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Abstract. In this paper an algorithm for creating cave-like, user-guided layout is presented. In appli-
cations such as computer games, underground structures offer unique challenges and interesting space
for player actions. Preparation of such areas can be time consuming and tiresome, especially during
the design process, when many ideas are often scrapped. Presented approach aims at improving this
process. Schematic input is used so the user can quickly define the general layout. Cave system is
divided into levels and tiles – easily-parallelizable modules for the following method stages. Cellular
automata are used to extend initial system sketch with interesting shapes while the diamond-square
algorithm spreads the final terrain heights. Each stage uses the results of the previously performed
operations as input, providing space for alterations. Input maps can be reused to obtain different varia-
tions of the same system. The final structure is represented as a 3D point cloud. Chosen representation
supports multilevel systems and can be used either as a base for further algorithms, or as a final mesh.
The presented approach can be easily incorporated into game design process, while visualizing initial
layouts and speeding up preparation of unique, interesting and challenging game spaces for the players
to traverse.

Key words: Cellular Automata, computer games, Diamond-Square, procedural cave generation,
procedural level generation, schematic maps.

1. Introduction

Computer games are growing increasingly more robust, both visually and in terms of the
overall complexity. Creating such content can take significant amount of time. While
preparing in-game objects manually brings precise and visually appealing results, it can
also lead to repeatable content. This is especially the case, when the designer needs to
prepare large amounts of similar elements. While tiring for human, appropriately defined
algorithms can easily generate such content, achieving required visual complexity without
losing the diversity. It is in such applications, that procedural content generation shines
the most, speeding up the modelling process, or creating complete elements.

Procedural content generation is not a new area of research. There are quite a few
algorithms and approaches addressing this problem. Different solutions can vary in
complexity, focusing on single elements, such as plants [36], rivers [26] or roads [19];
generating specific terrain fragments [15, 20, 28], cities [22] or entire worlds [34, 42, 46].
Another division concerns type of usage, focusing either on generating complete content
according to user requirements, or on speeding up the modelling process, giving designers
another tool to use. Especially in recent years procedural algorithms gained recognition
in widely used applications, such as Blender Geometry Nodes [9] or newly announced
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46 Generating layout for complex cave-like levels. . .

Unreal Engine 5.2 Procedural Content Generation Framework [51]. This clearly shows
the need for procedural methods in such applications.

Dungeons or caves are very common in computer games. Defining them in terms of
algorithm-related parameters can be tricky, due to the existence of multilevel structure
with overlapping elements. At the same time, such areas can be the most interesting for
players to explore. They are an integral part of numerous games, from classic dungeon
crawlers such as Legend of Grimrock [23] and Dungeon Master [13], to more recent pro-
ductions like The Elder Scrolls V: Skyrim [41], Witcher and Dragon Age series [16,54] or
Elden Ring [17]. Defining layout usually requires additional constraints and rules, which
makes them more difficult to generate accurately. At the same time, existing solutions
usually either focus on 2D maps of such areas [27, 52], or in case of 3D approaches do
not provide user with enough control. Generation often requires large amounts of data,
producing output that is not easy to modify [10,11,12,14,31,39].

Research presented in this paper focuses on developing an algorithm for procedural
generation of cave-like structures, that are both visually interesting and complex. Pre-
sented method takes into account the multilevel property of the chosen terrain type,
and can represent it accurately. User can additionally define the layout of the entire
system, using simplified sketches, ensuring that it will follow the initial design, while
the algorithm will add detail to it. Finally the method allows both for simplified visu-
alization using point-cloud, as well as further edition of generated content (either using
modelling applications such as Blender [9], or by incorporating them into game engines,
like Unity [49] or Unreal Engine [50]).

2. Related works

Procedural content generation (PCG) especially in recent years is developing quickly.
New approaches are prepared and increasing number of them takes into account specific
requirement, coming from fields such as computer games and simulations. At the same
time, there are still some drawback that can be seen in those methods. Most of exist-
ing solutions can be roughly divided into two main categories: complex generation or
methods focused on speeding up the modelling process.

Both approaches can be interesting for applications such as computer games, assum-
ing certain requirements are met. Designers would usually want to transfer their vision
into the final outcome of the algorithm. Because of that it is important to include some
way to define content properties. At the same time numerous, unintuitive parameters
can have exactly opposite effect, over-complicating the process and making it to tire-
some. Existing methods use various types of input files, as well as ways to evaluate
generated elements. Most interesting from the point of view of research performed in
this paper, are solutions that:
• use different types of maps as algorithm input,
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• focus on content meant for computer games, or
• generate cave-like and dungeon-like structures.

All of the above groups represent some properties of the presented approach. At the
same time no method was found meeting all of them from the chosen field.

For a comprehensive survey of various PCG methods used to create virtual world
elements see [44,53,56].

2.1. Generating world elements using input maps

One of the major areas, where procedural content generation shines, is creating world
elements. Producing such areas (similar in structure, but not repeatable) using algo-
rithms is more than justified. At the same time defining terrain with input maps makes
it easier for the user to make sure that the results meet his requirements.

A complex approach with multiple maps representing information about terrain de-
tails is presented in [47]. Authors use separate files to define general terrain height,
bodies of water, vegetation, roads and buildings, and later combine them to represent
full scene. The method can model interactions between different layers, i.e. creating
bridge if a road crosses over river. This approach was further developed in [43, 45, 46],
adding detail to the method and improving the generation process and procedures used
to connect different elements.

Slightly different approach, instead of using schematic maps to outline terrain, applies
them as modifiers [55]. In that case provided sketch map defines key points, such as
canyons, rivers or mountain ranges. This map is then used to generated 3D scene, using
USGS DEM information for additional details.

A series of solutions focuses on generating different virtual world fragments using
simplified inputs [2, 3, 4, 5, 6, 7]. Similarly to research presented in this paper, terrain is
divided into tiles, and – in case of underground structures – levels, while the generation
process is defined by user-set properties. The approach also takes into account various
constraints related to the computer games in general. Final results are represented as
editable, 3D models.

As can be seen in different approaches, even simple input maps can be used to
generate complicated and engaging content, with some of them using just a single map
for that purpose [1, 38]. Such input is easier for a designer to understand, than sets of
numeric parameters. High level of control with intuitive file structure and its influence
over final result are the key elements that decided the types of maps used in the approach
presented in this paper.

2.2. Procedural generation for games

When it comes to computer games, any content meant for such application needs to have
specific properties. Preparing algorithms that take various requirements into account is
another vast area of research. A comprehensive survey of PCG methods used in computer
games was presented in [25].
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As was noted in [21], there are quite a few areas, where repeatability of different
elements can be noted. Authors point out, that since repetition is not a natural occur-
rence, with real wold containing infinite numbers of unique patterns, it can often result
in player losing the immersion because of this. Repetitive elements can tire the player.
When recognized patterns can additionally be transferred to gameplay strategies, the
difficulty will also decrease, resulting in boredom. Making sure it is not the case for
newly created content is an excellent task for procedural generation algorithms.

In [8] a fitness function is used to evolve mazes that meet specified requirements.
Layouts are produced by adjusting parameters, ensuring that both ends of the maze are
always connected. Different evolution-based approach focuses on generating 3D terrain
fragments, that the user can adjust [37]. In this case, the terrain is constructed based on
selected patches, creating a seamless crossover, in theory closer to the user requirements.

Another set of examples instead of defining properties of the created world, takes
into account the story that will happen in it. In [24] authors use story, to later generate
world supporting its key elements. This solution is capable of creating complex terrains,
that are well adapted to given input. While the maps are two-dimensional, they could be
used as a base for further work in 3D space. In [32] authors incorporate user-defined key
points, and relationships between them. This allows the creation of a map with strate-
gically placed towns and cities. Content created in such a way aligns with specifically
set constraints, consistent with the game story.

In case of computer games, level of control is equally important as interesting results.
In [30] the user can choose a set of actions, that will later be represented in the resulting
map. Used constraints are all gameplay-related and need to be specified by the designers.
The operation of the algorithm was presented on the example of Dwarf Quest game, and
resulted in complicated layouts.

One interesting method describes procedural level generation using snappable mesh-
es [40]. Authors use set of predefined assets with established connection points, a set
of constraints describing how they can be connected and general way the level will be
constructed. Different level types can be created and implementation in the Unity game
engine was also prepared. Although the main focus of the algorithm is to “avoid size and
layout limitations”, it is heavily dependent on the quality of the prepared assets. The
map generated can contain multiple levels, but this again depends from the structure of
initial assets.

2.3. Creating cave and dungeon structures

When it comes to procedural generation of underground structures, a series of additional
constraints need to be considered. The layout tends to be more complex than in case of
the surface areas. Additionally such structures in real world tend to have multiple levels
with overlapping areas, that cannot be represented by a simple height map.
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One of many approaches to cave generation in particular considers the problem of
creating natural-looking structures, with main focus put on the karst caves [18]. The
method is implemented in Unity, and prepares both the layout of the cave system, along
with individual shape of passages, textures and cave features (such as speleothems).
The generation is heavily based on the natural process of cave formation, although it
is simplified to expedite the computation. Unfortunately it does not provide any way
to define or adjust the layout of the cave system. It also doesn’t take into account any
computer game requirements apart from generation time. At the same time it is noted,
that current version of the method is not adjusted to such application.

Another intersecting example uses genetic algorithms to evolve dungeons according
to user specifications [29]. Authors use two maps for this process. High-level sketch
of the dungeon is used to define overall connectivity of different fragments and the
content of those which are passable. Second map is a low-level, high resolution repre-
sentation of individually generated segments. In the second evolution step individual
segments are generated. Authors take into account many game-specific requirements.
Generated shapes can be complex and visually interesting. The resulting map is mostly
two-dimensional though, without any vertical transitions.

Algorithm presented in [31] focuses on generating 3D caves for application in com-
puter games. Method consists of two main steps. First one uses L-system to define the
structural points – the general layout of the created level. Tunnels and caves are gen-
erated after that, by wrapping a meta-ball along paths defined in the first step. While
initially voxel representation is used, final terrain is obtained by converting resulting
scene to mesh with assigned textures and shading. The method can create complex,
multilevel structures with various features. Unfortunately, user has very little control
over resulting layout, making it difficult to apply in computer games where specific
terrain properties are required.

Overall, while there are quite a few interesting approaches breaching the subjects
presented in this paper, none of them meets all of the defined requirements. Prepared
algorithm builds on those drawbacks, using input maps to ensure user control and al-
lowing definition of multilevel structures with precise layout. Generation process can be
influenced during various stages, with final results stored in an easily editable manner.

3. Input maps

One of the more important aspects of procedural generation for computer games, is the
definition of initial input files. Using only generation parameters poses some problems.
While such approach can be sufficient to simple applications, computer designers usually
will require more significant way to define final content. Another problem is that param-
eters in general tend to be harder to understand in terms of their influence over the final
object. At the same time, input which is to specific will reduce procedural generation

Machine GRAPHICS & VISION 32(2):45–65, 2023. DOI: 10.22630/MGV.2023.32.2.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.2.3


50 Generating layout for complex cave-like levels. . .

to the slightly faster manual modelling (as is the case with SpeedTree application [48]).
While using such tools tends to speed up the level creation it also doesn’t work well
with large amounts of repeatable elements. The need to create large quantities of sim-
ilar content often results in areas that are visually similar to each other. Procedural
content generation can shine especially in such areas, assuming it can at the same time
sufficiently include input from the human designer.

To achieve high level of control without reducing the generation process to tedious,
manual modelling, set of schematic input maps is used. In presented approach user needs
to prepare total of two maps, to represent the overall structure of underground system:
placement map, and system layout map.

3.1. Placement map

First used map defines placement of individual tiles inside each level vertically. Standard
approach for the height maps is used, with values represented in grey-scale in range (0,
255). The main difference lies in how those values are applied. In that case each pixel
represents single region in final terrain (tile). Height value represents placement of tile
in single level. Actual height values for tiles are scaled according to each level spread
(with single step value resulting from dividing overall level height by 256). Each value
in the placement map corresponds directly to basic height of the tile, used for further
operations. Since placement map does not include tile size, once defined it can be reused
for systems with the same structure, but different sizes of the individual elements, making
it easy to experiment with various levels of complexity for the final system. Example
visualization of tile spread with corresponding height map is presented in Figure 1.

3.2. System layout map

Second map represents general system layout. Since the designer might want to define
key features (i.e. large room in chosen location, or some crossings that must occur),
this map is used to represent such elements. There are few key aspects that need to be
represented:
• definition of the general layout for the underground system,
• indication of existing connections between tiles,
• exclusion of tile connections when necessary,
• indication of passages leading to lower levels.

In [5, 6] similar approach was used, with one map defining tile placement, and two
additional ones denoting connections and type of terrain in each region. While specific,
such definition is not intuitive enough, especially in terms of defining connections.

To avoid such problems, in the presented approach all key elements are represented
by using different coloured annotations on single image. User can sketch a simple map,
where white colour represents the general system layout, that will be later used during
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Fig. 1. Placement map used for deciding initial tile location (top), with corresponding point-cloud
visualization representing a region spread in 3D space (bottom). The placement map is prepared
for 3-level dungeon, where each level contains 10×10 separate tiles, with tile size equal to 51.
The tiles were marked in grayscale, to represent the overall system structure, with lighter values
representing higher regions.

generation. At the tile edges, connections to lower levels can be specified using green
colour, and passage exclusions can be defined with blue. Tile connections are obtained
automatically from general system shape (transitions for each region are named according
to the tile they lead to: either Top, Bottom, Right or Left). There are four cases that
need to be considered:
•Tile edge has green mark, indicating connection to lower level. The connection will

be saved with ‘L_’ prefix and will be used in level connection stage during generation
process.
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•Tile edge has blue mark, indicating excluded connection. This direction will be saved
with ‘E_’ prefix and even if the system shape will reach the edge of the tile, it will
not be considered as connection in future operations.

•Tile edge has no marks and system sketch (white) reaches edge of the tile. The
connection will be saved in basic form (Top, Bottom, Right or Left), and will be
considered during generation process.

•Tile edge has no marks, and system sketch does not reach edge of the tile. The
connection will be saved as ‘None’, and will not be considered during generation
process.

Example system map is presented in Figure 2.
Additional problem with underground systems concerns overall space representation.

For the created structure to be interesting in terms of exploration it should contain mul-
tilevel and complex structures. Standard 2D files are not able to directly represent such
areas. To address that problem, the space in generated caves is divided into vertically
aligned levels, with structures that are not overlapping with each other. Each level has
size and spread. The size of level defines number of tiles along each side. Spread decides
single level height and is a base for division used while placing individual regions. Vertical
transitions can be realised by connecting tiles between different levels, allowing creation
of more complex structures. All input maps contain combined information for all levels
in created system, with highest level data placed on the left side, and succeeding, lower
levels placed next to it (see Figures 1 and 2).

4. Layout generation

After user prepares the input files, initial data is derived from them and used to generate
the underground system. The process is divided into three, separate stages: preparing
initial system layout, generating heights for cave shape in each tile, and combining data.

Fig. 2. System layout map used for shape generation. Presented sketch is prepared for 3-level dungeon,
where each level contains 10x10 separate tiles. Single tile size is set at 51x51 pixels. Red-coloured
grid marks borders between individual tiles.
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First stage generates the overall system shape in each tile, generating cave-like shapes
using cellular automata algorithm, and connecting it to user-prepared system sketch.
This map can be later extended using individual operations, either on entire system or
on individual tiles. After the initial map is prepared, heights for each pixel representing
system shape are generated using the diamond-square algorithm, to add 3D details. The
data from both stages is than combined, to fully reprsent the final system shape. Each
pixel in the original map correscponds directly to single vertex in 3D space. Results are
visualized as a point-cloud. Pseudocode outlining the entire procedure is presented in
Algorithm 1.

4.1. Initial system shapes with cellular automata

First step during the generation process concerns creating the initial system shape. Tak-
ing into account the connections between tiles, the system sketch created by the user
will be expanded using cellular automata algorithm.

Such approach was chosen for several reasons. Firstly, cellular automata can produce
realistic results, that resemble the real-world structures. In [27] this algorithm produced
visually interesting shapes. At the same time, it is hard to control the layout of the sys-
tem without some modifications. One huge drawback is the connectivity of the generated
structures. Especially in applications such as computer games, existence of areas that

Algorithm 1 Cave system layout generation from schematic input maps.
1: Input: height map, system sketch
2: for tiles in system do
3: Generate cellular automata shapes
4: Connect shapes to sketch (system sketch)
5: end for
6: System map = generated map
7: for User input action do
8: updated system map = Perform user action (System map)
9: System map = updated system map

10: end for
11: for tiles in system do
12: Check user options for height generation
13: Generate heights in tiles (System map, user options)
14: end for
15: Final system = Combine data (System map, height map, system sketch)
16: Calculate point coordinates for export (System map, height map, system sketch,

Final system)
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are not connected to the main system can be problematic. It is even more important
if additional method is used to place key objects or the player himself as it can create
a scenario, where either the player is stuck in small area, or the key elements required for
progression are unreachable. Both situations are extremely undesirable. Additionally,
designer would usually want the cave system to follow certain layout. By expanding the
sketch, instead of generating the entire structure, this requirements will be easily met,
while producing visually interesting and complex shapes.

The chosen approach uses cellular automata algorithm, to generate cave-like shapes
of various sizes across the tile. Those shapes are then attached, firstly to the initial sketch
presented by the user, and later to the overall structure created during generation. With
multiple operations used, the final system can grow without the danger of disconnected
elements being created along the way.

During this stage the initial map of the system is created. While complex and
interesting, in order to provide greater level of control over system shape, additional
operations were required. After the initial generation, user is provided with additional
methods for further edition of the cave system shape (either on single tile, or on the
system as a whole). The resulting image can also be modified in external application.

For the edition stage (apart from manually drawing over created system), few ba-
sic operations are available, so the final shape will better meet the user requirements.
Individual methods work as follows.
•Run CA – performs single run of cellular automata (CA) algorithm for the current

system in the classical form.
•Combine with sketch – removes all disconnected elements, leaving only those, that

are connected to the main system; method was added because methods “Remove CA
shapes” and “Thin system edge” can produce unattached shapes.

•Add CA shapes – generates new CA shapes and connects them to the existing system.
•Remove CA shapes – generates new CA shapes and removes them from the existing

system.
• Fill system edge – runs along the edge of existing system (edge is defined, when

a cell has at least one neighbour, that is not classified as system shape or white), and
expands the shape by drawing circle at each edge cell.

•Thin system edge – runs along the edge of existing system and thins it by changing
the cell values to wall (black).

Results for single run of each method are presented in Figure 3.
Shape generation using cellular automata are the longest part of the presented ap-

proach. Because of that, all of the operations can be done either on all the tiles in the
system or on individual regions. This will also address the situation, when user likes
the general look of the structure, but wants to improve its individual fragments, without
regenerating everything. Example of full system shape obtained during this stage of
generation is presented in Figure 4.
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a b c d

e f g h
Fig. 3. Results of individual operations on single tile. (a) First two images show original system sketch,

(b) additionally outlined in red and initially generated shape. The following images present
results of each operation on (b); respectively: (c) Run CA, (d) Add CA shapes, (e) Remove
CA shapes), (f) Fill system edge and (g) Thin system edge. Final image (h) shows result of
“Combine with sketch operation”, performed on the shape presented in (g).

Fig. 4. Initial system shape generated from input maps presented in Figures 1 (top) and 2. Single tile
size is set at 51×51 pixels.

4.2. Diamond-square height generation

After the initial generation, each tile contains flat representation of the system. Next
step involves generation of height map, to include in that shape. Initial placement map
will spread the tiles vertically, while this step will add required details to each area. The
diamond-square algorithm is used in that aspect. This method was chosen, since the
general direction of the height map can be steered, by changing the initial values placed
in the corners.
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a b c d

Fig. 5. Height maps generated using the diamond-square algorithm with different corner settings: (a) for
the entire level without tile division; for single tiles, with initial corner values: (b) generated
randomly, (c) calculated from the initial tile placement for three tiles adjacent to each corner,
and (d) obtained from the two tiles adjacent to the corner for the edges with connections.

Since depending from the final application, different properties of the terrain might
be necessary, few variations of the height map generation algorithm are considered:
1. for the entire level, for each of the defined levels;
2. separately for each tile;
3. for each tile, with initial values for the corners calculated from the placement of the

neighbouring tiles;
4. for each tile, with initial values for the corners calculated from placement of neigh-

bouring tiles, along connected edges.
For the first two cases the initial heights of the corners are generated randomly, the

only difference being the map size. Diamond-square method requires the size of image
equal to 2𝑛 + 1. Firstly the appropriate size is obtained, by finding smallest possible
value, that will allow creation of either single tile, or entire level. The corner values
are then randomly generated and the algorithm proceeds, with final map selected from
subset of the generated one.

In the third case, initial values are calculated by averaging height of neighbouring tiles
connected to each corner. The method takes initial tile heights obtained from placement
map, and average is calculated according to the number of elements in the final set. For
the corners, that have no neighbours, random height value will be taken.

Final method takes into account connections between tiles. In that case, the method
first checks if the connection exists along each of the two edges connected to the current
corner. Only if such connection exists, the neighbouring tile height is added to the
average. This method was used to better reflect the initial structure of the cave system
obtained from the input maps. Example height maps generated for each version of the
diamond-square algorithm are presented in Figure 5.

4.3. Point-cloud visualization

Final step of the generation process is the visualization in 3D space, using Python Point
Processing Toolkit library (pptk) [35].
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During first step of this procedure, heights obtained from the diamond-square algo-
rithm are used to update placement of each point according to those values. Single point
in the final representation corresponds directly to individual pixels in tiles. Point Pro-
cessing Toolkit requires a list containing 3D coordinates, so firstly the algorithm makes
sure, that the value from height map is transferred to tile points accordingly. With this
initial operation done, the algorithm then focuses on connecting the tiles and preparing
final list of points for visualization.

Since the tiles are initially placed in 3D space using the data from placement map,
transferring the position from the generated height map would result in gaps between
system fragments. Therefore, before visualization, the point height values along the
edges are updated in each tile to correct that problem. At the same time values are
transferred to the format required by the used library. The points at the edges of the
tile are first tilted and then connected vertically, making sure that each transition will
be included into final system. Since number of connections to the lower levels usually is
much lower, than the total number of connections, those transitions are extracted into
separate list and iterated through after the initial process is finished. The outline of the
entire operation is presented in Algorithm 2.

Last step takes all the final heights obtained so far and visualizes them. Firstly, all
points that are classified as wall (black value on the images) are excluded. Resulting
data structure will contain all points organized in a list, including final placement of each
point in 3D coordinates. Points are then visualized in pptk tool, using ‘gray’ colour map
– as a result higher points have whiter values in the gray-scale range, better showing the
structure of the entire system.

Depending from the generation type chosen for the diamond-square algorithm, the
effects of the final visualization will vary, since the heights obtained from that algorithm
are directly transferred to the final point set. Overall height is scaled to the appropriate
range, obtained from level spread.

Algorithm 2 Point coordinates preparation for the visualization process
1: for tiles in system do
2: Check tile connections
3: for connections in tile do
4: Tilt tile along connected edge.
5: Connect tile to the neighbour
6: end for
7: end for
8: for connection in level connections do
9: Connect tile to the neighbour in lower level.

10: end for
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5. Results and discussion

In order to evaluate algorithms presented in this paper, method implementation was
prepared using Python programming language. All tests were performed on a personal
computer with Intel® CoreTM i7-9750H CPU 2.60GHz, with Nvidia GeForce RTX 2070
graphics card and 32GB of RAM.

First part of evaluation was mainly visual in nature, comparing generated shapes
to natural caves, and evaluating potential game requirements in that aspect. Cave
structures in real world usually will contain spaces with characteristic shapes, big enough
for a person to enter. Layout can be quite complicated, often with multi-layer structure
and differently shaped passages of various length, height and general structure. It is
caused by characteristics of the formation process, where acidic water first dissolves the
rock, to wash it out later on [33]. Depending on the types of rocks and their strengths
in different places, large structures can be placed next to the tight passages with various
formations. All of those elements are important from gameplay point of view, providing
additional challenge for the player. Initial structure containing such elements can be
achieved with the system sketch. Larger areas can be easily defined by the designer, as
well as any type of desirable layout. At the same time, while the generated shapes follow
the sketch, they are not repetitive, and provide interesting areas to traverse, similar in
their structure to the natural caves (see Figure 2, and the resulting map in Figure 4).

Another set of parameters concerned the cave-like structures presented in various
computer games. In general few key features of used cave systems can be defined:
• system shape should be controllable;

• the system must contain only connected areas;

• system should contain side-spaces where potential enemies or in-game objects can be
hidden;

• system should contain narrow passages, that can be blocked by enemies;

• system layout should be complex enough, that it poses challenge for the player, but
at the same time is possible to represent on 2D map.

Underground structures generated by the presented method have all of the above fea-
tures. Thanks to the used input maps, even very complex layouts can be represented,
ensuring that the designers idea will transfer to the resulting structure. At the same
time it can be edited, both during the generation, as well as after it, in other applica-
tions. Algorithms incorporated in the process can create natural-looking systems, with
numerous niches and narrow passages placed along user-defined sketch. It is also en-
sured, that any areas in the system will be connected to the main passage, so there is
no problem with inaccessible spaces. Examples of multiple maps obtained from single
sketch are presented in Figure 6. As can be seen, depending from initial user outline,
resulting system can contain complex structures with various features, while retaining
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Fig. 6. Examples of used maps (top row) and two variations of resulting cave systems (remaining rows).
The map consisted of single level 5×5 tiles, with tile size set at 51 pixels. The generation of each
variation, including additional operations (like thinning/filling system, adding CA to tiles, etc.)
took under one minute.

key design elements. At the same time, different variations of the same system can be
easily produced.

Remaining tests concerned the overall method performance. Since presented ap-
proach is mainly focused on speeding up the designers workflow it needs to compute
relatively fast. While some waiting time is acceptable, it should also be short enough
to provide user with mostly real-time interaction. If the designer needs to wait long
hours for the result, only to decide that it is not satisfactory, such approach will not
be sufficient. Figure 7 presents generation times for consecutive steps of used method,
under various conditions.
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a b
Fig. 7. Generation times obtained for prepared methods. (a) Key steps of prepared algorithm are

evaluated for increasing tile size, and (b) number of tiles in level. Each result was averaged from
data obtained during 100 iterations.

In general, increasing tile size has greater impact on the generation time than higher
number of tiles. This is mostly due to used multiprocessing method, where each region
is generated separately. It can be seen, that for larger tiles, the main factor during
generation was the cellular automata algorithm, used to obtain system shape. This
changes with larger number of tiles, where CA algorithm and visualization have closer
values. Since the visualization part can be omitted, i.e. when creating data for other
applications, this might be a better solution in those cases.

Final tests checked the influence the type of height-map in the diamond-square al-
gorithm has on generation time. This test was done for single level, 5×5 tiles, with
tile size set at 91 pixels. Results for the tile based methods were very similar, reaching
1.01, 1.01, and 0.97 s, for height generation methods 2, 3 and 4, respectively (see Section
4.2). Since in all cases only the corner values are changed, it is only natural, that the
differences are minimal. The only real influence lies with the method that generates
single height-map for the entire level (method 1), and this is again, due to the used
multiprocessing method, and larger size of single item in this case.

Overall, obtained times are more than satisfactory. The method works close to real
time, and even larger levels can be generated relatively quickly, depending from their
structure (i.e. single level, 15×15 tiles with size equal to 31 takes less than 40 seconds to
generate and visualize). While not fully real-time, it still provides user with possibility
to obtain different variations for the chosen layout at reasonable intervals. At the same
time, the generation is fast enough, that the system can be edited and improved close to
real time – especially when user wants to change few tiles, instead of the entire system.
Example visualization of fully generated, three-level cave system, with a close-up of one
of its fragments is presented in Figure 8.

While presented algorithm in its current form has large potential, there are still few
areas for improvements, that can be addressed in future work. Firstly, visualization in
applications such as Blender, Unity or Unreal Engine might bring additional insight in
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a

b
Fig. 8. Example point-cloud visualization of the system (a) after the full generation process, (b) with

close-up of system fragment. The system was generated from input maps from Figs. 1 and 2.
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terms of general requirements for used methods. 3D modelling environments and game
engines have different specificity, and might require additional changes to the algorithm
stages. Creating a method for more interactive visualization might also be interesting,
i.e. in the Unreal Engine. Another potential area concerns time improvement for larger
tiles. While even very complex systems can be represented with smaller elements, some
user might still want to use larger areas. Finally, further edition of point cloud generated
by the method would be required. Creating mesh, or using prefabs to build a game level
based on generated points is an interesting, and most logical next step in that aspect.

Overall, the presented approach is very promising, with various possibilities for de-
velopment. It can be adapted to different games, and speeds up the design process. At
the same time, with minimal additions it can generate full terrain for a simple game.

6. Conclusion

In this paper a procedural layout generation algorithm for multi-level, complex, cave-like
systems was presented. Described method uses two schematic maps, one for placing tiles
inside each level, and one for defining general layout and system transitions. Results can
be represented and visualized in 3D space.

Since the main method application is focused on computer games, different properties
were taken into account. The designer can not only define the layout of the entire system,
but also correct obtained results at different stages of the generation. The method works
at an interactive rate, producing complex layouts in reasonable time (i.e. generating and
visualizing system with single level 15×15 tiles with size equal to 31×31 takes 39.89 s).
With all those elements taken into account, it can be used either for terrain generation
in simple game, or during design process to quickly visualize different layouts. Use of
schematic maps not only provides designer with a method to quickly and intuitively
define desired results, but also allows fast creation of variations that share the same
transitions. Since the results are presented as a point-cloud, it can be further edited and
modified, either by transferring those points into 3D modelling environment, or creating
levels using other methods, i.e., with predefined assets.
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