versus false positive rates for (a) sliding windows; (b) number of neighbours K.

v → ϑ/(||ϑ||2 + ε) ; (b) L2-Hys: v → ϑ/(||ϑ||2 + ε), ϑ ≤ 0.2 ; (c) L1-norm is the sum
of absolute values i.e., ||ϑ||b=1 =

∑n
j=1|ϑj | and L1-norm: v → ϑ/(||ϑ||1 + ε) and (d)

L1-sqrt: v → ϑ/
√

||ϑ||1 + ε. Figure 7b shows that L1-sqrt and L2-norm provide almost
similar performance but L2-norm reduces performance by 0.27%. Whereas, L1 − sqrt
increases performance significantly by 1.76% and 1.08% than the L2-Hys and L2-norms.
Extensive experiments are carried out to measure the optimal value of ε over a wide
range and conclude that there are no more effects of the constant ε on overall results.

Sliding window
The variations of sliding windows pose difficulties in the feature extraction stage and
influence the classification results greatly as the computational simplicity relies on sliding
windows at large. Figure 8a reports that the performances of sliding window increase up
to about 64 × 64 pixels but decrease performance with 72 × 72 pixels window. Among
them, a window of 64 × 64 pixels produces a substantial amount of context to recognize
iris patterns. The other sliding windows are seen the same on the ROC curves but their
evaluation matrices are different. The sliding window 32 × 32, 48 × 48, 56 × 56 and
72 × 72 pixels reduces performance 7.42%, 1.35%, 1.49% and 0.27% respectively on the
recognition accuracy due to a lack of sufficient contextual information.

Number of K neighbours
The K parameter refers to the number of nearest neighbours to be considered while
making the prediction. This affects the sensitivity of the algorithm to local patterns in
the feature space. A smaller K leads to low bias but increases the impact of outliers with
complexity and makes the model more prone to overfitting. Whereas, the model arises
with less complexity with a larger K, which assists in avoiding overfitting but ignores
potential local patterns. The odd number of K defines always a majority class that helps
to decide the predicted class. It is clear from Fig. 8b that the 3 nearest neighbours
show better performance with the highest value by avoiding ties in voting. The figures
of Jaccard and Dice distance overlap due to having similar properties that are assumed
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a b
Fig. 9. True versus false positive rates for (a) distance metrics; (b) feature descriptors.

from the measurements in Table 1. It is also visible that there is no optimal value of
K, which performs equally well for all the distances. Fig. 8b ensures that the choice of
distance metric affects the classification performance significantly but not the selection
of the right K in K-NN.

Distance metrics
In this study, the above-mentioned distance metrics are employed to investigate, which
distance is less affected by the noise implications. We obtain the optimal performance
with the highest outcome (90.55%), while the Canberra distance is applied to train the
model instead of mostly using Euclidean and Hamming distance metrics.

The K-NN classifier with Euclidean, Cosine, and Correlation distances reduces per-
formance by around 15% compared to Canberra distance. Although the accuracies of
Jaccard and Dice distances are almost the same, the recognition performance is different
as shown in Fig. 9a. Seemingly, the Yule distance shows poor performance on ROC
curves but its accuracy is so much better than Manhattan, Sokalmichener, and Jaccard
distances in Table 1. The comparative study suggests that Canberra distance may be
an effective metric for gradient feature classification with the highest possible accuracy.

Feature descriptors
A feature descriptor is an algorithm that extracts only the most informative features of an
object in terms of a set of numbers. We compare the performance of the dense descriptor
HOG with EOH, CT, and GLBP feature descriptors using the Canberra distance-based
classifier. These descriptors focus on the shape or structure of iris patterns as they utilize
the magnitude and orientations of the gradient to extract features. They provide several
computation costs because of extracting various feature properties and measuring the
distance between the feature points. Among these descriptors, the HOG feature-based
technique classifies the iris images more swiftly than others. The EOH descriptor reduces
performance by around 19% consuming huge run time. It is visible from Fig. 9b that
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a b
Fig. 10. (a) Plot of K-NN learning curves using HOG features. (b) Subject-based precision-recall curves.

there is a scarcity of threshold points to make the ROC curve smoother because of the
imbalance of subjects in training and test sets.

5. Statistical analysis

We assess the performance of the HOG feature descriptor by dint of learning curves and
precision-recall curves for every subject concerning their values that are accomplished
by the K-NN classifier with Canberra distance. The learning curves show the robustness
of the model as well as the scope of using a large number of images in real-life applica-
tions. The precision-recall curves interpret the types of noisy images and illustrate the
complexity of images within each subject of a database.

In this study, the learning curves diagnose the model’s learning and generalization
behavior to make a marginal decision. The above yellow and blue learning curves are
plotted by using the Canberra distance-based K-NN classifier with the histogram of
oriented features. The test score (yellow curve) shows how well the model fits new data,
whereas the training score (blue curve) shows how well the model fits the training set. In
the beginning, the large gap between the training and test performance shows that the
model is under-fitting, which is probably due to the small size of images and database
from different distributions. With the increasing of training images, the curves are going
to converse a satisfactory score as shown in Fig. 10a. The training scores are enhanced
through the iterations of up to 50 percent of training images. After that, those scores are
constant and the HOG model fails to obtain 100% accuracy in the training phase while
the test scores are increasing and converse to the highest possible score in the end. The
learning curves demonstrate that the testing scores could be made better by increasing
training images and making the dataset balanced.

Figure 10b plots the precision and recall curves for each subject concerning precision
and recall values. The blue color is used for the precision curve, while the red color is
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Tab. 3. Performance evaluation with existing cutting-edge approach

Proposed Approaches Accuracy
Symlet wavelet filter and Spearman distance [29] 80.00%
Principal Component Analysis and Braycurtis distance [37] 80.00%
Level set and local binary pattern with Manhattan distance [9] 81.45%
Discrete fast Fourier transform and Braycurtis distance [41] 82.80%
Radon Transform and Euclidean distance [8] 84.17%
Uniform LBP and Euclidean distance [24] 84.77%
LBP and Euclidean distance [38] 84.88%
GLCM and Euclidean distance [1] 85.00%
CNN feature descriptor and Euclidean distance [5] 86.94%
Contourlet Transform and Hamming distance [7] 88.00%
Histogram of Oriented Gradients and Canberra distance – Proposed 90.55%

used for the recall curve. We can see that 51 subjects in precision curves and 48 subjects
in recall curves cannot attain the maximum values due to having a variety of obstacles
such as eyelids, eyelashes, illumination, and internal eye variations in these subjects. The
images of 46 subjects within 128 subjects and 672 images among the 742 test images
are classified accurately, while 70 images of the rest subjects are not recognized by their
corresponding subjects. For example, the 18th and 29th subjects have the lowest recall
value of (0.50) and the 17th subject has the lowest precision value of (0.50), indicating
that some but not all of the subjects’ test images are recognized. In practice, the images
of these 82 subjects are imbalanced and contain several noises during the acquisition
process, which impede an illustration of clear iris textures. For weak segmentation of
irises, the HOG descriptor cannot retrieve relevant features and learn robustly from
those iris textures. Thus, the K-NN model fails to classify the complicated iris images
accurately and does not obtain overall 100% recognition accuracy. The performance
scores of the F1-measure are overlapping, which indicates that the feature distributions
are irregular in these subjects. In the other subjects, the high success rates of evaluation
metrics show that the models are successful in iris image classification.

Table 3 provides a comparison with earlier approaches including the reported results.
Few of these techniques examined the performance of classification on various types of
databases with various numbers of training and test images. For instance, Tan and
Kumar only performed their experiments using the first 8 right or left eye images from
the CASIA-v4 distance database [45]. The overall recognition accuracy was 93.90%
employing training images from the first 10 subjects and test images from subjects 11-
141. The recognition rate of Chan method was 90.43% considering 79 training images
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from the 10 subjects and 961 test images from the remaining 131 subjects from the
proposed database [23].

It is remarkably worthy that the authors in [5] reported several efficiencies in adopting
multi-feature descriptors. The accuracy of 98.17% is the highest among the outcomes,
however, their performances are not explicitly comparable to our work. Because the
authors not only considered iris images but also included contextual eye images having
pupil, eyelash, eyelid, sclera, and so on. Therefore, the experimental results of the
proposed framework would not be feasible to make a comparison with other experimental
outcomes directly. We employ 3 975 images including 3 233 images for training and 742
images for testing; and also do not consider the regular eye images of the first 14 subjects.
It is clear from Fig. 1 that our experimental database consists of more complicated and
non-linear images than others.

However, the supervised approach is better as compared to existing methods concern-
ing near-infrared distance iris images having various illumination conditions and multiple
sources of noise. Also, accurate iris segmentation, informative features with lower di-
mensionality, distance metric of lowest noise implications, and computational simplicity
can be considered measurable parameters of good classification performance. Finally,
the comparative studies validate that the Canberra distance metric may be applied in
the lieu of most widely used Euclidean or Hamming distance metric for noisy datasets
and distance-based approaches.

6. Conclusion and future work

This paper has introduced an image gradient and distance-based machine learning algo-
rithm for remote iris recognition. The HOG descriptor captures intuitively the shape of
structures in the region by capturing information about gradients. The discriminative
power of HOG is to extract successively both microstructures and macro structures of iris
patterns from the local contrast and illumination variations. To classify the imbalanced
iris images, a weighted distance classifier is needed to explore which is less affected by
different levels of noise. Like other classifiers, K-NN is prone to become biased towards
the majority of instances of training features but can be handled effectively with the help
of weighted Canberra distance. The distance metric emphasizes the larger differences
between the iris features and outliers and is more robust to outliers than other distance
metrics. The experimental evaluation demonstrates that Canberra distance provides the
highest possible classification accuracy (90.55%) with the lowest noise implications.

The combination of HOG and K-NN classifier shows its robustness against local
contrast, illumination changes, and occlusions. It is regarded as one of the most influ-
ential machine learning algorithms because all the parameters are intricately connected.
Though the HOG descriptor extracts the iris features efficiently while retaining robust-
ness to irrelevant variations resulting from environmental changes, it lost shift-invariance
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and additivity. The concept of correlation will be adopted in self-similarity to address
these issues. It will exploit the spatial and orientational auto-correlations from the local
image gradient that prioritize the closer iris patterns in its local neighbourhoods. In
the future, a proximity-weighted evidential K-NN classifier will be applied to give more
priority to the instances of minority subjects or classes.
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