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Abstract Data augmentation is a popular approach to overcome the insufficiency of training data
for medical imaging. Classical augmentation is based on modification (rotations, shears, brightness
changes, etc.) of the images from the original dataset. Another possible approach is the usage of
Generative Adversarial Networks (GAN). This work is a continuation of the previous research where
we trained StyleGAN2-ADA by Nvidia on the limited COVID-19 chest X-ray image dataset. In this
paper, we study the dependence of the GAN-based augmentation performance on dataset size with a
focus on small samples. Two datasets are considered, one with 1000 images per class (4000 images in
total) and the second with 500 images per class (2000 images in total). We train StyleGAN2-ADA
with both sets and then, after validating the quality of generated images, we use trained GANs as
one of the augmentations approaches in multi-class classification problems. We compare the quality
of the GAN-based augmentation approach to two different approaches (classical augmentation and
no augmentation at all) by employing transfer learning-based classification of COVID-19 chest X-ray
images. The results are quantified using different classification quality metrics and compared to the
results from the previous article and literature. The GAN-based augmentation approach is found to be
comparable with classical augmentation in the case of medium and large datasets but underperforms in
the case of smaller datasets. The correlation between the size of the original dataset and the quality of
classification is visible independently from the augmentation approach.

Keywords: computer vision, deep learning, image classification, generative adversarial networks,
medical imaging.

1. Introduction

Computer vision techniques are used in different medical applications for various pur-
poses. They accelerate decision-making while diagnosing patients and support medical
personnel on a daily basis. As available algorithms and solutions advance, the problem
of medical data accessibility is becoming a bottleneck for new researchers and break-
throughs [25]. Almost all modern algorithms are data-driven and require a lot of data
samples to perform well [41]. However, the process of gathering medical data is not
easy and often blocked by the high costs of procedures required to obtain the data, pa-
tients’ personal data access limitations (as GDPR in the European Union or CCPA in
the United States of America), rare diseases for which there is just not much data at all.

To overcome that problem, researchers use data augmentation techniques. The main
idea is to train models on several modified copies of original data. This reduces overfit-
ting and allows to achieve better training results with less data [36]. In the graphical
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data domain, the classical augmentation pipeline includes transformations such as rotat-
ing, scaling, changing the brightness of the image, etc. With the rapid development of
Generative Adversarial Networks (GAN) [12] it is possible to generate images similar to
ones from the given dataset so it is possible to apply GANs as an augmentation pipeline.

In our original experiment, we showed, on a dataset that contains 2000 images per
class, that the GAN-based augmentation approach is comparable to but not outperform-
ing classical augmentation [10]. In this paper, we want to move forward and verify if the
same is true for even smaller datasets.

The manuscript is organized as follows: in this Section the research problem is de-
scribed, followed by a literature review in the Related works section (Sect. 2). The section
on the Methods (Sect. 3) describes the Motivation and methodology (Sect. 3.1) and the
Dataset (Sect. 3.2) including its preprocessing. The GAN-based augmentation as well
as the Classical augmentation are both described in Sections 3.3 and 3.4, respectively,
followed by Sect. 3.5 on Image comparison metrics used to assess their quality. This
section ends with a description of the approach used for the Classification evaluation for
the images, in Section 3.6. In Section 4 on the Results the dependence of the classifier
output on the sample size is described. The paper ends with a Conclusion in Section 5.

Our main contributions include: 1) a study of the multi-class classification perfor-
mance dependence on the dataset size, from small to moderate samples, of X-ray chest
scans; 2) a study of the GAN-based augmentation performance for small datasets using
a StyleGAN2-ADA [19] architecture, including Adaptive Discrimination Augmentation,
designed to improve GAN training on limited datasets; 3) validation of the StyleGAN2-
ADA multi-class training mode to obtain a single generative model for multiple classes;
4) comparison of the GAN-based augmentation to classical augmentation techniques.

This paper presents improved and updated materials originally presented at the 9th
Conference on Symbiosis of Technology and IT (SIT) in Kiry, June 2023. These materials
have not been previously published.

2. Related works

While chest radiography and computed tomography (CT) scans are not recommended as
primary diagnostic tools, they are reported to be highly sensitive in detecting COVID-
19 [2]. This led to numerous studies [13] on the applicability of X-ray chest scans in
COVID-19 diagnosing. The first to our knowledge ML-based lung imaging classifica-
tion methods for COVID-19 were works by Xu et al. [42] and by Gozes et al. [14].
Both focus on binary classification of COVID-19 and healthy images with many works
that followed [9, 16, 28, 33, 34]. While the binary classification problem for COVID-19
X-ray images is already extensively studied, there were only several attempts to dis-
tinguish COVID-19 from other diseases affecting the respiratory system. In particular,
the four-class problem is underrepresented in the literature [13]. The lung patterns seen
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in COVID-19 are unique but bear a resemblance to those found in pneumonia from
other causes [32]. This is concerning, as challenges in distinguishing viral pneumonia
from bacterial and fungal pathogen-induced cases have been reported [22]. For instance,
A. I. Khan et al. [23] found that a limited dataset leads to problems in the classification
of patients with COVID-19 when considering also patients with viral pneumonia and
lung opacity. To our knowledge, the CoroNet [23] was the first proposed model that
includes four classes with a recent result by E. Khan et al. [24] that achieved 96.13%
accuracy utilising a modified EfficientNet-B1 model.

Data augmentation with GANs is not a new idea – multiple papers [36, 37, 43] are
showing that this approach is worth deeper investigation, yet the majority of them con-
sider problems with large datasets available [18]. For instance, Bowles et al. [5] study
the performance of classical and GAN-based augmentation on data samples ranging
from 8 K to 80 K images. Also, GAN-based augmentation for chest X-ray medical imag-
ing (with or without COVID-19 included) has been studied in the literature mostly on
moderate-sized datasets. For example, in the proposed IAGAN architecture [26], the
models (IAGAN and DCGAN) were trained on two datasets: the “chest X-ray” [21]
dataset with two categories – Normal (1575 images) and Pneumonia (4265 images), and
the “covid-chestxray” [8] dataset with 3 classes – Normal (8066 images), Pneumonia
(5999 images) and COVID-19 (589 images). That results in generative networks trained
on more than 4000 images in both cases. In addition, the study focused on synthetic
image generation for only two classes while disregarding the possibility of augmentation
for the COVID-19 data sample. The very interesting RANDGAN model, proposed by
Motamed et al. [27], was also trained on large samples with only two classes — 7493
Normal and 4986 Pneumonia images. In another study [35], a DCGAN architecture tai-
lored for chest X-rays image generation was trained with a dataset of 2000 chest X-rays
per 5 classes – Normal, Cardiomegaly, Pleural Effusions, Pulmonary Edema and Pneu-
mothorax. A more recent study by Bali and Mahara used a similar methodology [3] but
with DCGAN architecture and a bigger training dataset that contained only two classes
– Normal (1314 images) and Pneumonia (3875 images). Finally, Albahli proposed [1] a
different GAN architecture – a combination of variational auto-encoder and GAN which
was trained on 16 classes with 5000 images per class.

There are only a few studies that consider GAN applications for very small datasets.
A very interesting research was performed on a very small dataset of liver lesion im-
ages [11]. The dataset contained 3 classes – cysts (53 images), metastases (64 images)
and hemangiomas (65 images). Two approaches were tried – DCGAN trained individu-
ally per class and Auxiliary Classifier GAN (ACGAN) [29] as a single network that is able
to generate images of different classes. The dedicated DCGAN per class approach per-
formed better and resulted in ≈7% improvement over the classic augmentation approach
while multi-class ACGAN was not able to improve the classification over DCGANs. In
the study, both generative networks were trained on classically augmented data samples
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and then used as an additional source of synthetic images to further increase of the train-
ing dataset. It is worthwhile to investigate whether models with built-in augmentation
like StyleGAN2-ADA will behave similarly.

Regretfully, a number of studies on GAN-based augmentation available in the lit-
erature [27, 35, 40] omit a comparison with classical augmentation approach. With the
training of a GAN being both time and computationally expensive, this limits the proper
evaluation of such results. The expected improvement over the simpler method is key
information for an informed selection of the most effective augmentation approach. It is
also apparent that only several of studies on the topic focus on augmentation for clas-
sification problems with more than three classes. Based on our review of the available
literature, we find that there is a need for a dedicated study of the multi-class GAN-
based augmentation performance in comparison with classical methods, in particular for
small and very small datasets. In addition to our knowledge GAN models with built-in
augmentation were not evaluated for applicability for small medical data samples.

3. Methods
3.1. Motivation and methodology

In this paper, we test the hypothesis that data augmentation plays a more crucial role
in the deep learning process with small datasets than it does with large ones. Also, we
try to verify that, in the case of medical imaging, data augmentation based on GAN-
generated images could result in bigger data diversity and thus improve deep learning
results in comparison to the classical augmentation approach.

We compare 3 data-augmentation approaches with two datasets – the first dataset
contains 1000 images per 4 classes and the second contains 500 images per 4 classes
respectively. Further in the paper we call the dataset with 1000 images per class a small
dataset. The dataset with 500 images per class is called micro, respectively. To create
the small dataset 1000 images of each class were randomly picked from the original
dataset after the preprocessing. The micro dataset is a subset of the small dataset and
was also created by picking 500 random images of each class. The datasets used are
described in detail in the following section.

Data augmentation approaches being compared were: no augmentation at all, classi-
cal augmentation, and GAN-based augmentation. To estimate which approach is better
we trained a convolutional neural network on data augmented by each approach and
evaluate based on different classification quality metrics. The scheme of operations per-
formed is shown in Fig. 1.

3.2. Dataset

The dataset used in the research is the “COVID-19 Radiography Database” developed by
a team of researchers from Qatar University, Doha, Qatar, and the University of Dhaka,
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“Small” dataset
(4000 images)

Test data
(5446 images)

“Micro” dataset
(2000 images)

StyleGAN2-Ada

Validation data
(5446 images)

InceptionV3
(5 training runs, best one 

selected based on best 
validation dataset 

accuracy)

Classical 
augmentation

Micro dataset with GAN augmentation
(500 originals + 1000 generated per class)

Small dataset with GAN augmentation
(1000 originals + 1000 generated per class)

Micro datase with classical augmentation
(500 originals + 1000 augmented per class)

Small dataset with classical augmentation
(1000 originals + 1000 augmented per class)

Fig. 1. Visualization of experiment steps and data flow.

Bangladesh, along with their cooperators from Pakistan and Malaysia in collaboration
with medical doctors. It is worth noticing that the dataset is being updated and the
latest version of it contains way more images than it was when the original experiment
was done. As this paper’s goal is an additional investigation of the GAN augmentation
technique, we continue to use the same version of the dataset that we used in the original
experiment.

The dataset used in this paper contains 3616 images of COVID-19-positive cases,
6012 images of lung opacity (non-COVID lung infection), 1345 images of viral pneu-
monia, and 10192 images of healthy lungs. Each image is represented in PNG format
withdimensions 256×256. For each image, the dataset authors provided a corresponding
lung segmentation mask obtained using a dedicated U-Net model [30]. The examples of
the images and segmentations masks are displayed in Fig. 2 and Fig. 3. The dataset was
split into 3 subsets: train, validation, and test. The small train subset contains 1000
(500 in the case of the micro dataset) images of each class and is used as a source for
classical augmentation, training of the GAN, and for no augmentation approach. The
rest of the images were split in half to form validation and test subsets. Also, we use the
same test and validation subsets for both experiments with small and micro datasets.
The validation subset is used as validation data in target classification CNN training.
The test subset was used only as the final trained CNN benchmark which simulates new
data from new patients to show real world usage of the trained classification network.

We have preprocessed all images from the original dataset with the following 3-step
procedure:
1. All images were cropped to the lung region according to the provided masks.
2. Cropped images were manually reviewed and all images containing any text or graph-

ical annotations/marks were removed.
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3. Remaining images were resized into dimensions 128×128 and converted to 1-channel
(grayscale) to reduce the amount of data processed while training. The conversion
was done by leaving only the first channel of the original images.

After all the described steps, the final version of the dataset used in the experiment
contained 3242 images of COVID-19 cases, 2982 images of lung opacity (non-COVID
lung infection), 1264 images of viral pneumonia, and 7404 images of healthy lungs. As
mentioned earlier 2 experimental cases have been considered in the research. The first
experiment was conducted with the small dataset (1000 images per class in the training
subset) and the second one with the micro dataset (500 images per class in the training
subset). As the original dataset contained 4 classes, there are 4000 images in total in
the train subset of the small dataset and 2000 images in the train subset of the micro
dataset. Test and validation subsets remained the same for both cases and were prepared
during small dataset preparation (see Tab. 1). This made it possible to compare the final
results for both experiments as the data those results were calculated on remained the
same.

a b

c e
Fig. 2. Examples of unprocessed images from the original dataset. (a) COVID-19; (b) Normal; (c) Lung

opacity; (e) Viral pneumonia.
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a b

c e
Fig. 3. Example binary masks from the original dataset for the images shown in Fig. 2.

3.3. GAN-based augmentation

In this research we continued to use StyleGAN2 with adaptive discriminator augmenta-
tion (ADA) mechanism by NVIDIA [19] as one of its features is the ability to be trained
on relatively small datasets and support of class-conditional image generation. For each
of the experiments, StyleGAN2-ADA was trained on the corresponding train subset.
The training process was monitored, using the validation dataset, to prevent network
overfitting. After the training, the epoch with the best Kernel Inception Distance (KID)
score was picked as a source of future data generation. The target for rt ADA heuristic
is set to 0.6, both generator and discriminator learning rates were set to 0.0025 while

Tab. 1. Number of images per class in each subset for both small and micro datasets.

Subset COVID-19 Healthy Lung opacity Viral pneumonia
Train subset 1000 1000 1000 1000 1000
Train subset 500 500 500 500 500
Validation subset 1121 3202 991 132
Test subset 1121 3202 991 132
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a b c
Fig. 4. Kernel Inception Distance values with correlated example image generated by GAN trained on

the small dataset. (a) KID ≈ 19.46; (c) KID ≈ 13.29; (b) KID ≈ 12.26.

a b c
Fig. 5. Kernel Inception Distance values with correlated example image generated by GAN trained on

the micro dataset. (a) KID ≈ 18.82; (b) KID ≈ 13.30; (c) KID ≈ 12.89.

the batch size was set to 32. Following StyleGAN2 authors [20], we use non-saturating
logistic loss with R1 regularization with the regularization term weight γ set to 1.024.
Multiclass training was enabled so one network was able to generate images for all tar-
get classes after the training was done. All other parameters are set to default values
provided by the NVIDIA implementation [19]. The network was trained with a single
NVIDIA Tesla K80 GPU and for each case, training took around 7 days.

After the training had been finished we generated 1000 artificial images per class for
both experiments, with example images presented in Fig. 4 and 5. The GAN-augmented
training dataset for CNN contained 2000 images per class (8000 images in total) for the
small dataset and 1500 images per class (6000 in total) for the micro dataset.

3.4. Classical augmentation

Similarly to the GAN-based augmentation described earlier, we have generated 1000
additional images (Fig. 6) by applying classical augmentation with parameters as follows:
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• rotation – randomly rotate the image by an angle of up to 5 degrees clockwise or
counterclockwise;

• shift – randomly shift the image along cardinal axes within the range of 5% of the
specific image size, the empty field is filled with the trace of the last shifted pixels;

• stretch – randomly stretch the image between opposite vertices by up to 5 %;
• zoom – randomly zoom in pictures up to 15% of the specific value of the image size;
• brightness change – randomly brighten or darken the image by up to 40%.

The values of the parameters remain the same as in the previous work and were
picked to maximize the accuracy score on the validation subset [10].

3.5. Image comparison metrics

In the previous work, we have used the Fréchet Inception Distance (FID) [15] metric
to select the best-performing state of the StyleGAN2-ADA network [10] throughout the
training process as it is commonly used to evaluate the quality of images generated by
GANs. We calculated a mean FID value, for each training epoch, across all classes
between the train subset and generated images. In this research, we added the Kernel
Inception Distance (KID) [4] metric as FID is biased for smaller datasets [6]. KID is
very similar to FID in that it measures the difference between two sets of samples by
calculating the square of the maximum mean discrepancy between vectors of vision-
relevant features as extracted by the Inception-v3 [38] classifier network. KID compared
to FID has several advantages and performs better with smaller sets and more consis-
tently matches human perception. Similarly to FID, a smaller value of KID means that
compared images are more similar to each other, and comparing the same set of images
will result in a value equal to 0. Looking at the graphs of both KID and FID values
per epoch (Figures 7–10) it is visible that the overall training trend is the same – the
value drops with each epoch of training until around epoch 250 and then it starts to
grow slowly. But at the same time, KID values change more drastically per each epoch

Fig. 6. Examples of images with applied classical augmentation pipeline.
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Fig. 7. Fréchet Inception Distance graph for the small dataset (1000 images per class in the train subset)
GAN training.
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Fig. 8. Fréchet Inception Distance graph for the micro dataset (500 images per class in the train subset)
GAN training.

which may indicate, that the KID metric is more sensitive to differences between real
and generated images. In addition, as in the original paper, we used RMSE, SRE, and
SSIM metrics to verify the quality of generated images [10].

3.6. Classification evaluation

To evaluate and compare the augmentation techniques described above, we trained a
convolutional neural network using each of them. The network was trained to classify
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GAN training.

4 classes present in the original dataset. We used Inception-v3 with a transfer learning
technique as an augmentation benchmark network [38]. We used Keras default imple-
mentation with library-provided ImageNet weights [17]. The head of the network was
replaced with the following output layers for the transfer learning:
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• flatten layer;
• dense layer with 10 neurons and an Exponential Linear Unit (ELU) activation func-

tion [7];
• dense layer with 20 neurons and an ELU activation function;
• dense layer with 4 neurons and a softmax activation function.

Categorical cross-entropy was picked as the loss function and the learning rate was
set to Keras default of 0.001 [31]. We continue using RMSprop as an optimizer as it was
selected on validation accuracy in the original article [10]. The network was trained for
11 epochs with a batch size equal to 32. The total amount of epochs was reduced in
comparison with previous work as the best results were achieved in the first 11 epochs
in almost all training runs. For the clarity of the experiment, the network was trained
5 times for each experimental case and each augmentation pipeline (no augmentation,
classical augmentation, GAN-augmentation). The network frozen weights with the high-
est validation accuracy score were picked as a final version that was later evaluated on
the test subset. To examine and compare the quality of the trained network, several
model evaluation metrics were calculated: accuracy, precision, recall, F1, specificity, and
Matthew’s correlation coefficient (MCC). Metrics were calculated on the test dataset.
Values of the calculated metrics are presented in the Results section of the paper.

4. Results

After the classification metrics are calculated on the test dataset, it is visible, that any
augmentation approach is better than no augmentation at all. At the same time, GAN-
based augmentation and classical augmentation perform comparably for the dataset with
at least 1000 images per class in the training dataset, as shown in Table 2 and Fig. 11.
Classical augmentation outperforms GAN-based augmentation with datasets containing
500 images per class, as presented in Table 3 and Fig. 12. The overall networks’ results
are slightly worse independently of the augmentation approach in comparison with the
ones achieved in our previous work [10]. Finally, the classical augmentation shows itself as
the best augmentation approach while GAN-based augmentation can achieve comparable
results but requires significantly more time and hardware to be performed.

Tab. 2. Classification metrics values for the small dataset (1000 images in the train subset)

Augmentation pipeline Accuracy Precision Recall F1 Specificity MCC
No augmentation 0.85 0.845 0.769 0.805 0.931 0.74
Classical augmentation 0.87 0.861 0.815 0.837 0.934 0.78
GAN-augmentation 0.862 0.822 0.815 0.819 0.936 0.76
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Tab. 3. Classification metrics values for the micro dataset (500 images in the train subset)

Augmentation pipeline Accuracy Precision Recall F1 Specificity MCC
No augmentation 0.783 0.659 0.68 0.669 0.903 0.573
Classical augmentation 0.842 0.85 0.789 0.818 0.93 0.749
GAN-augmentation 0.81 0.83 0.685 0.751 0.9 0.665

Tab. 4. Accuracy metric value from the original article (2000 images per dataset)

Augmentation pipeline Accuracy
No augmentation 0.855
Classic augmentation 0.891
GAN-augmentation 0.871

We can take a look (Table 4) at the accuracy value obtained in our previous work
where 2000 images per class were used [10], there is a visible correlation between classi-
fication accuracy and the size of the training dataset independently from data augmen-
tation applied.

5. Conclusion

We have studied the performance of GAN-based augmentation for the classification of
lung X-ray medical images as a function of dataset size. The obtained results show that
GAN-based augmentation is comparable with classical augmentation for medium and
large datasets. Unfortunately, the time and hardware requirements make it unreasonable
to use such an approach as the main augmentation technique. In the case of small
datasets, the GAN model wasn’t able to train well enough to be a source of valuable
training data. At the same time, the fact of GAN being able to compete with classical
augmentation for larger datasets, potentially allows researchers and medical institutions
to solve the problem of medical data availability by sharing synthetically generated
images instead of real ones [39]. Therefore, the topic of GAN-based augmentation should
be investigated further.
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