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Abstract The highly infectious and mutating COVID-19, known as the novel coronavirus, poses a
substantial threat to both human health and the global economy. Detecting COVID-19 early presents
a challenge due to its resemblance to pneumonia. However, distinguishing between the two is critical
for saving lives. Chest X-rays, empowered by machine learning classifiers and ensembles, prove effective
in identifying multiclass pneumonia in the lungs, leveraging textural characteristics such as GLCM
and GLRLM. These textural features are instilled into the classifiers and ensembles within the domain
of machine learning. This article explores the multiclass categorization of X-ray images across four
categories: COVID-19-impacted, bacterial pneumonia-affected, viral pneumonia-affected, and normal
lungs. The classification employs Random Forest, Support Vector Machine, K-Nearest Neighbor, LGBM,
and XGBoost. Random Forest and LGBM achieve an impressive accuracy of 92.4% in identifying GLCM
features. The network’s performance is evaluated based on accuracy, precision, sensitivity and F1-score.

Keywords: COVID-19, chest X-ray, feature extraction, GLCM, GLRLM, Machine Learning, Random
Forest, XGB, SVM.

1. Introduction

Pneumonia, an acute respiratory infection caused by bacteria or viruses, can result from
a variety of factors and is a leading cause of mortality, particularly affecting vulnerable
populations such as the elderly and children. It can present as a mild ailment in in-
dividuals of all ages. In March 2020, the World Health Organization (WHO) declared
the emergence of the new Coronavirus 2019, widely known as COVID-19, as a global
pandemic [32]. This virus, identified as SARS-CoV-2, is linked to Severe Acute Respira-
tory Syndrome and is frequently associated with respiratory symptoms. Originating in
China, the virus rapidly spread to other nations, leading to a global pandemic that has
significantly impacted individuals worldwide, resulting in numerous fatalities. Factors
such as the recent discovery of the virus, delayed detection, limited testing capabilities,
insufficient medical expertise, and its resemblance to pneumonia-related illnesses have
collectively impeded the medical community’s ability to effectively combat the virus
until relatively recently. Pneumonia, characterized by the accumulation of air or pus
in the alveoli of the lungs, can be caused by bacterial, fungal, or viral infections, all of
which have the potential to trigger severe allergic reactions [36]. This particular instance
manifests symptoms such as coughing, respiratory distress, fatigue, fever, and profuse
sweating, which are also commonly observed in patients with COVID-19. The chest
radiographs of individuals with COVID-19 exhibit patterns reminiscent of those found
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in pneumonia cases, indicating the presence of the virus. The radiological findings of
COVID-19 on chest X-rays closely resemble those of pneumonia, as reported by imag-
ing departments. Numerous studies have utilized X-ray imaging for the diagnosis and
classification of pneumonia [23]. While comprehensive screening of Coronavirus samples
through reverse transcription polymerase chain reaction (RT-PCR) may be insufficient
in effectively curbing the global spread of the virus, chest X-rays have proven highly
useful in triaging patients infected with COVID-19. The rapid and widespread prolifer-
ation of the virus has placed a substantial burden on health and medical organizations
worldwide. Consequently, the development of technology capable of distinguishing be-
tween patients with pneumonia or normal chest X-rays and those with COVID-19 has
become imperative. This urgency arises from the inability of chest X-rays, despite thor-
ough analysis, to differentiate between pneumonia patients and individuals suspected
of having COVID-19. Researchers worldwide propose the employment of texture-based
cognitive strategies to identify COVID-19. Current research is predominantly focused
on extracting texture characteristics from chest X-ray images using methods such as
GLCM and GLRLM. The advocated strategy for early detection of potential COVID-19
cases involves categorizing X-ray images into four predefined classes: COVID-19, bac-
terial pneumonia-affected, viral pneumonia-infected, and normal. Given the severity of
the current situation, addressing this matter with utmost urgency is paramount. In this
paper, the following contributions are made:

• This paper introduces a method enabling accurate differentiation between COVID-
19 infection and pneumonia in chest X-ray images, addressing a crucial diagnostic
challenge.

• This research pioneers accuracy in disease identification by combining textural fea-
tures, specifically GLCM and GLRLM. The amalgamation enhances diagnostic pre-
cision, marking a notable advancement in medical image analysis.

• This study contributes by systematically evaluating various machine learning classi-
fiers to enhance the accuracy of COVID-19 detection. The paper evaluates system
performance using accuracy, sensitivity, and F1 score, offering a comprehensive snap-
shot of its diagnostic effectiveness.

• To discern between COVID-19, bacterial pneumonia, viral pneumonia, and healthy
individuals, we adopted a tailored approach, training each model independently. This
meticulous strategy ensures accurate identification across diverse medical conditions.

Section 2 provides a comprehensive review of the literature. Subsequently, in Section 3
the technical matters related to the methodology are presented. Namely, Section 3.1 ex-
pounds on the dataset specifics, Section 3.2presents the feature engineering approaches,
Section 3.3 discusses the machine learning methodologies, andSection 3.4 presents the
cross validation techniques. Section 4 presents the outcomes of our empirical investiga-
tions. Finally, Section 5 comprises a discourse on the findings and a conclusive statement.
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2. Literature Survey

Ardakani et al. [2] suggested a computer-aided diagnostic (CAD) technique for distin-
guishing COVID-19 pneumonia patients from non-COVID-19 pneumonia patients. To
this end, the authors employed a dataset of 612 CT images of pneumonia patients, where
306 patients were diagnosed with COVID-19 and the remaining 306 were diagnosed with
non-COVID-19, of which 376 patients were COVID-19 positive. The researchers ex-
tracted 20 imaging features from the dataset and subjected them to classification using
five different classifiers, namely, Decision Trees (DT), Naive Bayes (NB), K-nearest neigh-
bors (KNN), Support Vector Machines (SVM), and Ensembles. The authors gained the
highest level of accuracy, i.e., 91.94%, through ensemble classification. In another study,
al-Karawi et al. [5] developed an automated model for COVID-19 analysis in CT scans
utilizing CT scan images. In the dataset utilized, a total of 275 COVID-19 cases were
identified as positive, while 195 were negative. The CT images were subjected to a Fast
Fourier Transform, followed by the application of a Gabor filter for image manipulation.
By employing the SVM technique for classification, a commendable accuracy of 95.37%
was obtained. Barstugan et al. [8] incorporated 150 CT scans in their study and ex-
tracted four different patches from these scans (16×16, 32×32, 48×48, and 64×64) for
comparative purposes. SVM was utilized to classify radiomic features obtained using
FOS, GLCM, GLRLM, and GLSZM patches. The study further integrated a 10-fold
plus DWT (Discrete Wavelet Transform) feature, and the highest accuracy recorded was
99.64%. The examination carried out by Dey and colleagues [14] scrutinized 400 CT
scans of persons afflicted with COVID and 400 of non-afflicted with COVID-19, encom-
passing 200 CT scans for each cohort. A devised strategy enabled the creation of a
system capable of segmenting the COVID-19 infected regions into smaller subsections,
subsequently extracting data from each area discretely. Machine learning algorithms
offer four distinct techniques for classifying entities into groups: Random Forest, Sup-
port Vector Machine, K-Nearest Neighbors and Decision Tree. The utilization of the K
nearest neighbor algorithm in the conducted investigation resulted in an 88% accuracy
rating.

In their scrutiny, Liu and colleagues [22] meticulously scrutinized 61 CT scan im-
ages of COVID-19 and 27 CT scan images of pneumonia in general, from which they
meticulously extracted 35 statistical textural features. An array of models were metic-
ulously evaluated, including but not limited to Support Vector Machine, Linear Regres-
sion, k-Nearest Neighbors and Decision Tree. The authors compared the Ensemble of
bagged tree with the aforementioned models. The Ensemble model bagged tree clas-
sifiers attained the utmost level of accuracy, which yielded a rate of 94.16%. Ozkaya
and colleagues employed an identical dataset and partitioned it into two subsets, namely
Subset-1 with dimensions of 16×16 and Subset-2 with dimensions of 32×32. To identify
distinctive features, they employed a design of convolutional neural network architecture
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in conjunction with a support vector machine algorithm. The accuracy rate for Subset-2
was 99.28%. With assistance from previously trained deep neural networks, Kassani and
colleagues [20] have devised a methodology for extracting features. 117 images of X-ray
and 20 images of CT with abnormalities were compared with 117 X-rays and 20 CT
scans without abnormalities.

For sorting things into groups, we used XGBoost, Random Forest, Decision Tree,
LightGBM, AdaBoost and Bagging algorithm. Bagging tree classifiers are 99% accurate
when features are pulled with DenseNet121 and grouped.

CT scans were used in Shi et al.’s study; 1659 COVID-19 and 1028 bacterial pneumo-
nia were classified as negatives. Radiomic and hand-made elements were taken from the
infected areas. Linear Regression, Support Vector Machine, Random Forest and Neural
Network were compared to a classification method based on Random Forest and Light-
GBM. In terms of the handmade features, the proposed method gave the best results,
with an accuracy level of 89.4% [30].

According to Zheng et al. [39], CT scans could be detected with a 3D deep convolu-
tional neural network (DeCoVNet). 313 participants had COVID-19 while 229 did not.
They chose 540 of those to participate in their study. The model has undergone training
using a straightforward 2D UNet in an integrated manner. The criteria can be changed
to look for COVID-19. There is a best accuracy of 90.8%. The authors developed a
three-class system using 618 CT scans with 219 COVID-19, 177 normal persons, and
226 influenza A pneumonia cases. A 3D CNN (Convolutional Neural Network) method
was used to divide up the image using a transfer learning model. ResNet-18 classifica-
tion and location-attention are used to model transfer learning [37]. The precision of
their diagnostic outcomes pertaining to COVID-19, IAVP, and uninfected individuals
was registered at an impressive 87.7%. Song et al.’s study involved the classification of
88 COVID-19 patients, 100 bacterial pneumonia patients, and 87 healthy individuals
through the utilization of deep learning. Specifically the Details Relation neural model
was employed, having already undergone training [31]. The researchers achieved a com-
mendable multiclass classification accuracy rate of 94%. Meanwhile, Wang et al. [35]
employed a deep learning method, which made use of transfer learning, along with a
pre-trained GoogleNet inception model to detect COVID-19 cases. The accuracy of
their classifications for 325 COVID-19 positive patients and 740 COVID-19 negative pa-
tients was 89.5% for each. A CNN classifier trained on GoogleNet acquired an accuracy
rate of 82.14% in an experiment by Alsharman et al. [6]. The study conducted by the
researchers included a total of 463 non-COVID-19 images and 349 COVID-19 CT images
in their analysis [16].

A team of researchers developed seven Deep CNN models to classify images of pneu-
monia automatically. A sampling of models included in the table are CNN baselines,
VGG16, Xception, DenseNet201, VGG19, InceptionResNetV2, Resnet50, InceptionV3
and MobileNetV2. It was similar to the work by Zhang et al. [38]. Based on deep
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learning, they created a diagnosis system for COVID-19 based on 3D ResNet18 and
four segmentation models. As per the findings of Rajaraman et al. [29], it was deter-
mined that a total of five Convolutional Neural Network (CNN) models were employed
in the screening process for detecting the outbreak of the COVID-19 virus. The mod-
els used were InceptionV3, VGG16, Xception, NasNetmobile and DenseNet201. Each
X-ray picture belongs to one of six groups. In 99.26% of cases, the result was accu-
rate. According to Tsiknakis et al. [34], modified deep CNN models could be used for
the screening of COVID on chest X-ray images using the InceptionV3 model. Transfer
learning models that have already been trained can find COVID-19 cases automatically,
as demonstrated by Ahuja et al. [4]. Oh et al. [25] have conducted analogous research,
wherein they have proposed the utilization of a CNN based on patches using ResNet18.
To diagnose COVID-19 disease, Elasnaoui and Chawki [17] used 7 deep learning models
that had already been trained. Chowdhury et al. [13] developed eight deep CNNs to
detect COVID-19. The suggested models were tested using 3487 X-ray images with and
without image augmentation. In the present set of images, it can be observed that 423
of them depict the COVID-19 virus, while 1485 portray the typhus bacterium, and the
remaining 1579 images display normal conditions.

COVID-19 detection and classification could be improved by using a convolutional
neural network model, as suggested by Apostolopoulos et al. [7]. An evaluation of Mo-
bileNetv2 was conducted using 3905 x-ray pictures, with the results showing its excellent
performance in detecting COVID-19. Rahimzadeh and Attar [28] introduced a modified
deep Convolutional Neural Network (CNN) leveraging Xception model and ReNet to
identify COVID-19 from chest X-ray images. Their experimental findings reveal that
the combined method demonstrates an impressive average accuracy of 91.4%, precision
of 72.8%, sensitivity of 87.3%, and specificity of 94.2%. Notably, the model achieved
outstanding performance with a remarkable 99.18% accuracy, 97.36% sensitivity, and
99.42% specificity. This highlights the effectiveness of their innovative model in ac-
curately detecting COVID-19 cases. According to another study [1], the Decompose
Transfer Compose (DeTraC) Convolutional Neural Network model was modified and re-
vised. An accuracy rate of 97.35%, a sensitivity rate of 98.23%, and a specificity rate
of 96.34% were successfully attained [3]. Afshar and colleagues constructed a convolu-
tional neural network architecture founded on capsule networks to identify and diagnose
COVID-19.

Our inquiry delved into the effectiveness of COVID CAPS via the utilization of two
publicly accessible thoracic X-ray databases. Therefore, we achieved 95.8% specificity,
90% sensitivity, and 95.70% accuracy. The deep CNN technique VGG-16 was employed
by Brunese et al. [11] to automatically and quickly identify COVID-19 in chest X-ray
images. VGG-16 appears to be 97% accurate at diagnosing COVID-19 based on the
results of our study. By using deep learning-based AI, Jin et al. [19] have suggested a
method for detecting COVID-19 in CT san images. Due to the discoveries, the suggested
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Fig. 1. Workflow of the proposed system.

framework exhibits a 95.8% area under the curve (AUC), a 90.19% level of sensitivity,
and a 95.76% level of specificity.

3. Materials and methods

As illustrated in Figure 1, the following section provides an overview of the technologies
applied. The first step was to extract numerous features (GLCM, GLRLM) from the
CXT pictures using a variety of feature extraction techniques. A technique is proposed
to study how different characteristics influence COVID-19 illness categorization. Classi-
fication accuracy varies depending on the feature set. An individual or a vector group
of the retrieved characteristics is employed to assess their influence on the classification
outcomes. Feature extracts and feature vectors were prepared and then the dataset was
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Tab. 1. Dataset description.

Class Images
Bacterial pneumonia 2000
Viral pneumonia 1345
COVID-19 2250
Normal 2370
Total 7965

divided into training set and test set. In order to train the machine learning models to
categorize characteristics based on the most popular classifiers, we provided them with
training data. The performance of the model was assessed by using 10-fold CV (Cross
Validation) as a method of evaluation. Test sets with varying characteristics were eval-
uated ten times. As each step was completed, the classifier output served as the basis
for determining the performance results.

3.1. Data set

The datasets used in this work are X-ray chest [24] and Covid19 radiography [33]. In the
experiment, chest X-ray pictures were categorized into four classes: Covid19, Pneumo-
nia bacterial, Pneumonia viral, and Normal. The collection contains 7965 chest X-ray
pictures divided into four categories: Covid19 (2250 pictures), Normal (2370 pictures),
Pneumonia viral class (1345 pictures), and Pneumonia bacterial class (2000 pictures)
shown in Table 1. Sample images from the data set are shown in Fig. 2.

3.2. Feature Extraction Techniques

The study of radiological images numerical features is currently undergoing rapid ex-
pansion with the use of artificial intelligence techniques. The initial stage of this work
involved analyzing the data for features. With the utilization of texture-based features,
the process of identifying tissue sections with varying characteristics becomes simpli-
fied, as one can easily identify the connections and distinctive attributes between pixels.
Further, statistical features can be derived from the matrices generated through the
texture-based techniques after the texture feature has been extracted [15]. In order to
extract texture-based attributes, matrices such as the Grey Level Run-Length Matrix
(GLRLM) and the Grey Level Co-occurrence Matrix (GLCM) are employed.

3.2.1. GLCM
Image processing and analysis use the Gray-Level Co-occurrence Matrix (GLCM) ap-
proach to derive texture from pictures. It is possible to describe the spatial associations
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a

b
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d

Fig. 2. Samples from the CXT dataset. (a) Images depicting bacterial pneumonia affected patients;
(b) images depicting patients with COVID-19; (c) images of viral pneumonia patients; (d) im-
ages of normal patients.
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between pixels with comparable gray-level values in a picture statistically. In the pa-
per authored by Timo Ojala et al. [26], a comparative analysis is conducted on GLCM
texture measures and classification methods utilizing featured distributions. GLCM is
based on the idea that the distribution of pixel intensities, and their relation, can provide
crucial information about a picture’s texture. This is done by determining what pairs of
gray-level values will appear at various spatial displacements within the picture.

The following stages are involved in producing a GLCM:
Greyscale: transformation in order to simplify the pixel intensity analysis.
Pixel pairing: finding occurrences of gray level pairs. GLCM matrix entries represent

gray-level pairs’ frequency of occurrence.
Angular Second Moment (ASM): finding the distribution of pixel pairs over the en-

tire image.
Contrast: finding the differences or variations between pixel intensities.
Dissimilarity: finding the average difference between adjacent gray levels.
Energy: calculating the sum of squared elements in the GLCM.
Homogeneity: finding the proximity of the distribution of elements to the GLCM di-

agonal.
Maximum Probability: finding the most often occurring gray-level pair in the GLCM.
Sum of Squares: finding the GLCM’s variance.
Correlation: measuring the linear dependence between gray-level values of neighboring

pixels.

3.2.2. GLRLM
In their paper, Haralick et al. [18] introduced the GLRLM model, an acronym for Gray-
Level Run Length Matrix. In the field of image processing feature analysis, the GLRLM
is an approach which quantifies the distribution of consecutive gray-level pixels with the
same intensity of an image, or the distribution of the gray-level runs. It provides statisti-
cal information on the lengths and frequency of these runs, and having this information
can help characterize and distinguish textures in a picture much better. GLRLM is a
process that is based on the idea that the organization and distribution of runs of com-
parable gray-level values within a picture may provide key textural information about
this picture (see Fig.3). As a result of analyzing these runs, we can extract features that
characterize the texture of the picture and identify aspects of its textural quality.

These are some of the most commonly computed GLRLM features:
Short Run Emphasis (SRE): represents how many short runs are there in the pic-

ture.
Long Run Emphasis (LRE): shows how many long runs are there in the picture.
Gray-Level Non-Uniformity (GLN): represents comparability, or consistency of the

gray level values among runs.
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Fig. 3. Calculation of GLRLM (according to [27], license: CC BY 3.0).

Run Length Non-Uniformity (RLN): measures the variation or consistency in run
lengths.

Run Percentage (RP): shows the share of the picture area where runs are present.
Run Entropy (RE): represents uncertainty associated with the run length.

3.3. Machine Learning Algorithms

In conjunction with the process of feature extraction, the retrieved features under-
went training by machine learning models, and were subsequently evaluated on the test
dataset. In light of their unyielding strength, we opted to employ the most formidable
and extensively utilized machine learning methodologies. Noteworthy among these tech-
niques for classification were the Support Vector Machine, K-Nearest Neighbor, XG-
Boost, LGBM and Random Forest.

3.3.1. Support Vector Machine
The SVM is a machine learning technique used for classification and regression. The
method is particularly useful when data cannot be linearly separated or when the decision
boundary is complex. Corinna et al. [9] presented a SVM training algorithm for optimal
margin classifiers in their paper. Data points are divided into multiple groups using
SVM’s ideal hyperplane. In order to maximize the margin, the hyperplane is chosen
to be as near as possible to the nearest data points from each class. Support vectors
consists of the data points nearest to the given class.

Here is the outline of the SVM procedure:
Data representation: Selecting the optimal hyperplane: The SVM algorithm seeks

the hyperplane with the highest margin. While minimizing classification error, the hy-
perplane should divide data points of various classes. This is accomplished by resolving
an optimization problem.
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Handling non-linear data: In cases where the data aren’t linearly separable, SVM
uses the ”kernel trick”. It transcends the data points to a realm of heightened dimen-
sionality. A linear kernel, a polynomial kernel, and an RBF kernel are three common
kernel functions.

Training: Through optimization of a cost function, the SVM algorithm learns the
hyperplane’s parameters and penalizes misclassifications. In order to accomplish this, a
convex optimization problem needs to be solved.

Classification: The SVM possesses the remarkable ability to apprehend novel, indis-
cernible data points through its astute discernment of the side on which they lie on the
established hyperplane. A newly-introduced data point is affiliated with a specific class
contingent upon its placement on either side of the hyperplane; one side denotes one
class and the other side denotes the other one.

3.3.2. K-Nearest Neighbor
In the field of machine learning, the K-nearest neighbor algorithm assumes a prominent
role as a supervised decision tree algorithm that possesses the unique ability to tackle
classification problems as well as regression problems. Richard et al. presented KNN
algorithm in their paper, as reported by Duda et al. in their monograph [15]. The KNN
method uses a distance calculation between the test data and all of the training points in
order to try and predict which class the test data belongs to based on the data points in
the test set. As a result, the number of K points closest to the test data is the number of
points that should be chosen. As a result of implementing the KNN algorithm, we shall
endeavor to compute the likelihood that the test data is affiliated with the classifications
of K training data points. Subsequently, we shall elect the classification that possesses
the most elevated probability of belonging to the test data set. As regards the scrutiny
of regression analysis, the ascertained value is the mean of the data points from K
arbitrarily picked training points. The aforementioned data points are then utilized for
the evaluation of the regression.

3.3.3. Random Forest
The Random Forest, a captivating machine learning algorithm, has gained widespread
popularity for its exceptional ability to perform classification and regression tasks in
machine learning is shown in Figure 4. Breiman proposed the random forest algorithm in
his publication, documented as [10]. By combining the predictions from many individual
trees, a decision tree system can produce an outcome that is as accurate and reliable as
possible.

Random Forest works as follows (see also the Algorithm 1):
As part of the training phase, Random Forest constructs decision trees. The decision

trees are constructed using a subset of the original training data as well as the available
features. During the process, randomization and bagging take place.
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Fig. 4. Random Forest concept scheme.

Rather than considering all features at each node, the Random Forest evaluates the
best split based on a random selection of features. In this way, randomness increases the
diversity of the ensemble and reduces the correlation between trees.

Training trees: The training data for each decision tree is derived from a different
bootstrap sample. As a result, each tree in the ensemble sees a slightly different subset
of the original data.

As part of the prediction phase, Random Forest makes predictions based on input
features. During classification tasks, the class receiving the most votes is chosen. For re-
gression tasks, it is customary to derive the ultimate prediction through the computation
of the mean or median of the individualized predictions.

3.3.4. XGBoost
A gradient boosted trees algorithm is implemented in an efficient and open-source manner
using eXtreme Gradient Boosting (XGBoost). In their publication referenced as [12],
Tianqi Chen and co-authors put forward a model that employs the XGBoost algorithm.
Gradient boosting is a algorithm for supervised learning that combines simple and weaker
models to produce accurate predictions of a target variable. With its capacity to manage
an extensive range of data categories, connections, spreads, and hyperparameters that
are adaptable, the XGBoost algorithm excels in machine learning competitions. You can
use it for regression and classification.

3.3.5. LGBM
Guolin Ke et al. [21] proposed the Light Gradient Boosting Model (LGBM). By using
lightGBM, gradient boosting models can be trained efficiently and at high performance.
LightGBM improves training speed and model accuracy by using a gradient boosting
algorithm. Gradient boosting allows LightGBM to combine multiple weak prediction
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Algorithm 1 Random Forest
Data:
Training set B with m instances, p features, and target value.
Total number of classes K; total number of classifiers C in RF.
Procedure:
For c = 1 to C

Generate a bootstrapped sample Bc from the training set B.
Construct a tree using a random feature subset from bootstrapped sample Bc.

For each node t in the tree
Select randomly n ≈ √

p or n ≈ p
3 features. Identify the best split features

and cutpoints using the random feature subset. Send down the data using the
best split features and cutpoints.
Develop trained classifier Dc:

Group the C trained classifier models using majority vote:
Predicted label Dc: Dc(x) = arg maxj

∑
Bc

I(Dc(x) = j), for j = 1, . . . , K.

Fig. 5. LGBM-leafwise concept scheme.

models into one strong model (typically decision trees). A sequential correction is made
for each successive tree based on the error of the previous tree as symbolically depicted
in Figure 5 and outlined in Algorithm 2.

3.4. Cross validation

An important part of machine learning algorithms is the use of cross validation as one
of the statistical methods used to evaluate the methods. A significant component of
this procedure is the division of the data into two types: training set and validation set.
The preeminent approach is the k-fold technique, which is unequivocally the most widely
employed methodology. This method involves dividing the dataset into k equally divided
parts (folds) for the purpose of training and validating the model of a dataset. During
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Algorithm 2 LightGBM Classifier
Input:
x train: training data features
y train: set of training data labels
x test: set of test data features
y test: set of test data labels
Output:
Trained LightGBM classifier model
Initialization:
learning rate = 0.02
max depth = 8
random state = 422
Fit the Model:
evaluation set = [(x test, y test), (x train, y train)]
verbose = 20
evaluation metric = ’logloss’
Output:
Trained LightGBM classifier model

the validation and training process, the validation of the model is executed through the
utilization of distinct folds for each iterations in the training and validation process.
Once all the folds have been averaged, the overall performance of the product can be
obtained. A k-fold cross validation is shown in Figure 6.

4. Results

This part presents the outcomes of the classification based on CXT images of multiclass
pneumonia based on the results of the investigation. The acquisition of all training and
test outcomes was achieved through the utilization of a computer equipped with Windows
10 as the operating system and a memory capacity of 8 GB. As part of the analysis,
Python 3.7.10 was used in conjunction with Scikit-learn 0.23.19. The types of algorithms
used for classification include SVM, RF, KNN, XGBoost, and LGBM. It is possible to
tune the hyperparameters of these classifiers in order to control the process of learning.
For each method of classification, a number of parameters are controlled in order to
achieve the best results. In addition, the hyperparameters for each classification methods
were determined through a rigorous grid search coupled with a ten-fold cross-validation
over the training set. The attainment of SVM results necessitated the consideration
of several pertinent parameters. A conclusion was reached that the XGBoost and RF
classifiers can produce similar outcomes for certain parameter variables, contingent upon
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Fig. 6. The concept of k-fold cross validation.

the parameters on which they are trained. The parameters selected for these models
are therefore from the range of parameters specified by the authors. A 10-fold Cross
Validation technique was used in our study to obtain more reliable and realistic results.
The performance of the model was evaluated using accuracy, sensitivity, precision and
F1 score. As a proportion, accuracy can be delineated as the quotient of the number of
accurate predictions and the aggregate number of forecasts. As a heuristic, precision can
be characterized as the ratio of correct number of positive class predictions to the total
number of positive class predictions. The assessment of prognostications is appraised
through the ratio of accurate affirmative projections and erroneous negatory prognoses.
Precision and sensitivity are averaged to calculate F1. Here are the formulas for each
metric in terms of TP, TN, FP, and FN for each class i in a multi-class confusion matrix
shown in equations (1–8).

accuracy = ACCi = TPi + TNi

TPi + TNi + FPi + FNi
, (1)

precision = PREi = TPi

TPi + FPi
, (2)

sensitivity = SNSi = TPi

TPi + FNi
, (3)

F1-score = F1i = 2 ∗
(

PREi × SNSi

PREi + SNSi

)
, (4)
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where the measures for class i are:
TPi: number of True Positives for class i,
TNi: number of True Negatives for class i (sum of all non-class i values in the confusion
matrix),
FPi: number of False Positives for class i (sum of all values in the row for class i, ex-
cluding the diagonal element),
FNi: number of False Negatives for class i (sum of all values in the column for class i,
excluding the diagonal element).

The macro-measures for all the classes i = 1, . . . , N are simply the average values:

macro-accuracy = MACC =
∑N

i=1 ACCi

N
(5)

macro-precision = MPRE =
∑N

i=1 PREi

N
(6)

macro-sensitivity = MSNS =
∑N

i=1 SNSi

N
(7)

macro-F1 score = MF1 =
∑N

i=1 F1i

N
(8)

The quantification of accurately predicted positive class instances is denoted as TP.
Additionally, TN is also a constituent of the aforementioned metric, or true negative, is
the number of examples of a class that are predicted correctly as negatives. False posi-
tives can be defined as negative examples that are misinterpreted as positive examples.
As a result of false negative, there are examples of positive classes predicted to be neg-
ative. Several feature sets were tested to see how well the proposed method performed
for different feature sets. The combination of features was tested in many different ways
here as well.

Our approach to extracting GLCM or GLRLM features was based on a Python pack-
age. The computation is performed to determine the numerical worth of every charac-
teristic attribute with regards to every individual angular measurement, then returns the
mean value for each angle degree [1,28]. In order to calculate our features, we calculate
them for the angles of 0, 45, 90 and 135 degrees. Results of using various features are
shown in Tables 2 and 3. We incorporate an element of experimentation by varying
the distance values used in the analysis. This approach yielded insignificant alterations
in the outcome of our trials. The results of Table 2, which rely on GLCM character-
istics, reveal that the LGBM classifier demonstrated the highest accuracy at 92.43%,
whereas the random forest classifier produced the best F1 score of 96.02%. On the ba-
sis of GLRLM features, Table 3 shows that for LGBM classification, the best accuracy
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Tab. 2. Results for GLCM features.

GLCM
Classifier Accuracy (%) Precision (%) Sensitivity (%) F1-Score (%)

SVM 91.13 92.21 93.23 93.14
RF 92.04 94.03 99.02 96.02

KNN 90.01 93.12 91.43 92.41
XGB 91.14 95.54 95.27 95.07

LGBM 92.43 96.02 95.25 96.62

Tab. 3. Results for GLRLM features.

Classifier Accuracy [%] Precision [%] Sensitivity [%] F1-Score [%]
SVM 80.21 85.21 82.18 88.00
RF 89.12 100.00 99.11 100.00

KNN 82.19 99.04 98.90 99.00
XGB 86.80 98.08 97.35 100.00

LGBM 91.20 100.00 100.00 99.21

is 91.2%, whereas for RF classifiers and XGBs, the best F1 score is 100%. GLRLM-
based machine learning models produce a higher degree of accuracy when compared to
GLCM-based models.

Figure 7a shows an example of a confusion matrix for an SVM classifier. A TP
of 215 is calculated, a TN of 35, and a FP of 47 is calculated. Figure 7b shows the
confusion matrix for a simple LGBM classifier test. In the LGBM classifier for bacterial
pneumonia, there are 376 TPs, 0 TNs, and 12 FPs.

The XGB classifier for COVID shown in Figure 8a has 384 TP, 47 TN, and 61 FP. The
confusion matrix for Random Forest classifiers is illustrated in Figure 8b. For LGBM
classifier for bacterial pneumonia, TP is 447, TN is 60, and FP is 49.

The F1 score was computed using precision and sensitivity as the basis. Figure 9
illustrates the percentage overall performance metrics achieved by all GLCM stride com-
binations considered.

In Figure 10, the percentage values of performance measures obtained for every
GLRLM stride within a multiclass classification methods are presented using the Covid19
identification method. This accuracy value reaches 91.44 percent at its maximum. In
a test X-ray images dataset for GLCM stride combinations, the proposed method of
multiclass pneumonia identification with machine learning classifiers showed impressive
results. Model performance is commonly visualized using ROC curves.
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a b
Fig. 7. Confusion matrix for GLCM features. (a) SVM; (b) LGBM.

5. Discussion and conclusion

In the initial step, the present study aims to classify multiclass pneumonia diseases
using images from a CXT scanner. Furthermore, the purpose of this study is to examine
whether a variety of feature extraction methods can improve classification accuracy.
Medical images are characterized by gray levels of intensity, as opposed to sophisticated
algorithms and features used in the previous methods. Using intensity-based features,
one can analyze important properties of images. COVID-19 requires rapid detection
of the diagnosis in order to be successful. CXT used datasets collected from several
papers and collected in different ways to develop the proposed method. GLCM classifier
has the best results for LBGM and RF with 92.4% and 91.5% accuracy respectively,
while XGBoost has 91.5% accuracy for individual feature vectors. Compare GLRLMs
with GLCMs, and GLRLMs give lower results. In GLCM and GLRLM, each feature
is calculated separately for angles 0, 45, 90, and 135 degrees. Angle-based trials don’t
matter here. In this paper, we show that gray levels with high gray levels have more
value than gray levels with low gray levels. With RF or LGBM classifiers, we get over
92% on GLCM features. GLRLM improved LGBM, XGBoost, and RF by 91.2%, 89.1%,
and 86.8%, respectively. Ten-fold cross-validation provided reliable and robust results.
According to this study, SVM and KNN classifiers perform less well than RF, XGB and
LGBM classifiers. In most cases, RF classifiers will provide the best results. In addition,
LGBM and XGB provide significant results as well. Our recommendation is that RF and
LGBM classifiers for the purpose of classify COVID-19 classification. In the future, we
intend to test our model on a variety of datasets and to improve our model performance
to provide an improved diagnosis of COVID-19 from CT and CXT images.
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a b

c d

e
Fig. 8. Confusion matrix for GLRLM features. (a) RF; (b) XGB; (c) SVM; (d) LGBM; (e) KNN.
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a b

c d
Fig. 9. Performance of classifiers for GLCM features. (a) COVID; (b) bacterial; (c) viral; (d) normal.
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