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Abstract In computer vision, Convolutional Neural Networks (CNNs) have become a foundation
for image analysis. They excel in tasks such as object recognition, classification, and more, semantic
segmentation. In order to achieve better accuracy, it is crucial to apply normalization techniques to
the network for enhancing overall performance. This paper introduces an innovative approach that
incorporates Batch Group Normalization (BGN) into the popular U-Net for binary semantic segmen-
tation, with a particular focus on aerial road detection. Our research primarily focuses on evaluating
the BGN-UNet’s performance compared to traditional normalization techniques, such as Batch Nor-
malization (BN) and Group Normalization (GN). With a batch size of 2, the U-Net model enhanced
with Batch Group Normalization (BGN-UNet) achieves a remarkable Mean IoU of 98.4% in aerial road
segmentation, demonstrating its superior accuracy in this task.

Keywords: image analysis, image recognition, normalization techniques, batch group normalization,
semantic segmentation, BGN-UNet, aerial road detection.

1. Introduction

Road extraction proves to be a crucial task in the analysis of remote sensing imagery [4].
It plays a significant role in various aspects of society and the economy. Despite its
importance, accurately extracting roads faces challenges due to the presence of non-road
objects, and the complexity of the background. These factors contribute to the difficulty
of achieving precise road extraction. Addressing these challenges frequently requires the
utilization of pixel-wise semantic segmentation to extract road areas accurately (Fig. 1).

Semantic segmentation, a fundamental task in computer vision, involves the classi-
fication of individual pixels in an image into distinct object categories, thus aiding in
a good comprehension of visual content [12]. In this field, the UNet architecture has
proven to be reliable and effective across various applications [27,28].

Our research focuses on the more recent innovation, Batch Group Normalization
(BGN). When integrated into the UNet architecture, BGN exhibits the potential to
enhance the accuracy and efficiency of convolutional neural networks for tasks like binary
semantic segmentation, with a specific emphasis on road detection.

Figure 2 displays different normalization techniques: Batch Normalization (BN),
Layer Normalization (LN), Group Normalization (GN), and Batch-Group Normalization
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a b

Fig. 1. Binary Semantic Segmentation for Aerial Road Image. (a) Aerial Road Image. (b) Segmentation
for the Aerial Road Image.

Layer Normalization Batch Normalization Group Normalization Batch Group Normalization

Merged Spatial
Dimensions (H.W)

Merged Spatial

Dimensions (H.W) oblrged el

Channels C Channels C

Channels C

Mini-Batch Samples N Mini-Batch Samples N (©HW)

Mini-Batch Samples N

Fig. 2. Normalization Techniques.

(BGN). In each subfigure, you can see a feature map tensor, with axes representing the
batch size (IV), the number of channels (C), and the spatial dimensions (H,W). The
pixels in purple are used to compute the statistics. BGN offers a unique perspective
by combining the dimensions of channels, height, and width into a unified dimension
and subsequently partitions this new dimension into distinct feature groups. This paper
looks at how normalization methods in deep learning have changed over time. It also
talks about how using BGN can make UNet better for tasks like semantic segmentation.
The upcoming sections will offer comprehensive information on our research methods,
the results of our experiments, and the discussions that follow. This will illuminate the
power of combining U-Net and BGN in the constantly evolving fields of computer vision
and deep learning.

The remainder of this paper is organized as follows. Section 2 reviews related works
relevant to our study. Section 3 details the methodology, including the normalization
techniques (Subsection 3.1), data preprocessing (Subsection 3.2), and data augmenta-
tion (Subsection 3.3) employed in the study. In Section 4, we describe the application
of BGN-UNet to aerial road segmentation, with Subsection 4.1 in which the model is
described, and Subsection 4.2 focusing on the contributions and novelty of the proposed
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model. Section 5 presents the results and discussion, along with an ablation study (Sub-
section 5.1), practical applications of BGN-UNet in road detection (Subsection 5.2) and
the challenges and considerations for practical implementation of BGN-UNet (Subsec-
tion 5.3). Finally, Section 6 concludes the paper by summarizing the key findings and
implications of this work.

2. Related works

A novel end-to-end generative adversarial network was introduced by Zhang et al. [38]
to carry out the road extraction task in aerial images. The combination of DCGAN and
CGAN was utilized in their model for extracting roads from aerial images, followed by
the replacement of deconvolutional layers with FCN. Therefore, the performance of the
model is significantly impacted by data from different sources. A deep learning model,
called the Recurrent Convolutional Neural Network U-Net (RCNN-UNet), was proposed
by Yang et al. [34] for road detection and centerline extraction. It is an end-to-end
deep learning model that exploits the spatial context and rich low-level visual features
through the design of the RCNN unit. However, this can be computationally intensive
and may require significant resources, including computational power and memory.

In addition, a novel deep learning-based convolutional network called VNet model
with 2D convolutional kernel to extract road networks from high-resolution remote sens-
ing imagery was introduced by ABOLFAZL et al. [2] a new objective loss function based
on cross-entropy and dice loss (CEDL) was used to combine local information and global
information, diminish the influence of class imbalance, and improve road segmentation
results. However, the use of 2D convolutional kernels and the fully convolutional architec-
ture can lead to significant computational overhead, particularly when processing large
datasets. This may result in longer training times and increased resource requirements.

Furthermore, an improved road detection algorithm [10] that integrates Deep Con-
volutional Neural Networks (CNNs) with a Random Forest classifier has been proposed
to enhance the accuracy of analyzing Very High Resolution (VHR) remotely sensed im-
ages. However, the performance of the algorithm is highly dependent on the quality and
quantity of training data, which can pose a limitation in areas with insufficient labeled
datasets.

Recent advancements in road extraction from high-resolution remote sensing images
have been marked by the RADANet model [9], which employs a deformable attention
mechanism to enhance feature extraction in complex environments, demonstrating supe-
rior performance compared to traditional techniques. However, a major limitation is its
difficulty in effectively utilizing the spatial relationships and structure of roads, making
it challenging to improve extraction accuracy in complex road settings.

According to Shaofu et al. [19] the proposed method MS-AGAN offers an efficient,
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cost-effective, and reliable approach for dynamically updating road networks using high-
resolution remote sensing images. However, despite its improved performance in road
extraction, it may still encounter difficulties in complex scenes with high vegetation
coverage and occlusions, leading to fragmentation and discontinuities in the extracted
road networks.

Moreover, the authors of [18] propose an improved UNet++ network suitable for
road extraction from high-resolution remote sensing images. By integrating the CBAM
module and incorporating weight information in both channel and spatial dimensions of
the feature map, this approach effectively suppresses the network’s learning of non-road
information, resulting in a more efficient and targeted model.

In summary, the proposed improvement of the UNet network for road extraction from
remote sensing images offers notable strengths and weaknesses [30]. It enhances feature
extraction through a CNN-Transformer architecture, improving segmentation accuracy
with a double upsampling module and a combination of cross-entropy (CE) and Dice loss
functions. This results in good training stability, robustness, and generalization across
various datasets compared to established models like UNet, PSPNet, DeepLabV3, and
TransUNet. However, the algorithm also exhibits high computational complexity and
long training times, making it less suitable for mobile or embedded devices. Its resource-
intensive nature may limit real-time applications, and the model’s complexity could lead
to overfitting on smaller datasets. Thus, while the approach shows promise in enhancing
road extraction accuracy, its practical applicability is constrained by these limitations,
indicating a need for future research into more efficient methods for image semantic
segmentation.

Researchers in deep learning are always looking for ways, like normalization meth-
ods, to improve the training efficiency, generalization, and overall performance of neural
networks. Throughout the years, a series of normalization techniques have been explored
by researchers to enhance the training and generalization of deep learning models. This
chronological survey encompasses the inception of Batch Normalization in 2015 by [14],
extending to the more recent introduction of Batch Group Normalization (BGN) by Zhou
in 2020 [42]. The timeline of normalization methods began with Batch Normalization
(BN), which revolutionized deep learning by stabilizing training dynamics and acceler-
ating convergence. Subsequently, Group Normalization (GN), proposed by Wu and He
in 2018 [33], addressed certain limitations of BN, particularly when dealing with small
batch sizes. Furthermore, Layer Normalization [7], Weight Normalization [25], Instance
Normalization [29], and Positional Normalization [17] were introduced, each catering to
specific requirements and contributing to the maturation of deep learning models.
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3. Methodology

3.1. Normalization techniques

Normalization plays a crucial role in the training of Convolutional Neural Networks
(CNNs) to ensure stable and effective learning. A standard normalization layer involves
four steps: (1) grouping the feature map into distinct feature groups; (2) computing
mean and variance statistics for each feature group; (3) normalizing each feature group
using the calculated statistics; and (4) adjusting the normalized feature map to preserve
the representation ability of the Convolutional Neural Network (CNN).

Batch Norm is a normalization technique done between the layers of a Neural Network
instead of in the raw data [14]. In a neural network, batch normalization (BN) is achieved
through a normalization step that fixes the means and variances of each layer’s inputs [35]
as schematically shown in Figure 2. Normalization is applied separately to each group
of data, called a mini-batch, during the training process. This is a general formulation
of feature normalization expressed as:

wim (i — ) (1)

o

Here, = represents the feature computed by a layer, and 7 is an index. In the context
of 2D images, i = (in,ic,im,iw) is a 4D vector indexing the features in the order
(N,C, H,W), where:

e N is the batch axis,

e C is the channel axis,

e H is the spatial height axis, and

e W is the spatial width axis.

In Batch Normalization, the transformation applied to the input feature to compute

the normalized output is given by the following formula:

Si={k|kc=1ic}, (2)

where i¢c (and k¢) denotes the sub-index of ¢ (and k) along the C axis. This implies
that pixels sharing the same channel index are normalized together. In other words, for
each channel, Batch Normalization (BN) computes p and o along the (N, H, W) axes.
In other words, the mean and variance are calculated along the batch dimension. Thus,
the transformation helps to normalize the input and make the optimization process more
stable during training.

According to [36], Batch Normalization does not work effectively for tasks requiring
training with small batches, such as image segmentation, often due to memory limita-
tions. Efforts have been made to explore alternative normalization techniques, including
Group Normalization, where normalization is applied across partitions of features or
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channels, with different pre-defined groups [33]. In Group Normalization (GN), the nor-
malization is performed across partitions of features or channels. The formula for Group
Normalization is as follows:

e B
where:

e GG is the number of groups (pre-defined hyper-parameter, with G = 32 by default),
e C'/G is the number of channels per group,
e |- | denotes the floor operation,

c/a c/a

assuming each group of channels is stored in a sequential order along the C axis.

In Batch Group Normalization (BGN) technique, the channel, height, and width
dimensions are initially concatenated into a new dimension, resulting in a flattened
representation denoted as Fxxp, where D = C' x H x W. The mean g in (4) and
variance 02 in (5) are then computed along both the batch and the new dimension.

. Lk—CJ = [ ic J means that the indexes 7 and k are in the same group of channels,

g.S

N
Hg = N xS Z Z fn,da (4)

n=1d=(g—1).S+1
1 N
U; = N x S Z Z (frna— /~Lg)27 (5)

where g = 1,...,G is a group index used in the group normalization technique and G is
the number of groups that the new dimension is divided into, and is a hyper-parameter;
fn.a is a member of F(1)nxp, representing a feature instance after merging the channel,
height, and width dimensions into a new dimension; D = C x H x W, where C, H, and
W are the channel, height, and width dimensions, respectively. Further, S = M/G is
the number of instances inside each divided feature group. The notation g.S represents
the range of feature instances included in group g for the calculation of the mean yu4 and
variance 03. Specifically, the summation over d goes from (g —1).5+1 to ¢.5, indicating
that each group ¢ contains S feature instances along the new dimension D.

[

BGN dynamically adjusts the number of feature instances used for statistical calcu-
lation, employing the group technique from Group Normalization (GN). When dealing
with a small batch size, a smaller value for G is chosen to combine the entire new di-
mension, preventing noisy statistics. Conversely, with a larger batch size, a larger G is
selected to partition the new dimension into smaller segments, facilitating the calculation
of more accurate and less confused statistics. That is why, In our training process, G=2
was used for a batch size of 2 to combine the entire new dimension, and G=32 was used
for batch sizes 8 and 16.
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Fig. 3. BGN-UNet Architecture.

This multi-step approach allows BGN to capitalize on the generalization capabilities
of GN, while also addressing the limitations of BN. Batch Group Normalization (BGN)
has been implemented as a custom layer within the Keras deep learning framework.

Figure 3 provides a visual representation of the BGN-UNet model’s architecture based
on the original UNet architecture [23]. It illustrates how Batch Group Normalization
(BGN) is incorporated into the UNet structure. Figure 4 compares the convolutional
blocks in the standard UNet model with those in the BGN-UNet, emphasizing the dif-
ferences in their structures and how BGN is employed.

BGN-UNet is defined for image segmentation tasks. Within this network, convolu-
tional blocks, encoder blocks, and decoder blocks are included. The basic building block
of the network is defined by the conv block function. It applies convolutional layers
with BatchGroupNormalization and ReLLU activation functions. This block is used to
extract features from the input data. The encoder block function combines the convo-
lutional block with max-pooling, allowing the network to progressively downsample the
input image and capture high-level features. The decoder block function handles the
upsampling and feature concatenation process. It uses transpose convolutional layers to
increase the spatial resolution and combines the features from the encoder to refine the
segmentation. The build unet function is responsible for constructing the entire UNet
architecture, which consists of encoder and decoder blocks.

The choice of the final activation function is determined by the number of classes in
the output. In the specific context of binary semantic segmentation, where the objective
is to differentiate between two distinct classes, the choice of the activation function at the
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Fig. 4. Convolutional Blocks in UNet and BGN-UNet.

output layer is the sigmoid function which is preferable as output activation function [5].
This function assigns a continuous value to each pixel within the segmented image [31],
ranging from 0 to 1. Pixels closer to a value of 1 are indicative of belonging to the road
class, while those closer to 0 are representative of the non-road class. In essence, the
BGN-UNet is designed for image segmentation tasks, where it takes an input image and
produces a segmented image as the output. It effectively combines convolutional lay-
ers, normalization techniques, and upsampling to capture detailed features and produce
accurate segmentations.

3.2. Data preprocessing

To make it easier to understand and analyze the data, it is imperative to systematically
structure and format the dataset. The way data is prepared can vary significantly based
on what we want to achieve with the data and the methods we plan to use for analysis [1].
In our research, a road dataset comprised of two distinct sequences is employed. The first
sequence consists of 224 images, each possessing dimensions of 848 x480 pixels, while the
second sequence encompasses 109 images, each characterized by dimensions of 1280x720
pixels, all of these come with corresponding ground truth.

The dataset used for this study can be downloaded from internet and was previously
utilized by [39]. However, we would like to note that the original source for downloading
the dataset [40] appears to be unavailable at this time. In the meantime, the dataset
can be accessed via the link in [41].
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Data preprocessing is an indispensable phase in the pipeline of image analysis, par-
ticularly in the context of road segmentation. The following steps encapsulate the pro-
cedures employed to transform the raw data into a structured and manageable dataset,
each step is guided by a specific rationale:

1. Color space conversion to grayscale

In the first step of our process, the original RGB images are transformed into grayscale

versions. This is done to simplify the data and make it more efficient for our model.

Grayscale images reduce complexity and memory usage since they remove color in-

formation while preserving the critical road segmentation details [15]. This approach

improves computational efficiency and helps us optimize resource usage.
2. Padding for dimension alignment

Our goal here is to apply reflection padding to resize images in a way that their

dimensions become divisible by 256. Reflection padding helps maintain the continuity

and information within the image. The rationale behind using padding lies in its
importance for achieving uniformity in image dimensions allowing the images to be
divided into smaller images (patches) each measuring 256x 256 pixels. After applying
padding, the images in the first sequence have a size of 1024x512 pixels, and in the
second sequence, the images are resized at 1280x 768 pixels.

3. Patch creation for training

Our objective is to create image patches as a solution for segmenting larger images.

This process involves dividing the larger images into smaller without overlapping. By

partitioning the images into patches, a diverse training dataset is generated, consist-

ing of 1792 patches from the first image sequence and 970 patches from the second
sequence. The expression (6) below illustrates how to calculate the number of created
patches as it is shown in Figure 5. The choice of a patch size of 256256 has been
made for the sake of computational efficiency, striking a balance between capturing
adequate spatial information and maintaining a manageable computational load. It
is observed in the literature and established practices for similar tasks that a patch
size of 256x256 is commonly chosen, reflecting a widely adopted approach in the

field [16,21].
SIZE_X SIZE_Y
n= . . (6)
patch__size patch__size

4. Elimination of non-informative patches

Pruning non-informative patches is very important for data quality and model effi-
ciency. By retaining only patches with pertinent road-related content as shown in
Figure 6, it is ensured that the training dataset is composed exclusively of relevant
information, enhancing the model’s accuracy and mitigating the inclusion of noise or
irrelevant details. The selection of patches was automated based on the presence of
information in the corresponding masks, avoiding manual elimination [8].
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Fig. 5. Creating patches.
truth.

Fig. 6. Elimination of non-informative patches. (a) Informative images patches; (b) informative ground
truth patches.

5. Fusion of image sequences

The fusion of image sequences yields a unified dataset of 906 images. This fusion
enhances the dataset’s richness, incorporating diverse scenarios from both sequences,
and increases the model’s capacity to generalize across different road environments
and improving the robustness of the road segmentation model.

6. Data normalization

Data normalization is the process of transforming raw data values to another form
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with properties [3]. In this case, our data must be more suitable for neural network
algorithms which require data that are on a 0-1 scale.

Each of these steps contributes to the overall data preprocessing strategy, ensuring
that the dataset is meticulously prepared and optimized for the road segmentation task.
Given that our dataset is relatively small, with images of 1024x512 and 1280x 768 pixels,
we have the opportunity to train our UNet model from scratch, which is particularly
advantageous for adapting to the specific characteristics of our dataset.

3.3. Data augmentation

Data augmentation is a technique used to increase the size of a dataset by applying
various transformations to the original images. This technique is particularly useful
in deep learning tasks, where a large amount of data is required to train the model
effectively [26]. In this study, data augmentation was employed to augment the size of
the dataset, which consisted of 906 grayscale images with dimensions of 256x256, for
aerial road segmentation using the UNet model and batch group normalization.

While it’s true that a small dataset might limit how well the model generalizes to
larger datasets, image augmentation techniques can help improve performance by gen-
erating additional training samples through techniques like rotation and flipping. This
effectively increases the diversity of the training data without needing more labelled
samples. In fact, augmentation can help prevent overfitting and improve model robust-
ness, leading to better performance even when applied to larger datasets [37]. Although
a small dataset is a limitation, these techniques can mitigate its impact and enhance
generalizability.

Even though the study uses a small dataset, the method, along with data augmenta-
tion, can also work well with larger datasets. We plan to test its effectiveness on larger
datasets in future research.

Also, according to [24] the size of the dataset required may depend on various factors
such as the complexity of the task and the number of parameters. This statement implies
that for simpler tasks or those with fewer parameters, smaller datasets may suffice for
effective training.

The data augmentation techniques presented in [6], including horizontal and vertical
flipping to help the model learn to recognize road patterns in different orientations,
as well as rotation, were implemented. These techniques were applied to the original
images to generate new training examples. The augmented dataset was then used to
train the UNet model with batch group normalization. In our approach to aerial road
segmentation, data augmentation played a crucial role, enabling an increase in the size
of our dataset and an improvement in the accuracy of our model. The utilization of a
highly accurate and efficient model for aerial road segmentation was achieved through
the combination of UNet and batch group normalization with data augmentation.
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4. Aerial road segmentation using BGN-UNet

4.1. The model

The UNet model is constructed with a series of convolutional and decoder blocks, each
meticulously designed to capture and refine features for binary segmentation tasks. The
convolutional block ((conv_block) is a crucial building block, comprising two consecu-
tive 3x3 convolutional layers. Notably, Batch Group Normalization is incorporated into
the (conv_block), enhancing the stability and efficiency of the network during training.
Following the convolutional layers, Batch Group Normalization is applied, followed by
Rectified Linear Unit (ReLU) activation, synergistically contributing to feature extrac-
tion. On the other hand, the decoder block (decoder_block) leverages a transposed
convolutional layer with a 2x2 kernel for effective upsampling. The upsampled fea-
tures undergo concatenation with corresponding features from the encoder block and
are subsequently processed through the (conv_block) to extract informative features.
Throughout the UNet architecture, the encoder systematically downsamples the input
image through convolution and max-pooling operations. Conversely, the decoder adeptly
upsamples the features to generate a segmentation map. In the context of this binary
segmentation task, the final layer of the model employs a 1x1 convolution with a sig-
moid activation function, facilitating the precise prediction of pixel-wise binary masks.
This thoughtful architectural choice, integrating 3x3 convolutions, Batch Group Nor-
malization, and the appropriate activation function, underscores the model’s efficacy
in capturing spatial information and thereby enhancing its performance in accurately
delineating objects of interest in the input images.

To evaluate the performance of the proposed model, experiments were conducted us-
ing an aerial road dataset described in the research paper titled Efficient Road Detection
and Tracking for Unmanned Aerial Vehicles [39]. Specifically, 1792 aerial images from
this dataset were utilized. As previously explained in the data preprocessing section 3.2,
before training the model, the data is prepared. To enhance manageability, the large
images are partitioned into smaller 256 by 256 pixel images, commonly referred to as
patches, and are represented in grayscale. This approach simplifies data processing and
model training. The dataset used in this study comprises a total of 906 informative
patches extracted from road aerial images. To facilitate the training and evaluation
of our model, the dataset is randomly partitioned into three distinct sets. These sets
are designated for various purposes: one is allocated for training the model, another
is reserved for validation during the training process, and the final set serves as the
test set for the evaluation of model performance. The division is conducted using the
train_test_split function, which separates the image and mask datasets into 724 im-
ages for training (80%), 91 images for validation (10%), and 91 images for testing (10%),
in order to ensure the consistency of results across experiments.

Figure 7 highlights the flowchart of methodologies used in this paper. The model
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Fig. 7. Flowchart of the proposed methodology.

hyperparameters, as outlined in the Table 1, encompass settings for the training process
and data information. In general, our model produces favorable results with minimal
distortion and negligible false detections, as shown in Figure 8. In Figure 9, four ran-
domly selected patches from the test set are showcased, segmented using the BNG-UNet
model. These patches present varying levels of difficulty while consistently demonstrat-

ing amazing segmentation results.

Tab. 1. Model hyperparameters.

Parameter Value

Learning Rate 1x1073

Loss Function Binary Cross-entropy
Epochs 25

Batch Size 16

Group 32

Optimizer Adam Optimizer

Validation Split

Total Params

Trainable Params
Non-Trainable Params
Image Data Shape

Mask Data Shape

Max Pixel Value in Image
Labels in the Mask

Patch Size

0.20, Random State = 42
31065921 (118.51 MB)
31054145 (118.46 MB)
11776 (46.00 KB)

(906, 256, 256, 1)

(906, 256, 256, 1)

255

[0, 255]

256x256x 1
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Aerial Image Prediction

Fig. 8. Semantic Segmentation of the Aerial Road Image with BGN-UNet

4.2. Contributions and novelty

This paper presents several significant contributions and novel aspects in the domain
of aerial road segmentation using an Enhanced U-Net model, specifically incorporating
Batch Group Normalization technique (BGN). The key contributions are outlined below:

A novel normalization technique, Batch Group Normalization (BGN), has been incor-
porated into the U-Net architecture. This method addresses the performance limitations
of Batch Normalization (BN) at very small or extremely large batch sizes by leveraging
the grouping strategy employed in Group Normalization (GN). It combines the channel,
height, and width dimensions into a unified representation, partitions this dimension
into feature groups, and computes the statistics across both the feature groups and the
entire mini-batch to enhance performance. By effectively stabilizing training dynamics,
BGN enhances model convergence and accuracy.

Building upon this, the proposed BGN-UNet architecture modifies the traditional
U-Net framework by implementing BGN layers, which allows for better feature extraction
and representation in aerial imagery. This adaptation is particularly beneficial for binary
semantic segmentation tasks, where precise delineation of road areas is critical.

In line with these theoretical improvements, our experimental results demonstrate
that the BGN-UNet achieves a Mean Intersection over Union (ToU) of 98.4% (See sec-
tion 5), significantly outperforming traditional normalization techniques such as Batch
Normalization (BN) and Group Normalization (GN). This remarkable accuracy under-
lines the effectiveness of our proposed model in real-world applications.

Furthermore, a thorough comparative analysis of the BGN-UNet model is provided
against several state-of-the-art models for aerial road segmentation. This evaluation
highlights the superior performance of the approach and discusses its robustness in han-
dling complex urban environments with various road types and conditions.

In summary, the distinctive contributions of this paper lie in the innovative inte-
gration of BGN into the U-Net architecture, achieving superior segmentation accuracy,
conducting comprehensive evaluations against existing models, and addressing practical
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challenges in aerial road detection. These elements collectively underscore the novelty
and significance of our research in advancing methodologies for semantic segmentation
in aerial imagery.

5. Results and discussion

Among the various normalization methods, two specific techniques, Batch Normalization
(BN) and Group Normalization (GN), have been chosen as the baseline methods to
be used in the U-Net architecture. These methods will serve as reference points for
comparing the performance of the novel Batch-Group Normalization (BGN) technique
when combined with the UNet architecture, which is being introduced and evaluated.
By comparing BGN-UNet to these established normalization techniques, we can assess
its effectiveness and potential advantages. This evaluation allows us to understand the
performance of the novel Batch-Group Normalization (BGN) technique when integrated
with the U-Net architecture.

In our UNet model, BGN has been utilized to optimize the network’s performance.
Testing was conducted in image segmentation, a challenging task, with a specific focus
on its performance with aerial imagery. Initial results suggest that BGN might offer
advantages over traditional BN and GN methods.

In our comprehensive experimental design, an assessment of three distinct models
BN-UNet, GN-UNet, and BGN-UNet was conducted. The impact of varying batch sizes
(2, 8, and 16) across a consistent 25 epochs training period was systematically explored.
Despite the constraints of a small dataset and only one GPU, our model still achieves
good results. The selection of the Adam optimizer, a widely recognized choice in deep
learning, greatly facilitated our training process by ensuring efficient convergence and
adaptive learning rates [22]. To fit our approach to binary segmentation, focusing on
the detection of road and non-road classes, the binary cross-entropy loss function was
employed. Cross-entropy serves as a loss function in neural networks in machine learning,
offering a metric to gauge the likeness between predicted and actual values [13]. While
our resources may appear limited, our results consistently demonstrated that BGN-UNet
outperformed both BN-UNet and GN-UNet, particularly in terms of Mean Intersection
over Union (IoU).

In our experiments with three different normalization methods BN-UNet, GN-UNet,
and BGN-UNet using varying batch sizes of 2, 8, and 16, interesting results were observed
in terms of Mean IoU, which is a measure of segmentation accuracy. For the smallest
batch size 2, the BGN-UNet achieved a Mean IoU of 0.9727, while BN-UNet and GN-
UNet had Mean IoU scores of 0.9673 and 0.9687, respectively. As the batch size was
increased to 8, it was observed that BGN-UNet outperformed both GN-UNet and BN-
UNet, achieving a higher accuracy with a Mean IoU value of 0.9729. In comparison,
GN-UNet had a Mean IoU of 0.9724, while BN-UNet lagged behind with a score of
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Tab. 2. Mean IoU for Different Batch Sizes and Models

Model Batch Size 2 Batch Size 8 Batch Size 16
BN-UNet 0.96733713 0.96600366 0.97286165
GN-UNet 0.9687331 0.97235453 0.9730376
BGN-UNet 0.9726844 0.9729512 0.9740099
BGN-UNet+data augmentation 0.98135 0.9821 0.9840

0.9660. When using a batch size of 16, BGN-UNet recorded the highest Mean IoU
of 0.9740, outperforming both BN-UNet 0.9729 and GN-UNet 0.9730. In summary,
BGN-UNet consistently achieved the best segmentation accuracy across all batch sizes,
outperforming both BN-UNet and GN-UNet. These results highlight the effectiveness
of Batch-Group Normalization (BGN) in improving the U-Net model’s performance in
semantic segmentation tasks. The Table 2 shows the Mean IoU values for various batch
sizes in the BN-UNet, GN-UNet, and BGN-UNet models.

When predicting patches from a large image (1024x512) using the BGN-UNet model,
it has been observed that the first patch takes approximately 18 seconds to process (com-
pared to 12 seconds for the BN-UNet model and 15 seconds for the GN-UNet model.),
while the remaining 7 patches are predicted almost instantaneously. This initial delay
is due to model initialization overhead, which includes tasks such as loading weights,
setting up the neural network in memory, and performing preprocessing steps. Once
these tasks are completed, the model is fully operational, allowing for the rapid pre-
diction of subsequent patches. BN-UNet is generally faster because it relies on batch
normalization, which uses batch statistics, resulting in faster initial processing. On the
other hand, GN-UNet uses group normalization, which normalizes within groups with-
out depending on batch size, leading to a middle-ground processing time compared to
BN-UNet and BGN-UNet. In summary, the 18 seconds for the first patch mainly come
from initialization and setup overhead, while the near-zero time for the following patches
reflects efficient reuse of the initialized model, significantly speeding up the process for
the remaining patches — see Fig. 7.

Our results show that BGN-UNet is very adaptable and efficient, making it a valuable
tool for tasks like binary segmentation, especially in situations where data is limited,
and computational resources are constrained. To summarize, BGN-UNet appears to
perform well with small datasets in binary segmentation tasks, as our findings indicate.
The visual representations of training and validation Metrics as shown in Figs. 10, 11,
and 12 provide a comprehensive overview of the performance evaluation of the three
models under varying batch conditions. Favorable results with minimal distortion and
negligible false detections can be observed in the BGN-UNet graphs.
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Fig. 12. Training and validation metrics for batch size 16: (a) BN-UNet; (b) GN-UNet; (c) BGN-UNet.

5.1. Ablation study

The choice of batch size significantly influences the training dynamics and convergence of
deep learning models. To understand the effect of batch size on model performance, we
conducted experiments using three different batch sizes: 2, 8, and 16. The performance
metric used for evaluation was the Mean IoU (Intersection over Union). The results
for the BGN-UNET model are as follows: for Batch Size 2, the Mean IoU was 0.98135;
for Batch Size 8, the Mean IoU increased slightly to 0.9821; and for Batch Size 16, the
highest Mean IoU of 0.9840 was achieved.

As the batch size increased, we observed a slight improvement in Mean IoU, with
batch size 16 yielding the highest performance. No signs of overfitting were detected, and
the model remained stable across all batch sizes, indicating that varying the batch size
had minimal impact on overall performance. However, the slight increase in performance
with larger batch sizes suggests that batch size 16 may have been more effective in
stabilizing gradients during training, leading to better results.

In contrast, when using traditional normalization techniques, we observed different
performance metrics. The results when using Batch Normalization are as follows: for
Batch Size 2, the Mean IoU was 0.9673; for Batch Size 8, the Mean IoU slightly decreased
to 0.9660; and for Batch Size 16, the Mean IoU improved to 0.9729. When using Group
Normalization, the results were: for Batch Size 2, the Mean IoU was 0.9687; for Batch
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Size 8, the Mean IoU increased to 0.9724; and for Batch Size 16, the highest Mean IoU
of 0.9730 was achieved.

These results indicate that while larger batch sizes can enhance performance in some
cases, the integration of Batch Group Normalization (BGN) allows for effective train-
ing even with small batch sizes, mitigating some of the common issues associated with
traditional normalization techniques that struggle under similar conditions.

Overall, these findings illustrate how batch size affects various aspects of model train-
ing, including convergence behavior and generalization capability. The slight improve-
ments observed with larger batch sizes suggest a potential benefit in stabilizing gradients
during training. However, BGN’s effectiveness with smaller batches highlights its advan-
tage in scenarios where data availability is limited. In future work, we aim to explore
larger batch sizes of 32 and 64 to further assess their impact on model performance and
training dynamics.

5.2. Practical applications of BGN-UNet in road detection

The BGN-UNet model offers significant potential in road detection tasks across mul-
tiple domains due to its advanced segmentation capabilities and adaptability to high-
resolution imagery. This subsection explores several practical applications where BGN-
UNet could contribute to improving accuracy and efficiency, including urban road map-
ping, autonomous vehicle navigation, infrastructure monitoring, disaster response, and
traffic analysis. Each example highlights specific contexts in which BGN-UNet’s perfor-
mance may address current challenges and enhance practical outcomes.

e Urban Road Mapping

BGN-UNet can be employed to accurately map urban road networks from high-
resolution satellite or aerial imagery. Example: Similar to the C-UNet model, which
improved road extraction accuracy in remote sensing images, BGN-UNet could en-
hance urban planning and traffic management by providing precise road layouts.

e Autonomous Vehicle Navigation

In autonomous driving systems, BGN-UNet can be utilized for real-time lane and
road boundary detection. Example: A project using a UNet model for lane detec-
tion demonstrated high accuracy on diverse driving scenarios, showcasing how deep
learning models can effectively identify drivable areas under various conditions.

e Infrastructure Monitoring

BGN-UNet can assist in monitoring the condition of roads by detecting cracks and
other surface anomalies. Example: Research has shown that U-Net architectures
can be adapted for crack detection in tunnels and roads, emphasizing the model’s
capability to automate infrastructure inspections and enhance maintenance strategies.

e Disaster Response and Recovery
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After natural disasters, BGN-UNet can help assess road damage by analyzing satellite
imagery to identify blocked or damaged routes. Example: Similar methodologies have
been applied in post-disaster scenarios where rapid assessment of road conditions is
crucial for effective emergency response.
e Traffic Analysis and Management

The model can be used to analyze traffic patterns by segmenting roads from video
feeds or images captured by drones. Example: The integration of deep learning models
has shown promise in extracting road features from very-high-resolution images, which
could be adapted for real-time traffic analysis.

5.3. Challenges and considerations for practical implementation of BGN-
UNet

While our paper primarily focuses on the advantages of the BGN-UNet model compared
to traditional normalization techniques like Batch Normalization (BN) and Group Nor-
malization (GN), we acknowledge the importance of discussing the potential challenges
associated with implementing BGN-UNet in practical applications. Key considerations
include the following.
e Execution runtime
Implementing BGN can significantly extend the execution runtime during model
training compared to simpler normalization techniques. However, the improved re-
sults it yields justify the added computational cost.
¢ Memory Requirements
BGN-UNet can demand higher memory usage due to the need to maintain statistics
for multiple groups within a batch. As seen in the literature [20], larger batch sizes
need more memory for activations and gradients.
e Sensitivity to Hyperparameters
The effectiveness of BGN-UNet may depend on the careful tuning of hyperparameters,
such as the number of groups and batch size. our results demonstrate that, despite
variations in batch size, BGN-UNet consistently outperforms the other models.
e Generalization Across Domains
While BGN-UNet has shown promise in specific tasks like aerial road segmentation,
its generalizability to other domains remains an open question. While U-Net performs
well in biomedical applications [32], the integration of BGN would further enhance
its performance. Future work will explore how BGN-UNet performs across various
tasks. This investigation will help clarify the effectiveness of BGN-UNet in diverse
applications and identify potential limitations in its adaptability.
e Complexity of Implementation
Incorporating BGN into existing architectures may require more complex modifica-
tions compared to standard normalization techniques. This can be a challenge for
practitioners with limited experience in deep learning.
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In conclusion, while BGN-UNet offers notable advantages for training stability and
performance, it is essential to consider these potential challenges when implementing it in
practical scenarios. Future work could explore these aspects further, providing insights
into optimizing BGN-UNet for various applications and understanding its limitations.

6. Conclusion

Our study presents an innovative approach by incorporating Batch Group Normalization (BGN)
technique into the well-known UNet architecture for binary semantic segmentation, with a
particular focus on road detection. We evaluated the performance of BGN-UNet in comparison
to BN-UNet and GN-UNet, and our experimental results underscored the superior performance
of the BGN-UNet model. The careful preprocessing of the dataset played a significant role
in the success of this segmentation task. Integrating BGN as a custom layer in the Keras
deep learning framework allowed us to make good use of its benefits and incorporate it into
the UNet architecture. The research concluded that BGN-UNet is a valuable network for
aerial road segmentation, even in situations with limited data and constrained computational
resources. The overall outcome of our study was to enhance UNet model, offering an innovative
approach to semantic segmentation with consistently superior results. Our proposed model
experienced relatively faster convergence compared to baseline networks such as BN-UNet and
GN-UNet, easily achieving 0.984 Mean IoU benchmark within only 25 epochs of training. We
believe that further enhancements can be made to our model, not only in terms of training on
a single GPU and limiting the training to 25 epochs with a maximum batch size of 16, but
also in exploring further optimizations in hyperparameter tuning, dataset augmentation, and
potentially leveraging distributed computing resources. These steps may enhance our model’s
performance even further. While existing research has demonstrated the effectiveness of various
Convolutional Neural Networks (CNNs) for aerial image analysis, there remains a gap in the
application of advanced normalization techniques to improve segmentation accuracy specifically
for road detection. This study aims to address these gaps by introducing the enhanced U-Net
model with Batch Group Normalization (BGN). By advancing the U-Net model with Batch
Group Normalization, we not only aim to bridge existing gaps in segmentation accuracy but
also to inspire innovation and improvement in the broader field of computer vision, underscoring
the importance of continuous advancements in all domains.

BGN-UNet has performed well in aerial road segmentation, but its ability to handle other
tasks like medical image segmentation and autonomous driving is still uncertain. While U-Net
was originally designed for biomedical image segmentation, the differences in data types and
challenges in these tasks may influence the performance of BGN-UNet. However, it is expected
that BGN-UNet could enhance the capabilities of U-Net in these areas. Future research will
test BGN-UNet in these tasks to better understand its effectiveness and potential limitations
across a wider range of applications. Also, we will keep improving our model and see how well
it works with different types of datasets.
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