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Abstract. Image quality assessment is a crucial task in various fields such as digital photography,
online content creation, and automated quality control, as it ensures an optimal visual experience and
aids in maintaining consistent standards. In this paper, we propose an efficient method for training im-
age quality assessment models on the KonIQ-10k dataset. Our novel approach utilizes a dual-Xception
architecture that analyzes both the image content and additional image parameters, outperforming tra-
ditional single convolutional models. We introduce cross-sampling methods with random draw sampling
of instances from majority classes, effectively enhancing prediction quality in the Mean Opinion Score
(MOS) ranges that are underrepresented in the database. This methodology allows us to achieve near
state-of-the-art results with limited computing costs and resources. Most importantly, our predictions
across the entire spectrum of MOS values maintain consistent quality. Because of using a novel and
highly effective method for image sampling, we achieved these results with much lower computational
cost, making our approach the most effective way of MOS estimation on the KonIQ-10k database.
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1. Introduction

Image quality refers to the fidelity of imaging systems in capturing and processing sig-
nals to form an image, and the weighted sum of visually important features as perceived
by the human eye [1]. This dual perspective is crucial in applications like diagnos-
tics, environmental monitoring, visual media, security, and manufacturing, impacting
decision-making and operational efficiency. Both the technical fidelity and subjective
appeal highlight the need for robust image quality assessment.

Objective image quality assessment is divided into no-reference, reduced-reference,
and full-reference methods, based on the original image’s availability. Full-reference
metrics compare a test image with the original; reduced-reference uses limited original
information, and no-reference assesses the image independently. These methods provide
automated metrics for estimating image quality [2].

Blind Image Quality Assessment (BIQA) stands out as the most complex yet most
applicable among the three types of image quality assessments because it does not need
a reference image. In many cases, such references are not accessible. Deep learning
advancements have shown significant potential in enhancing BIQA alongside other areas
like image recognition and object identification. The development of BIQA methods
would benefit substantially from a vast and varied database that includes naturally
occurring image distortions. Nevertheless, the training of deep learning models for
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BIQA is currently constrained by the limited scope and synthetic nature of existing
databases [3, 4, 5]. Moreover, large-scale quality assessments in a controlled environ-
ment are not feasible, given the extensive time and participant involvement required. In
the study referenced as [6], the researchers introduced a groundbreaking dataset named
KonIQ-10k, consisting of 10,073 images each with an associated quality score. Addi-
tionally, they developed a CNN-based model, KonCept512, which surpassed competing
models [7,8,9] in performance on both the KonIQ-10k and the LIVE-itW [10] databases.

In this paper, we focused on replicating results with the streamlined Xception archi-
tecture [11], which has fewer parameters (22.8 million when the architecture proposed
by the original KonIQ-10k dataset authors contains around 56 million variable parame-
ters). Architectures with fewer parameters typically learn faster and are more effective
on small datasets because they are less prone to overfitting and require fewer compu-
tational resources for training. This is a significant advantage in the context of novel
approaches to data distribution during training steps. We explored the effectiveness of
a hybrid deep learning model that utilizes dual CNN extractors. Moreover, we have
confirmed that incorporating undersampling (due to methods of random sampling from
major classes and data duplication in minor classes, referred to as cross-sampling) [13]
to reduce training times does not detrimentally impact the overall results. All these
additional improvements make our model easier and much faster to train, as well as
quicker and lighter for inference.

1.1. Related Works

Image Quality Assessment (IQA) is crucial in many fields, playing a key role in ensur-
ing the precision and efficiency of numerous advanced decision-making and operational
systems. IQA is generally divided into subjective and objective categories. Subjective
IQA depends on human evaluations, leading to the Mean Opinion Score (MOS) system,
which reflects the average perceived image quality. However, its time-consuming and
costly nature limits its practical use.

Objective IQA, especially no-reference or Blind Image Quality Assessment (BIQA),
has greatly advanced with deep learning. While traditional BIQA methods focused on
manually selected features, recent trends lean towards automatic representation learning
from raw images to predict quality scores. Deep learning in BIQA, such as the application
of deep belief networks by Ghadiyaram et al. and the VGG16 network in DeepBIQ and
BLINDER models [14, 15], showcases the effectiveness of deep neural networks in this
area. These models estimate image quality by analyzing various image sections and
averaging their MOS, considering both individual and overall image quality scores.

Pixel-by-Pixel IQA (pIQA) [16] marks a significant progress in this sector, introducing
an innovative way to compute the MOS for each pixel and sum it up for an overall image
score. This method surpasses older IQA techniques and aligns closely with human vision,
representing a major step forward in objective IQA.
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Deep learning-based Full-Reference IQA (FR-IQA) [17] methods have also been de-
veloped, focusing on the similarity between an original and altered image. However,
their effectiveness varies with the image’s complexity, encouraging further exploration of
deep learning for more effective feature extraction.

Transfer learning has been utilized to address the challenges of small training datasets
in BIQA. Examples include RankIQA [18], which employs a Siamese Network for image
quality ranking, and MEON [19], which uses a multi-task approach with shared initial
layers for distortion detection and quality prediction. MS-UNIQUE [17], an FR-IQA
method, leverages multiple linear decoders trained on large datasets to gauge visual
quality by comparing feature vectors of original and distorted images. Talebi et al.
proposed a framework based on object-classification architectures [20], while Zhang et
al. used a Siamese network for MOS-based image pair ranking [8].

The KonIQ-10k [6] dataset is a notable recent contribution, specifically created for
BIQA prediction. The KonCept512 model, based on the Inceptionv2 architecture, has
achieved top-tier results on both the KonIQ-10k and LIVE-itW datasets. However, this
solution has room for optimization in MOS range prediction and computational efficiency.
Inceptionv2, being a large structure, demands significant computing resources, which
may pose challenges for training on commonly available and free personal computers
and notebooks.

2. Experimental setup

2.1. Dataset

The KonIQ-10k dataset, the largest of its kind for Image Quality Assessment (IQA),
includes 10 073 images, each evaluated for quality. Notable for its ecological validity, the
dataset prioritizes authenticity in distortion types, content variety, and quality measures.
Developed through extensive crowdsourcing, it incorporates over 1.2 million quality eval-
uations from 1 459 participants, offering a robust foundation for advancing IQA models.

In Figure 1 several images from the specified database are displayed.

For quality indicators, the dataset incorporates measures well-correlated with human
perception. These include brightness, colorfulness, Root Mean Square (RMS) contrast,
and sharpness, as revealed by preliminary subjective studies. Other factors like image
bitrate, resolution, and JPEG compression quality were also assessed. In our research,
we narrowed our focus to brightness, contrast, sharpness, and bitrate because these
showed a stronger correlation with the Mean Opinion Score (MOS) what is depicted in
dataset’s correlation matrix (Figure 2). In our study, we employed four key indicators –
brightness, contrast, sharpness, and bitrate – as inputs to the Xception architecture [11].
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Fig. 1. The image showcases six examples from the KonIQ-10k database, each accompanied by an
MOS value derived from the dataset labels positioned either above or below them. Images
demonstrating relatively lower quality (MOS < 50) exhibit characteristics such as being cropped,
blurred, or noisy. Conversely, as the MOS increases, the images become clearer and more
precisely cropped.

This informed the extraction of a feature vector that was integral to our hybrid neu-
ral network, allowing for improved image quality predictions based on the KonIQ-10k
dataset’s findings.

As indicated in the original KonIQ-10k paper, we also divided our dataset into three
subsets (training, validation, testing), adhering to the same distribution ratio: 7 058
elements for training, 1 000 for validation, and 2 015 for testing.

2.2. Proposed methods

2.2.1. Model architecture

In our study, we chose the Xception architecture over InceptionResnetv2 [21] due to
its efficient use of parameters without compromising on performance. The significantly
lower number of trainable parameters was also a crucial factor in our decision, given our
intention to use the cross-sampling method, which limits the number of data points in
the training set. This choice is supported by comparative evaluations in which Xcep-
tion surpassed other residual-connected CNNs, including ResNet50, ResNet152 [22], and
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Fig. 2. The pairwise Pearson correlation coefficients visualization among various image quality indi-
cators from the KonIQ-10k dataset. It encapsulates the relationships between Mean Opinion
Score (MOS) Z-Score, Brightness, Contrast, Colorfulness, Sharpness, Bitrate, and Resolution,
along with extracted Deep Features. The depicted correlations offer a concise overview of the
interdependencies between perceived image attributes.

SENet154 [23], in terms of processing efficiency while still maintaining competitive ac-
curacy. This efficacy positions Xception as the preferred model for our image analysis
tasks. The most significant differences between the Xception and InceptionResNetV2
architectures lie in their structural design and efficiency.

Xception revolutionizes the traditional Inception architecture by adopting depthwise
separable convolutions, which streamline the model by reducing the number of param-
eters without sacrificing efficiency. Unlike InceptionResNetV2, which enhances the In-
ception model with residual connections for increased depth and complexity, potentially
improving accuracy at the expense of greater computational demands, Xception opti-
mizes for both computational efficiency and performance. This is achieved by decoupling
the mapping of cross-channel and spatial correlations in the feature maps, a strategy that
allows Xception to surpass the performance of its Inception counterparts in benchmark
tasks while requiring fewer computational resources.

Xception is an advanced deep learning model that utilizes depthwise separable convo-
lutions as a fundamental building block, optimizing computational efficiency and model
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performance. It diverges from InceptionResNetV2 by employing depthwise separable
convolutions, which decouple the mapping of cross-channel correlations and spatial cor-
relations in feature maps, instead of the Inception modules with mixed convolutions.
This architectural choice facilitates a more efficient use of model parameters and enables
the Xception network to outperform its Inception counterparts on benchmark tasks with
fewer computational resources. In our research, we observed that a single training step
for the Xception model is around twice as fast.

The Xception framework, embodying “Extreme Inception”, is composed of 36 convo-
lutional layers structured into 14 modules, all based on depthwise separable convolutions
(Fig. 3). This design principle posits that the correlations within the feature maps of
convolutional neural networks can be effectively separated, leading to a model that is
both powerful and efficient. The architecture, characterized by its simplicity akin to the
VGG16 model but diverging from the more intricate Inception designs, is detailed in its
foundational publication [11]. Our findings indicate that Xception’s training process is
notably faster, with a single step taking roughly half the time compared to more complex
models.

To assess the impact of extracted image parameters (brightness, contrast, sharpness,
and bitrate) on the quality of results, we utilized a pioneering dual-Xception architecture.
One Xception model, pre-trained on the ImageNet dataset [24], was used to extract
a feature tensor the size of the original architecture’s last linear layer (1024 neurons).
A second Xception was adapted to accept four floating-point values (the aforementioned
parameters) as input and was not pre-trained. The tensor returned by this part of the
proposed structure also had a dimension of 1024. Outputs from both models were then
merged using a matrix concatenation operation. The combined feature vector (of size
2048) was processed through a Leaky ReLU activation function and a final linear layer
with a single output size.

The Dual-Xception architecture is presented in the diagram in Figure 4.

While this approach increased computational complexity, the goal was to evaluate the
model’s sensitivity to the parameters introduced into the second model. We examined
the models’ performance across six scenarios: image-only Xception (with and without
cross-sampling), parameters-only Xception (with and without cross-sampling), and the
combined architecture (with and without cross-sampling).

In the initial stage, we also compared the proposed dual-Xception architecture with
more traditional methods. Our goal was to develop a single, cohesive structure capable
of learning from both image data and additional parameter information. While it was
possible to use two or three separate models for this purpose, maintaining the entire
training pipeline in a unified form was crucial, where we trained just one neural network
function using only one optimizer and loss function.
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Fig. 3. The complex structure of the Xception architecture is derived directly from the paper [11]
(replicated here from [12] according to arXiv License Information). It is important to note that
all convolutions are followed by batch normalization, and all SeparableConvolution structures
use a depth multiplier.

The dual-Xception model’s sophisticated approach offers distinct advantages by sep-
arately processing scalar attributes with an Xception model, rather than merely concate-
nating them with image features or using a basic linear layer. This method acknowledges
the complexity of scalar attributes like brightness and contrast, allowing for a nuanced
abstraction and integration with image-derived features. It enhances the model’s abil-
ity to grasp the intricate, non-linear relationships between these attributes and image
quality, potentially improving accuracy.

However, the dual-Xception framework’s complexity and computational demands are
notable drawbacks, increasing training time and data requirements to avoid overfitting.
The complexity may also complicate model adjustments and necessitate meticulous reg-
ularization.

We decided to evaluate the proposed novel architecture by comparing the mentioned
architecture with simpler networks illustrated in the Figure 5.

On the left, we observe that a simple linear neural network layer is employed as
a replacement for the parameter-focused Xception part, thereby reducing computational

Machine GRAPHICS & VISION 32(2):109–127, 2023. DOI: 10.22630/MGV.2023.32.2.6 .

https://info.arxiv.org/help/license/index.html
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.2.6


116 Xception-based architecture with cross-sampled training for Image Quality Assessment. . .

Fig. 4. The Dual-Xception architecture consists of two primary components. The first is the standard
Xception model trained on RGB images. The second is a modified version of Xception, designed
to process a 4-dimensional input reflecting image parameters: brightness, contrast, sharpness,
and bitrate. The duality lies in how these separate models are combined: features extracted from
both networks are concatenated and then passed through additional network layers (including
an activation function and a linear layer) to predict the final image quality, measured by the
Mean Opinion Score (MOS).

complexity. The resulting tensor was then concatenated with features extracted from
the RGB image. On the right, we note that scalars are treated as tensors themselves
without any preprocessing or feature engineering methods.

2.2.2. Loss function

In this paper, we propose the use of Mean Square Error (MSE) as a metric for assessing
the average squared difference between the estimated Mean Opinion Score (MOS) and
the labeled ground truth. MSE is a widely adopted approach in a multitude of computer
vision-based predictive models. The equation for the loss function is presented below:

MSE(x, y) =
1

n

∑
n

(xn − yn)2 , (1)

where:

n – number of images in the batch,

xn – ground truth MOS,
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Fig. 5. On the left, we see an architecture where a linear layer replaces the parameter-oriented Xception
module. The input size matches the number of included parameters, while the output size is
set to 1. On the right, we treat the scalar values of parameters as features in themselves,
without proposing any transformations except tensorification. In both cases, a crucial step is
the concatenation operation, where features extracted from the RGB image are merged with
information extracted from parameters in two distinct manners.

yn – predicted MOS.

To assess the impact of cross-sampling on MSE within narrower MOS intervals, we
tracked this metric across the following ranges: 0-20, 20-40, 40-60, 60-80, and 80-100.
The data was categorized according to the labeled MOS values.

2.2.3. Cross-sampling

To optimize computing time and enhance results in MOS ranges with fewer training
examples, we employed an cross-sampling strategy.

Under-sampling is a technique employed to address imbalances in datasets by de-
creasing the size of the more dominant class to match that of the minority class. This
method is part of a suite of tools that data scientists use to extract more accurate insights
from datasets that initially exhibit a skew in class distribution. In our solution, we have
also incorporated randomness into the drawing of samples at every step. Therefore, we
prefer to refer to this procedure as cross-sampling, and we adhere to this terminology
throughout this paper.

Given the substantial imbalance in our dataset across the ranges 0-20, 20-40, 40-60,
60-80, and 80-100, we applied a straightforward algorithm to ensure the model paid
greater attention to underrepresented classes. If the number of images in a range was

Machine GRAPHICS & VISION 32(2):109–127, 2023. DOI: 10.22630/MGV.2023.32.2.6 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.2.6


118 Xception-based architecture with cross-sampled training for Image Quality Assessment. . .

more than double but less than quadruple the quantity in the smallest range, the dataset
was randomly reduced during each training epoch to a maximum of twice the size of the
smallest class. If the quantity was between four to six times larger, the limit was set to
three times the size of the smallest class, and so forth, capping at four times the size
for any larger quantities. This approach effectively created a more balanced training
environment, promoting better learning from minority classes.

2.2.4. Training procedures

The model training was conducted on an NVidia RTX 3070 GPU with 8GB memory.
Each training session involved 60 epochs, with a batch size of 4, at a resolution of 512x384.
The duration of training varied between 5 to 20 hours, depending on the architecture
and whether the dataset was processed with cross-sampling. The number of training
epochs was suggested by the authors of KonIQ-10k, and in the subsequent chapters,
we demonstrate that it was not a very accurate approximation. After each epoch, the
model was evaluated on a validation set to monitor for signs of overfitting. Ultimately,
the best-performing model – characterized by the lowest loss – was selected for testing.
The ADAM algorithm [25], known for its adaptive learning rate methods, served as the
optimizer. The initial learning rate was set at 0.0001, halving every 20 epochs.

For our metrics, we utilized PLCC and SROCC, both of which are widely employed
in the evaluation of image quality.

PLCC stands for Pearson Linear Correlation Coefficient, which measures the linear
correlation between two variables, providing a value between −1 and 1. A PLCC of 1
indicates perfect positive correlation, while −1 indicates a perfect negative correlation.
It is often used in image quality assessment to compare the similarity between the quality
ratings of images by an algorithm and subjective ratings by humans.

SROCC denotes Spearman’s Rank Order Correlation Coefficient, a non-parametric
measure of rank correlation. It assesses how well the relationship between two variables
can be described using a monotonic function. In the context of image quality assessment,
it ranks the images based on quality and compares the algorithm’s rankings with those
from human assessments.

PLCC(X,Y ) =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2
, (2)

where:

n – number of observations,

Xi – ith observation of variable X,

Yi – ith observation of variable Y ,

X – mean of all observations of variable X,

Y – mean of all observations of variable Y .
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SROCC(X,Y ) = 1 −
6
∑n

i=1 d
2
i

n(n2 − 1)
, (3)

where:

n – number of observations,

di – difference between the ranks of the ith observations of variables X and Y .

3. Experimental results

The authors of the referenced paper conducted experiments to find the optimal input
resolution for their model by training on the original resolution (1024 × 768) and two
lower resolutions (512× 384 and 224× 224). They found that the models trained on the
smallest resolution (224×224) performed worse than the others, suggesting a significant
loss of quality-related information during the down-sampling process. Interestingly, the
models trained on the medium resolution (512× 384) outperformed those trained at the
original resolution.

For our study, we exclusively utilized the Xception architecture, pre-trained on the
ImageNet dataset. The results demonstrated that both PLCC and SROCC metrics were
slightly better for the 512×384 resolution compared to the 1024×768, and substantially
better than the 224 × 224 resolution.

These findings led us to exclusively utilize the 512 × 384 resolution in subsequent
operations.

3.1. Comparative Analysis of Dual-Xception Architectures

In this analysis, we evaluate the effects of modifications to the Xception architecture
on performance outcomes. Initially, the original Xception model was trained using the
KonIQ-10k image dataset.

Subsequently, we compared three models derived from architectures proposed in sec-
tion 2.2.1.

The first and simplest architecture incorporates tensored parameters as additional
features, combining this information with features extracted from the RGB image through
concatenation.

The second approach introduces a simple linear layer to process parameters, func-
tioning as a parameter-oriented branch of the architecture.

The third solution employs a modified Xception model designed to accept a 4-dimen-
sional input of image parameters: brightness, contrast, sharpness, and bitrate, in lieu of
standard RGB images. In this design, the parameters are fed into the initial layer of the
modified Xception network, effectively substituting the first convolutional layer that typ-
ically processes RGB values. While a Multi-Layer Perceptron (MLP) could handle these
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Tab. 1. Results comparing three methods of integrating features from images with image parameters
are presented. The first method, labeled ‘Plain Parameters’, involved no preprocessing but
directly combined tensored parameter values. The second method, ‘Linear Layer’, utilized a
linear neural network to extract features from image parameters. The third method utilized
our novel dual-Xception architecture.

Plain parameters Linear Layer dual-Xception

PLCC 0.912 0.916 0.920

SROCC 0.896 0.898 0.903

MSE 6.32 6.22 6.06

MSE (0-20) 10.18 13.31 12.01

MSE (20-40) 8.82 8.41 8.48

MSE (40-60) 6.73 6.60 6.66

MSE (60-80) 5.10 4.87 4.56

MSE (80-100) 6.61 7.24 6.10

Parameters 20.8M 20.8M 41.6M

parameters, the modified Xception model still utilizes depthwise separable convolutions,
which are central to Xception’s design. This approach might leverage the convolutions
for effective feature extraction and transformation from non-image data, representing
a novel strategy that could treat the spatial hierarchies and patterns within the param-
eters similarly to image features. Future research could explore different architectures
to refine this extractor and further reduce computational demands.

We evaluated the models using three main metrics: PLCC, SROCC, and MSE, as
detailed in the previous chapter. Additionally, we assessed the MSE within the ground
truth range of the MOS parameters, dividing these ranges into five categories (MOS from
0 to 20, MOS between 20 and 40, etc.). A lower MSE value indicates more accurate
predictions. For PLCC and SROCC, the ideal value is 1, with the value decreasing as
prediction quality deteriorates (down to a minimum value of 0).

In Table 1 we present results comparing three methods of combining features ex-
tracted from images with image parameters. In the first column, titled “Plain Parame-
ters”, we show the metrics for the method where we used no preprocessing but combined
tensored parameter values directly. In the middle column, titled “Linear Layer”, we
present results achieved by using a linear neural network as a feature extractor from im-
age parameters. In the third column, we present results for our pioneering dual-Xception
architecture. We observe that the differences in results are relatively small. However, in
most cases, the dual-Xception-based network achieved better results.

The convolutional-based extractor might be better for scalars because it can capture
non-linear relationships and subtle patterns within the data, which a simple linear model
might overlook. Given the high performance of current models, even slight improvements
are considered significant achievements in the field. This underscores the potential of
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Tab. 2. Training results using standard Xception on KonIQ-10k images (Images), Xception trained on
tabular data comprising image parameters (Parameters), and the outcomes using the Dual-
Xception a approach (Images+Parameters).

Images Parameters Images+Parameters

PLCC 0.91 0.74 0.92

SROCC 0.90 0.74 0.90

MSE 6.32 10.34 6.06

MSE (0-20) 11.17 26.42 12.01

MSE (20-40) 8.18 14.44 8.48

MSE (40-60) 6.64 9.28 6.66

MSE (60-80) 5.38 8.63 4.56

MSE (80-100) 5.91 15.08 6.10

convolutional approaches, like the dual-Xception architecture, in enhancing predictive
accuracy, even in scenarios where traditional models already perform exceptionally well.

In Table 2 we analyzed three constructed models: the standard Xception architecture
(termed “Images”), Xception trained solely on the tabular image attributes parameters
such as brightness, contrast, sharpness, and bitrate (referred to as “Parameters”), and
a combined architecture. This combined model integrates feature extractors from the
first two models and produces a corrected result through a linear neural layer, employing
the concatenation of tensors from the initial models.

The table shows that the Dual-Xception model excelled, particularly in assessing
image quality within the 60 to 80 MOS range. This superior performance is likely due
to the specific parameters within this range being highly indicative of image quality, as
demonstrated by the improved results in the same quality range when using only the
“Parameters” model. Notably, we did not employ the cross-sampling technique in this
study, which might lead to skewed results from an imbalanced dataset.

In the graphs presented in Fig. 6 we observe the variation in the SROCC and PLCC
metrics throughout the training epochs. It is evident that the Dual-Xception model
initially registered lower values compared to the conventional approach. However, around
the 8th to 10th epoch, the performance of the standard approach plateaued, whereas the
more complex Dual-Xception architecture continued to improve as it progressed further
in training.

3.2. Comparative Analysis of Models with Cross-Sampling

The images in the KonIQ-10k dataset are significantly unbalanced, impacting the final
results and making model training less effective. This is demonstrated in Table 3, where
the number of samples in the smallest and largest groups differs by nearly 30 times.
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a b

Fig. 6. Validating with two measures in function of epochs for the three types of models: (a) PLCC;
(b) SROCC. Function color represents applied architecture (blue - Dual-Xception, red - Image
Xception, black - Parameters Xception

To enhance the predictability of our models for lower-quality ranges, we employed and
compared several cross-sampling methods. Additionally, we experimented with weighted
MSE loss to focus the algorithm more on better predictions in the minority classes. In
table below, we can observe the exact quantity of images in every range of MOS in the
KonIQ-10k dataset. We note that in the class where MOS is between 0 and 20, there
are fewer than 200 image instances, while the sum of images with MOS between 60 and
80 is 30 times larger.

In the preliminary phase of our research on under and over-sampling, we explored
three distinct methodologies. The initial method involved constraining the number of
elements in each class to correspond with the highest count found in the smallest class
for the training dataset (method 1). Here, class denotes a grouping of instances within
identical Mean Opinion Score (MOS) ranges. For every training iteration, instances were
randomly selected from the categorized dataset, ensuring varied images for classes with
a higher image count. In the second method, we limited the number of elements to the
minimum count unless the image count exceeded 1 000. In such cases, we increased the
image count for the specified range by double (method 2), leading to a twofold increase
in data for the 40-60 and 60-80 ranges compared to other classes. The third approach

Tab. 3. Number of images samples in each of the five MOS ranges.

MOS range Samples

(0, 20> 183

(20, 40> 1189

(40, 60> 3081

(60, 80> 5408

(8, 100> 212
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Tab. 4. Comparison of the outcomes from four data sampling techniques.

Without C-S Method 1 Method 2 Method 3

PLCC 0.91±0.01 0.89±0.01 0.91±0.01 0.91±0.02

SROCC 0.88±0.01 0.87±0.01 0.89±0.01 0.89±0.02

MSE 6.40±0.09 7.30±0.12 6.30±0.15 7.35±0.20

MSE (0-20) 8.64±0.11 10.01±0.13 9.46±0.15 7.99±0.31

MSE (20-40) 8.61±0.11 8.57±0.16 8.41±0.14 8.14±0.20

MSE (40-60) 6.83±0.08 8.12±0.20 6.78±0.18 7.77±0.22

MSE (60-80) 5.42±0.05 6.37±0.24 5.24±0.18 6.89±0.25

MSE (80-100) 5.54±0.08 5.31±0.06 5.64±0.08 5.12±0.10

Ranges standard deviation 1.57±0.15 1.85±0.21 1.80±0.18 0.72±0.27

(method 3) employed a similar technique, but the number of elements in the largest
classes was quadrupled relative to the smallest class. For three other ranges, we tripled
the number of image instances, necessitating the repeated use of identical images. To
mitigate overtraining risks, we applied image augmentation techniques, including rota-
tions, flips, minor contrast modifications, and noise addition, while avoiding substantial
alterations to maintain the integrity of the MOS ground truth.

During the validation phase, we modified our criteria for selecting the optimal model.
Previously, the model with the lowest total Mean Squared Error (MSE) on the validation
set was chosen. However, given our emphasis on minimizing the standard deviation
across all five MOS ranges in this phase, we adopted a different approach. The optimal
model was now determined based on the minimal sum of MSEs from each of the five
MOS ranges.

It is important to highlight that the randomness in data allocation and manipula-
tion, especially for the largest class, led to a relatively high standard deviation, thereby
compromising the model’s predictability. This study entailed ten training iterations per
method, with notable disparities in results for edge cases.

The results for each model are presented in the table below. To ensure a more reliable
comparison, we employed the same model selection criteria for validation across every
method, including the primary architecture discussed in the previous chapter. This is
why the results do not completely align with those presented in Tab. 1.

As depicted in the table above, due to the substantial reduction of data, cross-
sampling can significantly decrease computing time without compromising performance
quality. The data in the KonIQ-10k database are not evenly balanced, presenting a valu-
able opportunity to optimize our models even with relatively modest computing re-
sources.

What is important to mention is that due to limitations of the dataset in every single
training step, the time of the training procedure was reduced four times for method
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Tab. 5. The table presents the computing time for a single training epoch for four selected models. From
the left, we have the KonCept512 model provided by the KonIQ-10k authors, our dual-Xception
model without cross-sampling implementation, and three cross-sampling methods explained
above in this chapter.

KonCept512 Without C-S Method 1 Method 2 Method 3

Time 273 s 357 s 54 s 85 s 110 s

Parameters 56.0M 40.8M 40.8M 40.8M 40.8M

number 3 and up to 7 times for the most limited method 1. This makes it a significantly
more effective method, capable of enhancing computations by several times. It is a direct
result of the dataset sampling procedure where we operate only on a small subset of the
original dataset.

In Table 5 we illustrate the changes in computational time per epoch following the
implementation of a given cross-sampling technique and compare this to the computing
time of the current state of the art. The presented time refers to the duration of a single
training epoch iteration. Similar to the authors of the state-of-the-art method, we trained
our models over 60 epochs. The given time represents the average value from the entire
training process. The training was conducted on an NVIDIA RTX 3070 GPU with 8GB
of memory and a batch size of 4.

We can observe that the computational time for the original KonCept512 model
is shorter than that of our dual-Xception architecture without the implementation of
the cross-sampling method. This discrepancy may be due to different implementation
approaches. The authors do not provide a PyTorch implementation of their network,
and for this analysis, we opted to use the HuggingFace implementation, which might
be slightly more optimized. However, we can still see that by employing our training
procedure, which depends on the dataset’s quantitative operations, we were able to
outperform this state-of-the-art model by more than fivefold.

3.3. Comparison with other algorithms

We compared our results from the normal training procedure with our outcomes where
we used a drastically limited dataset, following cross-sampling methods, against other
solutions that were or still are seen as state-of-the-art in blind image assessment. Results
are presented in Tab. 6.

We observed that the KonCept512 model remains the most effective. However, none
of the authors of the papers included in our comparison provided details on accuracy
changes across the entire spectrum of the MOS parameter. We have developed a very
simple, easy-to-train, and extremely fast solution that guarantees prediction quality for
all ranges of MOS values.
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Tab. 6. Comparison of performance scores of several well-known and influential methods on the KonIQ-
10k dataset. Results for each model, except our own one, are derived from [6].

Method SROCC PLCC

BIQI [26] 0.56 0.62

BLIINDS-II [27] 0.59 0.60

BRISQUE [28] 0.71 0.71

CNN [4] 0.57 0.59

DeepBIQ (VGG16) [5] 0.87 0.89

DeepBIQ (InceptionResNetV2) [5] 0.91 0.91

KonCept512 [6] 0.92 0.94

Ours without C-S 0.90 0.92

Ours with C-S 0.89 0.91

4. Conclusions

We introduced an efficient yet easy-to-train model that achieved near state-of-the-art
performance with a dataset significantly smaller in size. Our method ensures excellent
predictions across the entire MOS parameter range on the KonIQ-10k dataset. By using
the cross-sampling method, we optimized single epoch processing time by up to 5 times
without a significant decrease in result quality. We can assert that our solution is easier
and faster for training and inference. The achieved results are also examined across the
entire spectrum of MOS image values, making our model unique.

For future work, we could delve into more sophisticated research regarding optimal
under/over-sampling techniques. Our proposed methodology, while experimental, sug-
gests that different dataset partitioning might yield even better results. Another aspect
worth investigating is the application of weighted training loss that varies according to
the ground truth parameter value. However, this approach may not significantly reduce
training time, especially if we continue to utilize sampling methods.

We also propose to intensify research on how to optimize feature extractors that oper-
ate on numerical data. We need to investigate alternatives to the Xception architecture
that may offer comparable results.
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