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Abstract. This paper presents a novel approach to enhance chipboard milling process monitoring
in the furniture manufacturing sector using Convolutional Neural Networks (CNNs) with pretrained
architectures like VGG16, VGG19, and RESNET34. The study leverages spectrogram representations
of time-series data obtained during the milling process, providing a unique perspective on tool condition
monitoring. The efficiency of the CNN models in accurately classifying tool conditions into distinct
states (‘Green’, ‘Yellow’, and ‘Red’) based on wear levels is thoroughly evaluated. Experimental results
demonstrate that VGG16 and VGG19 achieve high accuracy, however with longer training times, while
RESNET34 offers faster training at the cost of reduced precision. This research not only highlights
the potential of pretrained CNNs in industrial applications but also opens new avenues for predictive
maintenance and quality control in manufacturing, underscoring the broader applicability of AI in
industrial automation and monitoring systems.

Key words: convolutional neural networks, CNN, vgg16, vgg19, resnet34, tool state monitoring,
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1. Introduction

In the realm of furniture production, integrating sensor technology at various manu-
facturing stages is becoming a prevalent theme in automation research. This area is
inherently intricate, involving numerous steps that demand precision. Adjustments are
often necessary, especially when minor components are altered or added. The infusion of
sophisticated technologies in these processes marks a significant leap forward, especially
in tool condition monitoring. Mistimed or incorrect decisions regarding tool replace-
ments could diminish product quality, potentially leading to losses for the manufacturing
entity [3, 4, 5, 6, 8, 10,11,14,15].

This paper primarily delves into the milling process, where precision in decision-
making is crucial. Utilizing sensor-based technologies to monitor tool conditions offers
a novel angle to address these challenges [7, 18, 21]. While tool state assessment can be
done manually, it’s a laborious process that interrupts production. Hence, automating
this task is a substantial step forward in the industry.
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Tool monitoring, a subject of extensive discussion and analysis, revolves around the
progressive wear of the cutting edge, impacting product quality. An ideal automatic solu-
tion should prevent unnecessary production halts while ensuring timely tool replacement
to avoid subpar output. The solution should be precise, offering real-time, automated
feedback. Applying a dedicated array of sensors for capturing specific production line
signals and analyzing this data appears to be an effective strategy.

A notable innovation in this study is the application of sensor data in addressing
the complex challenges of tool condition monitoring. Although furniture manufacturing
utilizes various materials, wood-based products are the most common. The data-driven
approach for tool condition monitoring introduced here presents new opportunities for
enhancing industry processes. Different signals are analyzed to determine their efficacy in
detecting tool conditions during the machining process. Despite thorough documentation
of these problems, there remains a demand for an automatic and precise solution that is
easy to integrate into production environments.

In the realm of manufacturing and material processing, the milling of chipboard
represents a significant domain, demanding consistent monitoring and analysis for quality
control and process optimization. Recent advancements in machine learning and neural
networks have opened up innovative pathways for enhancing these monitoring systems.
This research delves into the intersection of these advanced technologies, focusing on the
utilization of Convolutional Neural Networks (CNNs) for interpreting time series data
derived from milling processes.

The core of this study lies in the exploration of spectrogram-based time series analysis,
a technique which converts time series data into a more visually interpretable format,
capturing both frequency and time information simultaneously. This approach leverages
the intrinsic power of CNNs, particularly the renowned VGG16, VGG19, RESNET34
architectures, to analyze these spectrograms for insightful patterns and anomalies that
are indicative of the chipboard milling process’s condition and performance.

Applying a pretrained network [1, 8, 9, 12] as part of a CNN architecture presents
a methodologically sound approach. Pretrained networks, having already learned rich
feature representations from large datasets, offer a robust foundation for the model.
When applied to the context of milling process monitoring, this model can detect subtle
nuances and changes in the data, which are pivotal for predicting tool wear, identifying
inefficiencies, and ensuring product quality.

Furthermore, this research is grounded in the analysis of real-world data, ensuring
its relevance and applicability. Data collected during the milling process – such as
noise, vibrations, and other pertinent physical parameters – are utilized to construct
a comprehensive dataset. The application of the Short-Time Fourier Transform (STFT)
and Discrete Wavelet Transform (DWT) to this dataset facilitates the generation of
spectrograms. These spectrograms, in turn, serve as the input for the CNN model,
allowing for a detailed and nuanced analysis of the data.
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This study aims to demonstrate the effectiveness of using CNNs, particularly with
the VGG16, VGG19, RESNET34 architectures, in monitoring and analyzing the milling
process of chipboards. By advancing the methodological approaches to process monitor-
ing and incorporating cutting-edge neural network technologies, this research contributes
to the enhancement of quality control, process efficiency, and predictive maintenance in
the manufacturing sector.

As the field of artificial intelligence continues to evolve, the implications of this re-
search extend beyond its immediate application. The methodologies and findings pre-
sented here could inspire similar approaches in various industrial and manufacturing
processes, paving the way for smarter, more efficient, and data-driven operations.

2. Dataset

This study aims to develop a diagnostic system that can accurately assess the wear
level of tools during ongoing production activities. Data for this purpose were gathered
through various means. The primary data collection was performed using a Jet 130 CNC
machining center (Busellato, Italy), utilizing a 40 mm cutter head with a replaceable
carbide cutting edge, supplied by Faba SA, Poland.

For the experimental setup, a chipboard panel measuring 300×150mm was applied.
The panel was secured onto a measurement platform, where a 6mm deep groove was
milled at a spindle speed of 18 000 rpm and a feed rate of 0.15 mm per tooth. These
parameters were selected based on extensive literature review and practical experience
in milling chipboard. The chosen rotational speed and feedrate are commonly used in
the industry for optimal surface finish and minimal tool wear. The 6 mm cutting depth
is a standard practice for milling chipboards of similar dimensions.

The condition of the tool was categorized into three distinct states: ‘Green’, ‘Yellow’,
and ‘Red’. The ‘Green’ state indicates a new or well-conditioned tool, ‘Yellow’ signifies
a tool in usable but worn condition, and ‘Red’ represents a tool that requires replacement
due to significant wear. The classification was determined using the VBmax parameter.

The Figure 1 provides a microscopic view of the wear on a drill. This image illustrates
the VBmax parameter, which is a key factor in classifying the tool’s condition. The VB-
max parameter is used to categorize the wear level of the tool into different classes such
as ‘Green’, ‘Yellow’, and ‘Red’, corresponding to new, moderately worn, and significantly
worn conditions, respectively. This visual representation aids in comprehending how the
VBmax parameter is quantified and its relevance in assessing tool wear. During the
testing phase, operations were periodically halted to assess the tool’s condition using
a Mitutoyo TM-505 microscope, ideal for dimensional and angular measurements. This
microscope, capable of inspecting screw shapes and gears with an additional reticle,
facilitated the categorization of wear states as follows:
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Fig. 1. Microscopic imagery showing the wear on a drill bit, highlighting the VBmax parameter pertinent
to class evaluation.

• a ‘Green’ state is designated when VBmax is within the range of 0 to 0.15 mm,
encompassing four levels of wear;
• a ‘Yellow’ state is defined for VBmax values between 0.151 and 0.299 mm, involving

two wear levels;
• a ‘Red’ state is assigned for VBmax exceeding 0.299mm, also with two levels of wear.

The experimental setup included a variety of sensors capable of monitoring 11 differ-
ent parameters, such as:
• Force measurements in X and Y directions (Kistler 9601A sensor);
•Acoustic emission (Kistler 8152B sensor);
•Noise level (Brüel & Kjær 4189 sensor);
•Vibration intensity (Kistler 5127B sensor);
•Current and voltage ratings for the device, head, and servo (Finest HR 30 and Testec

TT-Si9001 sensors).
All above items are depicted at Figure 2. This setup includes a detailed arrangement

of sensors, acquisition cards, and the CNC machine tool used during the milling process.
The configuration of these components is vital for capturing and analyzing data related
to the milling process, such as vibrations, acoustic emissions, force measurements, and
electrical signals. Understanding this setup is essential for appreciating how the data
was collected, which forms the basis for the subsequent analysis using CNNs.
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Fig. 2. Diagram of the experimental setup, illustrating the configuration of sensors, acquisition cards,
and the CNC machine tool utilized in the experimental trials.

Data from these sensors were captured using National Instruments PCI-6111 and
PCI-6034E measurement cards. The recording was conducted on a PC running National
Instruments’ Lab ViewTM software. The AE signal required a high-frequency card
(2 MHz, 0.3 s window), while other signals were recorded with a 50 kHz card, using
a 1.1 s window. Connections to the cards were made via BNC-2110 boxes.

To avoid training disruption by extraneous noise or sound variations, sensor positions
relative to the workpiece and cutting zone were consistently maintained. The structure of
the collected data is detailed in Table 1. It is organized into three columns and details
various parameters measured across different categories of data. Each row represents
a unique measurement type with its corresponding length and sampling rate in Hz. For
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Tab. 1. Data Set Variable Configuration.

Variable Name Measured Parameter FS [Hz]

DataHigh Acoustic Emissions 5 000 000
DataLow0 X-Axis Force 200 000
DataLow1 Y-Axis Force 200 000
DataLow2 Sound Level 200 000
DataLow3 Vibration Intensity 200 000

DataCurrent0 Device Current 50 000
DataCurrent1 Device Voltage 50 000
DataCurrent2 Head Unit Current 50 000
DataCurrent3 Head Unit Voltage 50 000
DataCurrent4 Servo Motor Current 50 000
DataCurrent5 Servo Motor Voltage 50 000

Tab. 2. Summary of Records and Data Classification.

Category Number of Records Number of Registered Signals per Record

Green Class 25 11
Yellow Class 25 11
Red Class 25 11

Total 75

instance, the ‘High-Resolution Data’ category includes ‘Acoustic Emissions’ with a sig-
nificant length of 27 999 960 and a very high sampling rate of 5 000 000 Hz. In contrast,
‘Standard Data’ encompasses measurements like ‘X-Axis Force’ and ‘Y-Axis Force’, each
with 700 000 lengths and a sampling rate of 200 000Hz. Lastly, ‘Electrical Data’ records
parameters such as ‘Device Current’ and ‘Device Voltage’, each with a length of 30 000
and a sampling rate of 50 000 Hz.

The Table 2 condenses the dataset into three main classes: ‘Green’, ‘Yellow’, and
‘Red’. Each class has the same number of records, 25, and the same number of registered
signals per record, 11. a total row is also included, summing the records to 75 and
confirming the uniform number of signals per record across all classes. This table provides
a high-level overview of the dataset’s classification structure.

The classification of tool wear during the milling process is significantly enhanced
by the analysis of device current signals through spectrograms. In Fig. 3 a comparative
study is presented of the spectral characteristics for three distinct tool condition classes
– ‘Green’, ‘Yellow’, and ‘Red’ – as manifested in the device current signal. Spectro-
grams offer a two-dimensional representation where one axis represents time, the other
frequency, and the color intensity indicates signal power at a given frequency and time.

Machine GRAPHICS & VISION 32(2):89–108, 2023. DOI: 10.22630/MGV.2023.32.2.5 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.2.5


J. Kurek, K. Szymanowski, L. J. Chmielewski, A. Orłowski 95

a

b

c
Fig. 3. Examples of spectrograms used in constructing a CNN model for classifying different conditions

of a milling chipboard process. Each figure represents a unique class condition. (a) Spectrogram
for class=‘Green’, indicating a specific condition or state. (b) Spectrogram for class=‘Yellow’,
indicating a transition phase or intermediate state. (c) Spectrogram for class=‘Red’, indicating
a critical condition or state.
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The spectrogram corresponding to the ‘Green’ class, as shown in the first panel of
Figure 3a, exhibits a pattern characterized by uniformity across the frequency bands.
This uniformity correlates with a well-conditioned tool exhibiting consistent operational
behavior without any signs of wear. The frequency bands remain relatively undisturbed,
indicating stable current consumption and, implicitly, a lack of significant resistance or
stress on the milling apparatus.

The ‘Yellow’ class spectrogram, depicted in the second panel of Figure 3b, begins
to show variations in the signal’s intensity across its frequency bands. These variations
suggest the onset of tool wear, with certain frequencies becoming more pronounced, likely
due to irregularities in the milling process as the tool encounters increasing resistance
and degradation. This intermediate state of wear calls for closer monitoring to preempt
any potential quality issues in the milling outcome.

The ‘Red’ class spectrogram, presented in the third panel of Figure 3c, shows a dis-
tinct pattern with significant disruptions in frequency stability. These disruptions reflect
a critical level of tool wear, where the tool’s inefficiency is evidenced by erratic fluctua-
tions in current consumption. The ‘Red’ condition indicates an immediate need for tool
replacement to prevent substandard milling results and potential damage to the milling
equipment.

A comparative analysis of the three spectrograms underscores the efficacy of using
device current signal analysis for tool wear monitoring. The progression from ‘Green’
to ‘Red’ class is marked by a discernible transition in the signal’s spectral content,
underscoring the potential of this approach in predictive maintenance and automated
monitoring systems in industrial settings.

The spectral analysis of device current signals through spectrograms provides a robust
mechanism for classifying tool condition in real-time. This method facilitates the early
detection of tool wear, enabling timely interventions that can significantly enhance the
efficiency and quality of the milling process.

3. Conversion of Time Series Signal into Spectrograms

This chapter outlines the methodology applied to transform the time series data collected
from the milling process into spectrograms. These spectrograms serve as inputs for the
subsequent classification using CNNs. The conversion process is crucial for extracting
meaningful features from the time series data, which are then leveraged by the CNN for
accurate classification.

In this study, each color-coded spectrogram corresponds to a distinct class condi-
tion, with ‘Green’ representing a normal state, ‘Yellow’ an intermediate state, and ‘Red’
a critical state. The spectrograms provide a visual and quantitative way to discern the
differences between these conditions over time.
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3.1. Data Preparation and Interpolation

Initially, the time series data undergo extensive preprocessing. Given the varying lengths
of the time series, a uniform length is necessary to ensure consistent analysis. To achieve
this, the data is interpolated to a common length, maintaining the integrity of the
original series. The interpolation is conducted using Python’s interp1d function [16]
from the scipy library, which allows for linear interpolation of the data. The following
code snippet (Algorithm 1) demonstrates the interpolation process:

Algorithm 1 Interpolate time series data
1: procedure InterpolateTS(data, TargetLength, SamplingRate)
2: dataSampled ← data[:: SamplingRate]
3: XOld ← linspace(0, 1, length(dataSampled))
4: XNew ← linspace(0, 1, TargetLength)
5: interpolator ← interp1d(XOld, dataSampled, fillValue="extrapolate")
6: return interpolator(XNew)
7: end procedure

3.2. Spectrogram Generation

Post-interpolation, each time series is converted into a spectrogram. a spectrogram is
a visual representation of the spectrum of frequencies in a signal as they vary with time.
This conversion is crucial for visualizing the frequency content of the time series data,
which is key for the CNN’s feature extraction phase.

Spectrograms play a pivotal role in the analysis of time series data, especially in the
context of monitoring the milling process of chipboards. They offer a visual represen-
tation of the frequency spectrum of signals as they change over time. a spectrogram is
a visual way of representing the signal strength, or “loudness”, of a signal over time at
various frequencies present in a particular waveform. It is a powerful tool for analyzing
the frequency components of a signal that evolves over time. In our context, the spec-
trogram provides insights into the milling process by depicting the frequency content of
vibrations, acoustic emissions, and other relevant signals.

The main parameters of the specgram [13] function used in this study are:

seriesData – the input signal data.
Fs (samplingRate) – the sampling frequency. It defines the number of data points sam-

pled per second in the time series. In our case Fs depends on signal (Table 1).
NFFT – the number of data points used in each block for the Fast Fourier Transform

(FFT). a higher number improves the frequency resolution of the spectrogram. In
our case NFFT=256.
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noverlap – the number of points of overlap between blocks. Increasing this value in-
creases the continuity of the frequency spectrum over time but reduces temporal
resolution. In our case noverlap=128.

The spectrograms are generated using the specgram function from Python. This
function computes the spectrogram for each time series, showcasing the intensity of
frequencies over time. Each spectrogram is then saved as an image file, which is later
used as input for the CNN model. The code for generating the spectrograms is as follows
(Algorithm 2):

Algorithm 2 Generate spectrograms for each time series
1: procedure GenerateSpectrograms(DataSet,minLength, SamplingRate)
2: for k in range(length(DataSet)) do
3: for i in range(length(DataSet[k])) do
4: DS ← DataSet[k][i]
5: Define DataHigh0, DataLow0, . . . , DataCurrent5 from DS
6: DataHigh0_interp← InterpolateTS(DataHigh0, . . .)
7: ... ▷ Repeat for other data series
8: for SeriesName, SeriesData in [(′DataHigh0′, DataHigh0_interp), . . .] do
9: Generate a spectrogram from SeriesData

10: Save the spectrogram as an image file
11: end for
12: end for
13: end for
14: end procedure

4. Model architecture with pretrained networks

4.1. CNN Pretrained networks

Convolutional Neural Networks are mainly known for their role in computer vision and
image processing, which is a big part of deep learning. Traditionally associated with vi-
sual data analysis, the versatility of CNNs extends far beyond, as evidenced in this study.
By repurposing these networks, initially designed for interpreting complex imagery, we
have demonstrated their remarkable adaptability in processing time series data for in-
dustrial process monitoring. This innovative application leverages the inherent strengths
of pretrained CNN models such as VGG16, VGG19, and RESNET34, traditionally em-
ployed in visual tasks, to analyze and interpret signals in the context of milling chipboard
processes. This approach underscores a significant advancement in the application of AI,
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extending the capabilities of CNNs from their conventional domain of image-based anal-
ysis to the intricate realm of signal processing and time series analysis in an industrial
setting.

CNNs, especially those with pretrained architectures, have revolutionized the field of
deep learning, particularly in image processing and computer vision. Among the most
prominent of these are VGG16 [17,19], VGG19 [17,20], and RESNET34 [2], each having
unique characteristics and strengths.

VGG16 is renowned for its simplicity and depth. It consists of 16 layers, with a design
focused on small convolution filters of size 3×3 and the use of max pooling to re-
duce spatial dimensions. The VGG16 network has proven its effectiveness in feature
extraction due to its depth and uniform architecture.

VGG19, an extension of VGG16, includes 19 layers. The additional layers in VGG19
allow it to learn more complex features from images, making it slightly more powerful
than VGG16 at the expense of increased computational cost. Its effectiveness in
handling more intricate image patterns makes it a preferred choice for complex image
recognition tasks.

RESNET34 marks a significant departure from traditional sequential architectures like
VGG. The innovative use of residual connections, or ‘skip connections’, allows it
to train deeper networks by addressing the vanishing gradient problem. This ar-
chitecture comprises 34 layers and is exceptionally efficient in training due to these
residual connections, which help preserve the gradient flow through the network. The
RESNET34 architecture is known for its high performance in various tasks, including
but not limited to image classification.

The application of these pretrained networks extends beyond traditional image pro-
cessing. In various research and industry applications, these networks have been repur-
posed and fine-tuned for tasks such as signal processing, time-series analysis, etc. The
pretrained aspect of these networks implies that they have been previously trained on
large datasets, like ImageNet, allowing them to have a deep understanding of a wide
range of features. This pre-training makes them incredibly versatile and efficient when
adapted to new tasks.

In conclusion, the developed CNN model demonstrates significant potential for au-
tomating the monitoring of milling processes in the furniture manufacturing industry.
By harnessing the power of advanced machine learning techniques, this model paves the
way for more efficient, accurate, and automated tool condition monitoring.

The performance evaluation of the CNN model is a critical step in the development
process. It allows us to assess the model’s ability to generalize to new data, which
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is indicative of its practical utility in real-world applications. This section details the
evaluation metrics and results obtained from testing the CNN model on the dataset for
tool condition monitoring during the milling process.

4.2. Model architecture

The proposed model integrates the high-level feature extraction capabilities of the afore-
mentioned pretrained networks, as illustrated in Figure 4. Each pretrained network
serves as a separate feature extractor for a different input data stream. The architecture
allows for the parallel processing of multiple data signals, each passing through a frozen
base of a pretrained network. These signals correspond to the various parameters cap-
tured during the milling process, such as acoustic emissions, force measurements, and
electrical signals.

Each data stream, denoted as DataHigh, DataLow0 through DataLow3, and Dat-
aCurrent0 through DataCurrent5, is processed through a distinct instance of the pre-
trained network. The pretrained network bases are kept frozen to preserve the knowledge
they have acquired from vast amounts of visual data, ensuring the effectiveness of the
feature extraction as seen in Figure 4.

Post feature extraction, the outputs from all pretrained networks are flattened and
then concatenated into a single, common feature vector. This concatenated vector en-
capsulates comprehensive feature information important to the milling process, which is
then passed through a series of fully connected (Dense) layers.

The first Dense layer consists of 512 neurons followed by batch normalization and
a ReLU activation function. This is followed by a dropout layer with a dropout rate of
0.1 to mitigate the risk of overfitting. Subsequent layers reduce the dimensionality from
256 to 128 neurons, each followed by batch normalization, ReLU activation, and dropout
layers.

The final layer in our architecture is a Dense layer with a softmax activation function.
This layer outputs the probabilities corresponding to the different conditions of the tool
– ‘Green’, ‘Yellow’, and ‘Red’ – indicating the level of wear and tear experienced by the
milling apparatus.

The model’s versatility is underpinned by its ability to harness the strengths of each
pretrained network. By adjusting the trainable parameters in the fully connected lay-
ers and maintaining the sophisticated feature extraction capabilities of the pretrained
bases, our model is adept at providing nuanced classifications of tool conditions, thereby
significantly enhancing the monitoring process.

The architecture of the model leverages the power of pretrained networks to analyze
complex data streams effectively. The incorporation of these networks into our model
reflects a significant step towards advanced monitoring and predictive maintenance in
the domain of manufacturing.
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Fig. 4. Schematic representation of the CNN model utilizing pretrained networks for chipboard milling
process monitoring.

5. Numerical Experiments

5.1. Cross-Validation Methodology

In this study, we applied cross-validation as a robust approach to evaluate the per-
formance of our machine learning models. Specifically, we used the stratified K-fold
cross-validation technique, ensuring that each fold is a good representative of the whole.
Stratified K-fold divides the dataset into K equally sized folds (in our case K = 10),
with each fold containing approximately the same percentage of samples of each target
class as the complete set.

For each fold in the cross-validation, every model was trained on the training sub-
set and evaluated on the validation subset. The evaluation metrics included accuracy,
confusion matrix, and a detailed classification report highlighting precision, recall, and
F1-score for each class.

We also conducted a detailed error analysis by examining the confusion matrices.
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Particular attention was given to extreme classification errors between the most dissim-
ilar classes.

The following pseudocode provides an overview of our cross-validation implementa-
tion (Algorithm 3):

Algorithm 3 Cross-Validation for Model Evaluation

data, labels← loaddata()
kf ← StratifiedKFold(nsplits = 10)
for fold, (trainindex, valindex) in kf.split(data, labels) do

model← createmodel()
traindata, valdata ← data[trainindex], data[valindex]
trainlabels, vallabels ← labels[trainindex], labels[valindex]
model.fit(traindata, trainlabels)
Y Pred← model.predict(valdata)
Calculate and Analyze Y Pred against vallabels
Generate classification reports and confusion matrices for current fold

end for
Generate Final classification report and confusion matrix for all 10-folds.

The results of the cross-validation process, including accuracy scores, confusion ma-
trices, and classification reports, are compiled and analyzed to assess the overall perfor-
mance and robustness of every the models.

6. Hardware Configuration

Below Table 3 details the hardware setup utilized in our computational experiments. The
hardware configuration played a crucial role in the successful implementation and exe-
cution of our CNN models. The table below summarizes the key hardware components
used in our setup.

Our system was equipped with dual Intel(R) Xeon(R) Gold 5420+ processors. These
high-performance processors are well-suited for demanding computational tasks, such as
training deep neural networks. They ensure efficient parallel processing and fast compu-
tation speeds, which are essential for handling large datasets and complex algorithms.

The system’s memory architecture included 2240KiB of L1 cache, 56MiB of L2 cache,
and 52 MiB of L3 cache. Additionally, it boasted a substantial RAM capacity of 256 GiB,
comprising 16 DIMM slots, each fitted with a 16 GiB module operating at 4800MHz.
This extensive memory setup was critical for managing the high data throughput and
storage requirements of our CNN models.

For operating system and software, the setup included 2×128GB NVMe disks, known
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Tab. 3. Summary of hardware configuration.

Type Hardware Item

Processor #1 Intel(R) Xeon(R) Gold 5420+
Processor #2 Intel(R) Xeon(R) Gold 5420+
Memory Cache L1 2240KiB L1 cache
Memory Cache L2 56MiB L2 cache
Memory Cache L3 52MiB L3 cache
Memory RAM 256GiB System Memory (16*16GiB DIMM 4800 MHz)
OS Disk 2x128 GB NVMe disk
Storage 26TB RAID
Network 4xNetXtreme BCM5720 Gigabit Ethernet PCIe
GPU #1 NVIDIA A40, 48 GB GDDR6 with ECC
GPU #2 NVIDIA A40, 48 GB GDDR6 with ECC
GPU #3 Integrated Matrox G200eW3 Graphics Controller

for their high-speed data transfer rates. The main data storage was a robust 26 TB RAID
system, offering both large storage capacity and data redundancy, which is crucial for
maintaining data integrity in large-scale computational experiments.

The network configuration comprised 4 NetXtreme BCM5720 Gigabit Ethernet PCIe
adapters. This setup provided high-speed network connectivity, ensuring efficient data
transfer within our computational network and facilitating remote access to the compu-
tational resources.

The computational rig was equipped with two NVIDIA A40 GPUs, each offering
48 GB of GDDR6 memory with ECC. These GPUs were instrumental in accelerating the
training and inference processes of our CNN models. The integrated Matrox G200eW3
Graphics Controller served as an auxiliary GPU, primarily handling display outputs and
less intensive graphical tasks.

This hardware configuration provided a robust and efficient platform for conducting
our advanced computational experiments, particularly in training and evaluating deep
neural network models.

7. Results and Discussion

This section presents the results obtained from the application of different pretrained
CNN models, namely VGG16, VGG19, and RESNET34, in the monitoring of the milling
chipboard process. The performance of each model is evaluated based on the confusion
matrices and various performance metrics as summarized in Table 1.
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7.1. Performance Evaluation

The evaluation of the pretrained CNN models involved analyzing their ability to ac-
curately classify tool conditions into ‘Green’, ‘Yellow’, and ‘Red’ states. Figures 5a, b
and c depict the confusion matrices for the VGG16, VGG19, and RESNET34 models,
respectively (Table 4).
•The VGG16 and VGG19 models both achieved an accuracy of 80%, whereas the

RESNET34 model showed a slightly lower accuracy of 70.67%.
•Critical errors, which are severe misclassifications, were slightly higher for the VGG19

model (3 errors) compared to VGG16 and RESNET34 (2 errors each).
•The training times varied among the models, with VGG19 taking the longest at

approximately 1 hour and 10 min, followed by VGG16 at 55 min, and RESNET34
being the fastest at 32 minutes.

7.2. Class-Specific Analysis

A detailed analysis of each class’s performance reveals significant insights into the models’
classification capabilities:
• For the VGG16 model (Table 5), the ‘Green’ class showed the highest precision and

specificity, indicating its effectiveness in correctly identifying well-conditioned tools

a b c
Fig. 5. Confusion matrices for the CNN model with three pretrained networks: (a) VGG16, (b) VGG19,

(c) RESNET34.

Tab. 4. Comparison of Performance Metrics for Different Pretrained Neural Networks.

Pretrained network Accuracy [%] Critical Errors Training Time

VGG16 80.00 2 55min
VGG19 80.00 3 1 h 10 min

RESNET34 70.67 2 32min
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Tab. 5. Comparative analysis of VGG16 pretrained network performance across different classes.

Class Precision [%] Sensitivity [%] F1-Score [%] Specificity [%]

‘Green’ 90.91 80.00 85.11 96.00
‘Yellow’ 75.00 72.00 73.47 88.00
‘Red’ 75.86 88.00 81.48 86.00

and minimizing false positives. The ‘Yellow’ and ‘Red’ classes had lower precision
and sensitivity, pointing towards challenges in distinguishing between slightly worn
and critically worn tool conditions.
•The VGG19 model (Table 6), while similar in precision and sensitivity for the ‘Green’

class as VGG16, showed better sensitivity for the ‘Yellow’ class and a balanced pre-
cision-sensitivity trade-off for the ‘Red’ class.
•The RESNET34 model (Table 7) exhibited lower overall precision and sensitivity

across all classes, with the ‘Yellow’ class being the most challenging in terms of pre-
cision and sensitivity.

Tab. 6. Comparative analysis of VGG19 pretrained network performance across different classes.

Class Precision [%] Sensitivity [%] F1-Score [%] Specificity [%]

‘Green’ 90.91 80.00 85.11 96.00
‘Yellow’ 72.41 84.00 77.78 84.00
‘Red’ 79.17 76.00 77.55 90.00

Tab. 7. Comparative analysis of RESNET34 pretrained network performance across different classes.

Class Precision [%] Sensitivity [%] F1-Score [%] Specificity [%]

‘Green’ 77.78 84.00 80.77 88.00
‘Yellow’ 60.87 56.00 58.33 82.00
‘Red’ 72.00 72.00 72.00 86.00

7.3. Discussion

The results indicate that while all three models are capable of classifying tool conditions
effectively, there are distinct differences in their performance. VGG16 and VGG19 mod-
els are more accurate but require longer training times, which might be a trade-off in
real-time applications. The RESNET34 model, despite its lower accuracy, offers a faster
training process, which could be beneficial in scenarios where rapid model deployment
is necessary.
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The higher precision in the ‘Green’ class across all models suggests that they are well-
suited for identifying tools in good condition. However, the lower sensitivity in ‘Yellow’
and ‘Red’ classes, especially in the RESNET34 model, highlights the need for further
model optimization to improve the detection of worn and critically worn tools.

In conclusion, the choice of a pretrained CNN model for tool condition monitoring
in milling processes should be based on the specific requirements of accuracy, training
time, and the ability to distinguish between different wear conditions. Future work
may explore combining these models or employing ensemble methods to enhance overall
performance and reliability.

8. Conclusion

This study presented a comprehensive approach to monitoring and analyzing the milling
chipboard process in furniture manufacturing using Convolutional Neural Networks with
pretrained networks like VGG16, VGG19, and RESNET34. Our research demonstrated
the effectiveness of these models in accurately classifying tool conditions into ‘Green’,
‘Yellow’, and ‘Red’ states based on their wear levels, utilizing spectrogram representa-
tions of time-series data collected during the milling process.

The experimental results showed that VGG16 and VGG19 achieved higher accu-
racy compared to RESNET34, although with a longer training time. This highlights
a trade-off between accuracy and computational efficiency that must be considered in
practical applications. While all models proved capable in identifying well-conditioned
tools, challenges remain in differentiating between slightly worn and critically worn con-
ditions, especially for the ‘Yellow’ and ‘Red’ classes.

Furthermore, the application of machine learning in this domain has opened new
approaches for predictive maintenance and quality control in manufacturing. By enabling
early detection of tool wear, the implemented models can significantly contribute to
optimizing the milling process, reducing downtime, and ensuring product quality.

This research also underscores the potential of transfer learning, where pretrained
models, originally developed for different tasks, can be successfully adapted and applied
to specific industrial processes. It paves the way for further exploration of deep learning
techniques in manufacturing, where similar strategies can be employed to enhance various
aspects of production and monitoring systems.

In conclusion, the findings of this study contribute valuable insights into the appli-
cation of advanced neural networks in industrial settings. Future work may focus on
further refining these models, exploring ensemble methods for improved accuracy, and
extending this approach to other manufacturing processes to fully harness the potential
of AI in industrial automation and monitoring.
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