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Abstract Age prediction has become an important Computer Vision task. Although this task requires
the age of an individual to be predicted from a given face, research has shown that it is more intuitive and
easier for humans to decide which of two individuals is older than to decide how old an individual is. This
work follows this intuition to aid the age prediction of a face by exploiting the age information available
from other faces. It goes further to explore the statistical relationships between facial features within age
groups to compute age-group ranks for a given face. The resulting age-group rank is low-dimensional and
age-discriminatory, thus improving age prediction accuracy when fed into an age predictor. Experiments
on publicly available facial ageing datasets (FGnet, PAL, and Adience) reveal the effectiveness of the
proposed age-group ranking model when used with traditional Machine learning algorithms as well
as Deep Learning algorithms. Cross-dataset validation, a method of training and testing on entirely
different datasets, was also employed to further investigate the effectiveness of this method.

Keywords: age estimation, age-group ranking, cross-dataset validation, dimensionality reduction, face
processing, facial features.

1. Introduction

Ageing is a spontaneous and irreversible process of human life. This spontaneous and
irreversible nature makes the ageing process non-linear and therefore difficult to predict.
Thus, judging human age via facial appearance or other physical evaluations is difficult.
Humans develop an innate ability, early in life to predict age to a reasonable degree of
accuracy [18,20], but this task still seems difficult for computers. The task of predicting
or determining the age of an individual, given his/her facial image, is referred to in the
Computer Vision and Image Processing research community as age estimation or age
prediction. Automated age estimation has proven to have many interesting applications
in security and surveillance, age-specific human-computer interaction, preventing age
falsification, age-specific advertising etc. [2, 18].

Despite the success of deep learning for facial age estimation, the bulk of features are
mostly learned directly from individual images without considering feature correlations
across other images, especially with respect to the ages of those other images. This limits
the relevance of learned features to the required discriminatory factor of ageing.

In this work, an age-group ranking approach is proposed, which exploits the relation-
ships between faces across several age groups to enrich the extracted facial features for
age estimation. The intuition behind this method is the observation that humans esti-
mate ages by instinctively making comparisons between a given face with an unknown
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age and other faces whose ages are known. This process is usually implicit and very fast
with humans and it happens almost unconsciously. However, this process is influenced
by the amount of exposure or experience of the person trying to estimate the age of an-
other person. It could also involve scanning through faces in certain known age groups
and trying to fix the questioned face in one of those age groups. Although it is difficult
to completely model this process in a machine, we take intuition from this to develop
an age group ranking model through which a questioned face is passed, compared with
several age groups, and ranked accordingly. The resulting age-group rank is then used
to embellish facial features to enhance the age-learning and prediction processes. The
idea is to develop a model for extracting facial features that are age-discriminatory yet
low-dimensional such that they can be used to predict ages from input face images. Ex-
periments were performed on three publicly available facial ageing datasets FGnet [12],
PAL [32] and Adience [17,22] and a new dataset, FAGE, and the results obtained com-
pete significantly with the state-of-the-art facial age estimation methods.

The specific contributions of this work include:
1. An age-group ranking model that produces age-discriminatory yet low-dimensional

facial features from learned correlations between faces and age groups.
2. Deviation of Feature Values (DoFV) which allows age group ranks to be computed

without requiring training or prior knowledge of the age of an input image.
3. An indigenous dataset (FAGE) of age-labelled facial images.
4. Cross-dataset validation to demonstrate the generalisation of the age-group ranking

model.
The rest of the paper is organized as follows: Section 2 discusses related previous

works in the field of facial age estimation, Section 4 discusses the methodology, Section 5
presents the experiments, results and discussion and Section 6 concludes the paper.

2. Related previous works

2.1. Using direct facial features for age estimation

One of the earliest works on facial age estimation was the work of Kwon and Lobo [24]
which used face anthropometry and face wrinkles to describe the face and reported 100%
accuracy on a set of 47 high-resolution face images classified as ‘Babies’, ‘Young Adults’
or ‘Seniors’. Research has since continued to produce several methods for improving facial
age estimation using different face descriptors, different age representation methods, and
various machine learning algorithms.

In [25], the Active Appearance Model (AAM) was used to represent the face and
Principal Component Analysis (PCA) was used to obtain the deviation of each face
from the mean AAM face model. In [19], an ageing pattern subspace learning model was
proposed for facial age estimation. The authors defined an ageing pattern as a sequence
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of personal face images sorted by time. Guo et al. [21] used Biologically Inspired Fea-
tures (BIF) together with manifold learning techniques to estimate ages using Support
Vector Machine (SVM) for age classification and Support Vector Regression (SVR) for
age regression. Most of these methods, except for [19], directly used facial features of
individuals for age classification or regression without considering possible relationships
between faces with respect to age.

2.2. Using age ranking for age estimation

Some works have employed age ranking in various ways. In [8], the authors proposed
a ranking approach to age estimation based on the intuition that humans estimate the
age of an unknown individual by comparing his/her face to the faces of other individuals
whose ages are known, thus resulting in a series of pairwise comparisons across a set
of individuals with known ages. Based on this intuition, they proposed an age ranking
model which results in binary classification-based comparisons. They used an ordinal
ranking algorithm to reduce the ordinal ranking problem to a binary classification prob-
lem. [9] also proposed an age estimation algorithm that employed the relative order of
ages as well as the classification costs. They maintained ordinal hyperplanes which sep-
arated all images into two groups based on the relative order of their age labels and
used the cost of classification to find the best-separating hyperplane. In [3], an ethnic-
specific age group ranking method was proposed for age estimation. In [7], age ranks
were predicted based on a cost-sensitive hyperplane ranking algorithm, facial features
were represented in low-dimensional space by a scattering transform so that exact ages
are then predicted via category-wise age ranks. In [49], a deep learning model was used
to rank faces and to estimate ages from faces. Ranking-CNN was proposed in [10] as a
series of basic CNNs with binary outputs which were aggregated to obtain a final age
label. Their experiments were conducted by pretraining their basic CNNs on Adience
dataset [17] and then fine-tuning and validating it on the MORPH dataset with the best
MAE of 2.96 years. While that work employed the ordinal age ranking between face
pairs, ours employs ordinal relationships between each face and groups of faces in each
age group.

2.3. Using deep learning for age estimation

More recently, deep learning models such as Convolutional Neural Networks (CNN) have
been used to determine age from faces. [49] used a Scattering Network (a CNN variant) to
develop a deep ranking model from age estimation. [35] used CNN with mean-variance
and softmax losses to estimate ages from faces. [15] used CNN in a transfer learning
setting to predict apparent as well as biological ages. [48] used CNN to learn the ordinal
nature of ages for age estimation. In [47], a group-n age encoding was proposed, a
CNN with multiple classifiers was used to learn the several age groups and a Local Age
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Decoder was used to predict the exact ages. As accurate as deep learning models can be,
they are computationally demanding and often require large amounts of training data.

3. Problem and motivation

Despite the impressive performance of many of these deep learning models, we observed
that most of them failed to model the correlation of facial features with age groups as
well as the inter-age groups’ relationships. This is difficult for many of these models
because deep learning architectures learn their features directly from inputs. Those
which attempted to capture this relationship to an extent (e.g. [10,47,48]) still failed to
capture the inter-age group relationships as it concerns facial features.

Also, most age ranking works conducted pairwise comparisons between faces leading
to a large set of pairwise comparisons. Although DeepRank [49] does not rely on pairwise
ranks, it infers its ranks from single images which still limits the possibility of capturing
the correlation of faces within a larger set such as an age group. Secondly, most age-
ranking works employed some form of learning to perform the age-ranking on faces. We
also observed that in many cases, a reference image set was maintained for age ranking
which is a subset of the training set and thus limits the amount of information available
for age ranking. In [10], the age ranks were learned by several basic deep-learning
networks, the results of which were aggregated to obtain a final age estimate. Considering
the computational demand of deep networks, this could even be very expensive.

In this work, we propose an age-group ranking model which ranks face images by
comparing an input image with every image in an entire training set and, in an attempt
to represent age-group-specific features, derives an age group rank that is representative
of each age group. Thus, each input image is ranked with respect to every image in
a training set as well as with every age group in the training set. This provides a
representation of the correlation of input images with every image in the training set as
well as with every age group represented in the training set. Also, instead of learning and
predicting age group ranks, we derived the deviation of feature values (DoFV) between
compared faces and performed basic statistical computations on these values with respect
to age groups, thus reducing the computational overhead that could have been incurred
due to learning age ranks prior to learning exact ages.

4. Methodology

When a human is asked to estimate the age of a given facial image, several operations
come into play in the mind. Apart from the fact that humans possess an innate ability
to recognize age from the face, people generally tend to estimate age by comparing the
given face to some other faces whose ages are known. This comparison is part of the
innate ability and it is usually very fast and without prior thought or preparation. Thus,
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a person’s ability to correctly estimate age can be considerably impacted by his/her own
age vis-a-vis his/her life experience [20,38]. The more exposed and experienced a person
is, the better is his/her age prediction ability. Thus, the age prediction ability of an
adult is expected to be better than that of a child because of experience and the extent
of development. In developing the proposed age-group ranking model, we leveraged this
intuition.

Since a person’s age estimation ability is impacted by his/her age and life experience,
then the age ranking model can be enriched with more experience by providing more
reference images for age ranking. Thus, our proposed age group ranking model employs
its entire training image set in a leave-one-out fashion to rank images by their age
groups. By using the leave-one-out method it is assured that no face image is ranked
by comparison with itself. This is justifiable by the fact that the face whose age is in
question should be compared with faces whose ages are known and not with itself, since
its age is still unknown. Also, people within an age group tend to exhibit similar ageing
features, thus making it easier to rank images by age groups than by exact ages. In fact,
the sparse nature of ages in most facial ageing datasets makes it almost impossible to
obtain enough images for each exact age rank. Also, unlike most other works, our age
group ranking model does not learn age group ranks; rather, it obtains the deviation
of feature values (DoFV) from compared faces and obtains the means and standard
deviations of these deviation values within age groups which are then used to compute
age group ranks for an input image.

However, there is still the challenge that, since the age of the face image in question
is not known, it is difficult to decide which age group the image should be compared with
in order to obtain an age group rank. To overcome this, the age group ranking model
performs an exhaustive comparison of the questioned face with every face in every age
group (in a dataset) so that the face is enriched with a representation of its correlation
across various age groups. Consequently, the correlation of an input face with its actual
age group is also learned from its comparison with several face images in that age group.

4.1. The age learning problem formulation

In this work, age estimation is modelled primarily as a regression problem. Thus, suppose
we have a set A of face images and a set B of age labels ordered by the magnitude of
the age values, the sets A and B can be represented as follows:

A = {ai|i = 1, . . . , p} , (1)
B = {bj |j = 0, · · · , q ∧ ∀j, bj+1 > bj} , (2)

where ai is face image, bj is an age value, p is the number of face images and q is the
highest age value. The expression ∀j, bj+1 > bj indicates that B is an ordered set, i.e.,
every age value is greater than the previous age value in the set, since age values are
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Fig. 1. The age-group ranking model.

ordered in time sequence. This ordering is necessary for age group ranking as we will
see in subsection 4.2. Thus, the task of age estimation involves approximating an age
learning function, say f1, which appropriately maps each facial image in A to its age
value in B, according to

f1(ai) = bj , (3)

where ai ∈ A and bj ∈ B.

4.2. The age-group ranking model

While age learning explores the relationship between face images and ages, age group
ranking explores the relationships between each face image and other images in various
age groups. Fig. 1 is a graphical illustration of how the AGR model ranks an input face
by an age-group-ordered training set to derive different age group rank-types.

Following the definitions of the sets A and B above, we define a third set C of age

Machine GRAPHICS & VISION 33(1):21–45, 2024. DOI: 10.22630/MGV.2024.33.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.2


J. D. Akinyemi, O. F. W. Onifade 27

groups, according to

C = {cλ|λ = 1, · · · , w ∧ ∀λ, cλ+1 > cλ} , (4)

where cλ is an age group label and w is the number of age group labels.
Precisely, each cλ ∈ C is a subset of B. Thus each element of the set C of age groups

is itself a set (of age values) contained in the set B and the sets cλ are disjoint.
Further, the number of age groups in C is definitely less than the number of ages in

B, that is 1 < w < q.
The elements of each cλ is determined from B by a range parameter, τ . Thus, we

write cτ
λ ⊂ B.

Due to the nature of ageing and the challenge of insufficient data collection for its
studies, the range parameter τ could be the same throughout the set C or may change
for every cλ ∈ C. This is necessary to ensure that the number of faces available to
be mapped to each age group is relatively sizeable. However, as observed in (4), the
ordering of B is retained in C as well. In our experiments, the value of τ was empirically
determined based on the size of the dataset and the age distribution. This is necessary
to ensure that the number of face images and their ages in each age group are sufficient
for ranking a face, otherwise, we risk underrepresenting an age group.

Having defined the age learning function f1 in (3), we further define an age group
matching function h which maps faces to age groups, given the age of the face as follows:

h(ai, bj) = cτ
λ , (5)

so that
∀ai∃bj , such that f(ai) = bj , (6)

and
∀ai∃bj , cλ , such that h(ai, bj) = cτ

λ
. (7)

While the age learning function has to be approximated (by training), the age group
matching function simply associates a face (given its age) to its appropriate age group,
thus it requires no approximation or training. However, the age group matching function
only applies to training images or images whose ages are known and these are the images
that make up the reference image set for comparison during age group ranking. As earlier
stated, images to which an input image will be compared during age group ranking should
be images whose ages or age groups are known, we, therefore, used all training images as
the reference image set. The next challenge, however, is how to determine the age group
to which an input (test) image belongs and this is where an age group ranking function
steps in. It is noteworthy to state, therefore, that while the age group matching function
simply assigns a face to an age group given the exact age of the face, the age group
ranking function is responsible for capturing and representing the correlation of each
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face with each age group. So, the age group matching function requires prior knowledge
of the age of a given face so that it can construct the training set as a reference image
set organized into age groups, but the age group ranking function requires no prior
knowledge of the age of an input face.

Rather than approximating the age group ranking function by training, the function
is realized by computing some arithmetic and statistical measures to represent the cor-
relation of each face with each age group. Since the age group of the input (test) image
is supposedly unknown, by collecting such measures for all age groups, we are able to
capture the correlation of a face with various age groups. This further embellishes each
face with relevant information for learning the discriminatory properties of faces in terms
of their ages and age groups and reduces the overhead that could have been incurred by
learning the age group ranks. The result of this operation is a multivariate age group
rank for each face image representing its correlation with every age group.

Given the set A of face images and the set C of age groups as earlier defined, we
define a tuple A⃗ of sets of faces ordered by age groups as follows:

A⃗ =
(

Â1, Â2, . . . , Âw

)
, (8)

and
Âλ = {aλ1 , aλ2 , ..., aλg } . (9)

Each Âλ, (1 ≤ λ ≤ w), is a set of face images matched to the age group cλ, w is the
number of age groups as indicated in equation (5), each aλj

, (1 ≤ j ≤ g) is a face image
in the set Âλ and g is the number of face images in a particular age group. Since Âλ is a
set, it means the face images in it are not necessarily ordered by age, but are definitely
matched to the age group cλ.

Given a face image ai and a tuple A⃗ of faces ordered by their age groups, the age
group ranking function f2, which assigns an age group rank to image ai to obtain an
age-group-ranked face âi, is defined as follows:

f2(ai, A⃗) = âi . (10)

At this point, each face image ai has been transformed into a vector Xi of facial
features; therefore, the age group rank r̂i of each face ai is a vector obtained by computing
the Deviation of Feature Values (DoFV) between each face and every face in the tuple
A⃗ of age grouped faces. The several operations abstracted in f2() are detailed in the
following formulations.

Given a face ai, with unknown age and age group, the age group rank r̂i of ai is
obtained as follows:

ς(ai, aλj ) = ∆iλj , (11)
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Fig. 2. DoFV computation.

where ς is the DoFV function, aλj
is the jth face in the set Âλ of age-grouped faces and

∆iλj
is the obtained DoFV. DoFV is obtained by taking the absolute difference in feature

values between an input image ai whose age is unknown and an age grouped image aλj

whose age/age group is known. Then, for each age group, arithmetic and statistical
measures of the differences in feature values are obtained for this particular input image
and this provides the age group rank for the image at this particular age group. For
each input image, this is repeated for all age groups and a vector of ranks is obtained for
that input image, by concatenating the arithmetic and statistical measures of the DoFV
obtained from all age groups. Therefore, the age group rank contains information about
the statistical properties of images at feature, image, and age-group levels. Consequently,
the age group rank obtained for each input image corresponds to the correlation of the
feature values of the input image with the feature values of the various images in that
age group. Hence, the obtained age group rank is actually a measure of the correlation of
an input image with images of all age groups. With this information, the age learner (at
training) can learn the correlation of each face with every age group, thus being able to
better fit faces to their respective ages. Fig. 2 shows the DoFV computation procedure
as explained above.

Suppose the facial features of a face image ai is collected into the vector Xi of size n
and each feature value in the vector Xi is indexed by t, (1 ≤ t ≤ n), then the following
formulations can be stated for DoFV for a given face ai as follows:

∆t = |Xit − Xλjt
| , (12)

∆t being the DoFV for the tth feature in the facial feature vector Xi, obtained as the
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absolute difference between the tth feature vector in the input face and the tth feature
vector in the jth face of the age group Âλ.

Then, for each face feature vector Xi (1 ≤ i ≤ p; p being the number of face images),
two arithmetic and statistical measures of the DoFV are taken, namely the arithmetic
mean and the standard deviation denoted as ∆µ

iλj
and ∆σ

iλj
, respectively.

Subsequently, for each age group, four arithmetic and statistical measures are ob-
tained as mean of means (∆µµ

iλ ), mean of standard deviations (∆µσ
iλ ), standard deviation

of means (∆σµ
iλ ) and standard deviation of standard deviations (∆σσ

iλ ), as shown in equa-
tions (13) to (16), respectively.

∆µµ
iλ =

g∑
j=1

∆µ
iλj

g
(13)

∆µσ
iλ =

g∑
j=1

∆σ
iλj

g
(14)

∆σµ
iλ =

√√√√√ g∑
j=1

(∆µ
iλj

− ∆µ+
iλ )2

g − 1 (15)

∆σσ
iλ =

√√√√√ g∑
j=1

(∆σ
iλj

− ∆µ+
iλ )2

g − 1 (16)

For every face image ai, these four values are obtained for each age group resulting
in 4×w values (w being the number of age groups), since the age/age group of the query
face is supposedly unknown.

The age group rank r̂i is obtained by performing arithmetic multiplication and di-
vision operations between these four values in eight different ways. These eight values
are computed for each age group, giving a maximum of 8 × w (w being the number of
age groups) values making up the age group rank of each image. The selected eight
values, called rank-types, are computed as ϖiλ1 = ∆µµ

iλ × ∆σµ
iλ ; ϖiλ2 = ∆µσ

iλ × ∆σσ
iλ ;

ϖiλ3 = ∆µµ
iλ /∆σµ

iλ ; ϖiλ4 = ∆µσ
iλ /∆σσ

iλ ; ϖiλ5 = ∆µµ
iλ × ∆µσ

iλ ; ϖiλ6 = ∆σµ
iλ × ∆σσ

iλ ; ϖiλ7

= ∆µµ
iλ /∆µσ

iλ and ϖiλ8 = ∆σµ
iλ /∆σσ

iλ , where ϖiλ1 , ϖiλ2 , ..., ϖiλ8 are the eight rank-types.
For space constraints, we leave out the equations for these ranks as they can be easily
deduced from equations (13)-(16).

Consequently, the rank r̂i (1 ≤ i ≤ p; p being the number of face images) of each
image is made up by concatenating the obtained rank values of all the age groups for
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each rank type, as follows:

r̃ik = ϖi1k
⊕ ϖi2k

⊕ . . . ϖiwk
, (17)

where ϖi1k
, ϖi2k

, ..., ϖiwk
are the values for rank-type k (1 ≤ k ≤ 8) for each of the w

age groups and r̃ik is the resulting vector for rank-type k for all age groups. Finally, the
rank r̂i of an image ai for all rank types is given as

r̂i = r̃i1 ⊕ r̃i2 ⊕ ... ⊕ r̃it , (18)

where t is the number of different rank-types and in this case, t = 8. Eventually, the age
group rank obtained for a face image ai is concatenated with the facial features of ai to
obtain an age-group-ranked face image âi as stated in equation (17). Thus, we can write

X̂i = Xi ⊕ r̂i , (19)

where X̂i is the age-group-ranked feature vector of the age-group-ranked face âi. Equa-
tion (3) can therefore be rewritten as in equation (20) so that a learning algorithm can
then approximate this function:

f1(X̂i) = bj . (20)

The effect of this is that the learning algorithm has more age-relevant facial features
to learn from in approximating this function and thereby estimating the exact age of a
given face. Details of the learning algorithms are given in the next section.

Summarily, the entire process described produces enhanced features (low-dimensional
and discriminatory) that can be supplied as input to a learning algorithm to predict the
exact age of a given face. Links to the dataset and source code will be made available
after acceptance.

5. Experiments, Results, and Discussions

5.1. Experimental Settings

Our age group ranking (AGR) model was implemented in MATLAB R2016a. We
used Local Binary Patterns (LBP) [34], raw image pixel features and deep features
(VGG16 [45], Inception-V3 [46], Xception [11] and VGGFace [36]) as face descriptors
and used Support Vector Regression (SVR) with Radial Basis Function (RBF) kernel (to
capture the non-linearity of face ageing) for age learning. Experiments were performed
on four different facial ageing datasets, namely FGnet [12], which contains 1002 images
of 82 individuals, PAL [32], with 1046 images of 575 individuals and a new dataset,
FAGE (Facial expression, Age, Gender and Ethnicity) with 540 images of 328 individ-
uals, and Adience [17]. For Adience dataset, the age labels are not exact ages but age
groups, therefore in place of SVR, we used the Discriminant Analysis classifier with a
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quadratic kernel, henceforth referred to as Quadratic Discriminant Analysis (QDA), for
age group learning. For SVR, the age learning optimization algorithm used was Sequen-
tial Minimal Optimization. The estimated Lagrange multipliers for the support vectors
as well as the optimization coefficients were initialized to zero and training was done for
1000 iterations. For QDA, the misclassification cost was a square matrix whose values
were derived from the distance between the age classes and the prior probabilities were
empirically determined from the frequencies of the age classes.

Although our model was originally formulated for regression, in the case of Adience
dataset, the model is adapted to classification by using the supplied age groups both for
age group ranking and as the responses to be learned in age classification, so Adience
does not require the age group matching function of equation (5). As will be seen in
Tab. 1, the age groups in Adience are already too wide and too few (only eight of them),
so merging two or three age groups into one will only increase the age gap and reduce
the number of age groups available for age group ranking. As will be seen in the results,
this limitation affected the result of age group ranking on Adience dataset.

Our choice of these datasets is because they are publicly available and have long-
standing usage in age estimation research. FAGE was collected for this research, specifi-
cally to investigate age estimation on indigenous African faces (a problem rarely studied).
To investigate the generalization ability of the trained models, we also performed cross-
dataset validation (which is rarely done because of the peculiarities of each dataset)
between three of the four datasets studied (Adience was excluded as it does not include
exact ages).

For training and validation on FGnet, we adopted the popular subject-exclusive
Leave-One-Person-Out (LOPO) cross-validation protocol as described in [19]. For PAL
and FAGE datasets, we used 5-fold cross-validation and for Adience, we used the subject-
exclusive 5-fold cross-validation as suggested in [17]. The evaluation metrics that have
become standards for age estimation are Mean Absolute Error (MAE) and Cumulative
Score (CS). MAE is the average of the absolute difference between the actual and pre-
dicted ages while CS is the percentage of the dataset whose ages are correctly predicted
at a given error level. However, for Adience, the recommended and popular evaluation
metric is the percentage classification accuracy (ACC) and is usually divided into exact
accuracy and 1-off accuracy (taking as correct, predictions off by one age group). Thus,
with MAE, the lower the value, the better the performance, while with ACC and CS,
the higher the value, the better the performance.

Each dataset was split into age groups such that each age group spanned about five
years (i. e. τ ≈ 5) except in cases where there were not enough images to represent an
age group. For Adience, we simply used the age group classes that came with the dataset
as the age groups for ranking. Tab. 1 shows the division of the age groups within each
of the four datasets. Age group ranking was thus performed on each dataset using these
age group divisions, thus resulting in 11, 12, 10, and 8 age group ranks for FGnet, PAL,
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Tab. 1. Datasets divisions by age group.

Adience Dataset FAGE Dataset FGnet Dataset PAL Dataset
Age group # faces Age group # faces Age group # faces Age group # faces

0 – 2 2509 0 – 5 44 0 – 4 194 18 – 20 116
4 – 6 2140 6 – 10 97 5 – 8 153 21 – 25 274
8 – 13 2292 11 – 15 66 9 – 12 135 26 – 30 86
15 – 23 1887 16 – y20 71 13 – 16 130 31 – 35 44
25 – 36 5549 21 – 25 142 17 – 20 118 36 – 40 34
38 – 46 2429 26 – 30 63 21 – 24 64 41 – 45 38
48 – 58 937 31 – 35 27 25 – 28 51 46 – 50 34
60 – 100 872 36 – 40 10 29 – 32 38 51 – 55 40

– – 41 – 45 13 33 – 36 36 56 – 60 12
– – 46 – 80 7 37 – 40 23 61 – 70 162
– – – – 41 – 69 60 71 – 80 139
– – – – – – 81 – 93 67

Total 18615 Total 540 Total 1002 Total 1046

FAGE, and Adience datasets, respectively. For brevity, AGR refers to age group ranking
in all tables and figures where it appears.

A note on Adience dataset
According to [17], the Adience dataset is said to contain 26 580 images of 2 284 subjects.
However, the dataset downloadable from the authors’ website contains exactly 19 370
images (see Table I of [37]) out of which only 18 615 images are labelled with age groups.
This is further confirmed by our observation of the fact that the breakdown provided in
Table II in [17] does not in any way add up to 26 580 images. More so, we observed that
the age labels in the available dataset (from their website) are somewhat inconsistent with
what is provided in the paper. We worked around this to aggregate the scattered pieces of
age labels into coarse age groups and we eventually ended up with eight labels similar to
the ones indicated in [17], but some of our age groups covered wider ranges.

Face preprocessing and feature extraction
Each face image was preprocessed by converting it into an 8-bit grayscale image (if
coloured) resulting in pixel intensity values between 0 and 255. From the grayscale
image, the face was detected and aligned using a multi-stage method described in [4].
Before feature extraction, images were resized to various sizes depending on the feature
descriptor to be used. For LBP and raw image pixels features, images were resized to
120 × 100 pixels; for VGG16 and VGGFace features, images were resized to 224 × 224
pixels; for Inception-V3 and Xception, images were resized to 299 × 299 pixels. For raw
pixels and LBP features, feature histograms were obtained from ten (10) face regions
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defined around the forehead, the outer eye corners, the inner eye corners, the area under
the eyes, the area between the two eyes, the nose bridge, the nose lines, the cheek
area, the cheekbone areas, and the periocular face region. Features histograms from
each defined face region were aggregated and compacted using the method in [5]. We
selected compaction ranges of 5 and 10 for raw pixels and LBP, respectively. For LBP
features, LBP8,1 (8-pixel neighbourhood and pixel distance/radius of 1) was used. The
resulting features from each descriptor were then used to rank each face as described in
the previous section and to obtain age group ranks for each face for all age groups. The
resulting age group ranks were passed into SVR/QDA for age/age-group learning and
prediction. We then carried out comparative analyses of the performance of age group
ranking on each dataset and each feature descriptor.

5.2. Dataset-specific results

To investigate the impact of our AGR model, we trained SVR/QDA on:
1. the entire features vector before age group ranking (high-dimensional features);
2. the entire features along with the age group ranks (high-dimensional features);
3. the age group ranks alone (low-dimensional features).

Each feature type (before and after age group ranking), was normalized by scaling
the feature values to a narrow interval (0, 1) using the standard deviation and means of
the feature values. The MAEs obtained in each case are reported in Tab. 2. The value
of x in Tab. 2 refers to the number of rank-types multiplied by the number of age groups
in each dataset. So, from Tab. 1 and Tab. 2, it can be inferred that x = 64, 80, 88, and
96 for Adience, FAGE, FGnet, and PAL datasets respectively. From Tab. 2, it is obvious
that the age group ranks significantly reduced the age estimation error in all cases even
though it provides significantly low-dimensional features for age learning.

We further investigated the performance of each of the eight (8) rank-types for age
estimation and reported the results in Tab. 3. From Tab. 3, it can be observed that rank-
types 3, 4, and 6 generally gave the lowest MAE (values in boldface). For all raw pixel
features, rank-types 4 and 6 seem to give the best performance, except on PAL dataset
where rank-type 8 performed better than the two and that was the only instance where
rank-type 8 performed the best in the entire experiment. For LBP features, rank-types 3
and 6 gave the best performances. For both VGG16 and VGGFace features, rank-types
4 and 6 were the best. For Inception and Xception features, rank-types 3 and 6 were
the best; in fact, with Xception, rank-type 3 consistently outperformed rank-type 6 on
all datasets. On Adience dataset, the best performing rank-types are rank-types 3 and
6; on FAGE dataset, the best performing is rank-type 6; on FGnet dataset, the best
performing are rank-types 3, 4, and 6, but predominantly 4; while on PAL dataset, the
best performing are rank-types 3, 4, 6 and 8 (but the good performance of rank-type 8
is more like an outlier in the entire set of experiments).
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Tab. 2. MAE of age estimation results before and after age group ranking. Ftr. stands for feature(s)
and dim. stands for dimensionality.

ACC [%] MAE (years)
Experiment setting Ftr. type Ftr. dim. Adience FAGE FGnet PAL
Before AGR Raw pixel 520 (31.30, 56.79) 7.02 8.43 14.44
(features only) LBP 260 (29.59, 58.09) 6.56 8.36 12.32

VGG-16 4096 (19.06, 52.12) 6.25 6.94 10.39
VGGFace 2622 (18.89, 43.31) 5.18 4.65 5.07
Incep-V3 2048 (22.67, 41.97) 6.49 6.14 12.34
Xception 2048 (19.82, 36.51) 6.97 6.78 11.96

After AGR Raw pixel 520+x (36.93, 59.93) 6.72 8.36 13.23
(features + ranks) LBP 260+x (43.83, 64.54) 4.29 4.99 7.29

VGG-16 4096+x (19.25, 52.18) 6.10 6.77 10.19
VGGFace 2622+x (18.71, 42.52) 5.05 4.52 5.00
Incep-V3 2048+x (25.06, 45.72) 6.44 5.83 12.05
Xception 2048+x (17.93, 33.83) 6.95 6.26 11.68

After AGR Raw pixel x (60.24, 71.70) 6.22 7.27 12.44
(ranks only) LBP x (61.75, 75.48) 3.11 2.98 5.17

VGG-16 x (53.02, 74.94) 3.55 3.51 6.36
VGGFace x (67.90, 90.28) 3.71 2.84 4.52
Incep-V3 x (52.47, 75.38) 6.70 3.25 13.37
Xception x (52.68, 75.26) 6.88 3.43 11.60

This is significant as it shows that we can even lower age estimation error by using
just one of the rank-types, thereby dropping the dimension of features needed for age
learning from x to x/8; meaning just 8 feature dimension for Adience, 10 for FAGE,
11 for FGnet and 12 for PAL datasets. One observable similarity in the computation
of these three best-performing rank-types is the fact that they all involve either the
standard deviation of means (σµ) or the mean of standard deviations (µσ) as described
in Subsection 4.2. This shows that the combination of statistical and arithmetic measures
of the facial features properly captured the relationship between facial features within
and across age groups in low dimensions.

As expected, the performance of these rank-types on Adience is still relatively poor.
This is due to the few age groups vis-a-vis the dataset size – there are only 8 age groups
for ranking over 18 000 images. For this reason, we investigated the combination of
the different best-performing rank-types as well as the best-performing feature types on
Adience and reported the results in Tab. 4. Interestingly, with the proper combinations
of rank-types as well as feature types, the performance improves significantly and the
best result was obtained with the combination of rank-types 3 and 6 on the combination
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Tab. 3. MAE of age estimation with each rank-type (rt). Only exact ACC is shown for Adience.

Ftr. type ACC [%] MAE (years)
rt 1 to 8 Adience FAGE FGnet PAL
Raw pixel 48.79, 52.64, 53.58, 5.43, 6.17, 4.52, 6.68, 7.05, 5.51, 13.61, 15.07, 13.45,

55.63, 28.69, 62.35, 4.71, 6.11, 4.23, 4.93, 7.42, 5.02, 13.35, 10.44, 11.77,
26.56, 33.45 7.15, 6.64 9.25, 8.25 13.3, 9.84

LBP 51.34, 30.69, 57.05, 1.93, 2.98, 2.40, 1.88, 3.35, 2.17, 4.21, 7.92, 3.53,
36.47, 28.95, 49.70, 3.18, 4.74, 1.71, 3.27, 7.63, 1.79, 7.05, 10.14, 3.29,
24.58, 34.77 7.21, 4.88 9.61, 5.44 12.99, 8.09

VGG16 38.13, 43.11, 45.72, 3.13, 2.21, 2.91, 5.32, 3.71, 3.30, 9.57, 7.22, 5.72,
48.77, 36.43, 46.38, 2.57, 5.02, 2.10, 2.55, 5.61, 2.67, 5.10, 7.27, 5.71,
35.64, 38.80 6.78, 4.45 6.92, 5.85 11.11, 8.49

VGGFace 52.48, 54.41, 66.99, 3.22, 2.95, 3.14, 3.77, 3.41, 2.05, 6.27, 5.87, 4.27,
67.82, 58.04, 63.22, 3.01, 4.36, 2.20, 1.96, 3.74, 2.09, 3.99, 4.47, 4.40,
30.08, 31.82 7.10, 7.09 7.67, 6.86 11.84, 13.66

Incep-V3 42.30, 47.17, 47.02, 5.76, 6.42, 5.25, 4.29, 4.27, 2.44, 14.82, 14.30, 11.03,
45.12, 39.04, 49.65, 5.48, 5.97, 5.04, 2.61, 5.52, 2.76, 11.34, 12.93, 11.73,
35.41, 38.49 7.48, 6.36 7.74, 6.84 15.23, 14.26

Xception 36.41, 45.20, 46.62, 7.20, 6.95, 5.96, 5.02, 4.31, 2.84, 12.44, 11.95, 9.72,
45.14, 39.33, 46.61, 5.95, 6.62, 5.99, 2.84, 5.56, 3.37, 9.97, 10.65, 9.93,
36.36, 39.37 7.10, 7.00 7.80, 6.17 14.03, 13.53

of VGGFace, LBP, Raw Pixel, Inception, and Xception features. Fig. 3 shows sample
images from the four datasets for which age prediction with AGR succeeded and those
for which it failed using the best-performing features.

Tab. 5 shows some of the most recently reported state-of-the-art results on Adience,
FGnet, and PAL datasets (FAGE is a relatively new dataset, so there are no existing
methods on it to compare with). In the table, the asterisk (*) in the third column (ftrs.
dim.) refers to those in which the exact feature dimension was not explicitly reported in
the literature. However, it is common knowledge that most of the deep learning features
are in the order of thousands, while our method uses features in the order of tens. From
Tab. 5, it is seen that our method competes significantly with the best of these methods
achieving the lowest MAEs on FGnet (1.79 years) and PAL (3.29 years) and the best
exact accuracy (85.1%) on Adience; VLRIX stands for the combination of VGGFace,
LBP, Raw pixel, Inception and Xception features as seen in the third to the last row
of Tab. 4. We consider this a significant achievement considering the highly reduced
feature dimension generated by our AGR model and the fact that it achieves this even
with fairly simple feature extraction techniques (raw pixel and LBP), thus making our
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Tab. 4. Different combinations of rank-types and feature types on Adience dataset. Abbreviations:
I – Inception, L – LBP, R – Raw pixel, V – VGGFace, V16 – VGG16, X – Xception.

Rank-types Feature types Ftr. dim. ACC (%)
Exact± std. 1-off± std.

3, 4 All 96 83.7±2.10 93.2±1.07

3, 6 All 96 84.0±2.79 93.9±1.26

4, 6 All 96 82.1±2.91 93.1±1.54

3, 4, 6 All 144 83.7±2.56 93.6±1.22

3, 4 X, I 32 55.8±4.31 78.4±2.23

3, 6 X, I, L, R 64 79.4±2.12 89.5±1.18

4, 6 V16, V, L, R, I 80 83.2±2.88 93.4±1.34

4, 6 V16, V, L, R, X 80 83.4±3.02 93.6±1.47

3, 6 V16, V, L, R, X 80 84.8±3.11 94.2±1.21

3, 6 V16, V, L, R, I 80 84.5±2.88 94.0±1.38

3, 6 V, L, R, I, X 80 85.1±2.33 94.6±0.88

3, 4, 6 V, L, R 72 85.5±3.12 94.3±1.15

3, 4, 6 V, L, R, V16 96 84.6±2.99 93.7±1.39

results more easily reproducible. All these results had been achieved with features of
relatively low dimension – 80 on Adience, 11 on FGnet, and 12 on PAL.

CS often gives a better picture of the performance of an age estimation algorithm at
different levels of the prediction error. We plotted our CS scores along with some of the
best results on FGnet for which CS plots were reported and compared the results. Fig. 4
further confirms the significant improvement offered by our AGR model (AGR-LBP-r6
and AGR-VGGFace-r4) on FGnet. At an error level of 0, only EBIF [14] started ahead
of the AGR model and AGR overtook it at error level 1. AGR performs at par with
GEF up to error level 1 after which AGR significantly overtakes. Generally, from error
level 2 upwards, AGR outperforms all the compared methods and finishes far ahead of
them with CS of 95% at error level 5 and 99% at error level 10. Previous works on PAL
rarely report their CS scores so there will be no basis for such comparisons, thus we leave
out the CS curve on PAL. Also, because the FAGE dataset is new, there are no previous
results with which we can compare it.

5.3. Cross-Dataset Validation

To better study the generalization of our model, we performed cross-dataset validation
in two settings:
1. on FGnet and PAL datasets;
2. on FGnet, PAL, and FAGE datasets.
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Tab. 5. Comparison with previous results on Adience, FGnet and PAL. rt: rank-type. Note the 3rd
column: filters dimension.

filters dimension ACC [%] MAE (years)
Method Year (Adience, FGnet, PAL) Adience FGnet PAL

(Exact, 1-off)

EBIF [14] 2011 EBIF* – 3.17 –
W-RS [50] 2013 100–900 – – 5.99
Joint-Learn [6] 2014 LBP* – – 5.26
DeepRank [49] 2015 500 – – 4.31
GEF [30] 2015 LBP,BIF,HOG* – 2.81 –
CNN [26] 2015 CNN ftrs.* (50.7, 84.7) – –
DA [39] 2017 VGG-16 ftrs.* (60.0, 94.5) – –
DNN [41] 2017 VGG-16 ftrs.* (62.8, 95.8) – –
ODFL [28] 2017 CNN ftrs.* – 3.89 –
All-in-one [37] 2017 CNN ftrs.* – 2.00 –
DEX [40] 2018 VGG-16 ftrs.* (64.0, 96.6) 3.09 –
Group-n [47] 2018 VGG-16 ftrs.* – 2.96 –
DRF [42] 2018 VGG-16 ftrs.* – 3.85 –
CNN2ELM [16] 2018 CNN ftrs.* (66.49, –) – –
Joint-Learn [31] 2018 LBP(8,1) – – 5.26
MVL [35] 2018 CNN ftrs.* – 2.68 –
BridgeNet [27] 2019 CNN ftrs.* – 2.56 –
TransLearn [15] 2019 4096 VGG-16 ftrs. – – 3.79
SORD [13] 2019 VGG-16 ftrs.* (59.6, –) – –
ODL [29] 2019 VGGFace ftrs.* – 2.92 3.99
DDRF [43] 2019 VGG-16 ftrs.* – 3.47 –
C3AE [51] 2019 * – 2.95 –
DOEL [48] 2020 ResNet ftrs. * – 3.44 –
DLC [1] 2020 CNN ftrs.* (83.1, 93.8) – –
SR [33] 2020 CNN ftrs.* – – 8.33
DCN [23] 2022 VGG ftrs.* – 2.13 –
ABC+Swin [44] 2023 Transformer ftrs.* (56.1, –) 2.52 –
AGR-LBP (rt6) Ours [8, 11, 12] (49.7, 68.9) 1.79 3.29
AGR-VLRIX (rt3+rt6) Ours [80, –, –] (85.1, 94.6) – –
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Fig. 3. Sample images and their true/predicted ages. from the 1st to the last row: FAGE, FGnet, PAL
and Adience. Predicted ages are in parentheses.

In both settings, we used LBP (rank-type 6) and VGGFace (rank-type 4) features since
they were the two best-performing features. In the second setting, we trained and tested
the model on a combination of FGnet, PAL, and FAGE datasets. The Adience dataset
is not used for Cross-dataset validation because it does not contain exact ages and is
therefore unsuitable for a regression task as is the case with the other 3 datasets.

In setting 1, since both datasets cover separate age ranges, we selected the intersection
of the age ranges covered (i. e. 18-69 years) and selected all faces falling within this age
range. We found 362 FGnet images and 820 PAL images within this age range, making
1182 images altogether. We then ranked this new set of 1182 images on the entire set of
FGnet and referred to it as FG-ranked, we also ranked it on the entire set of PAL images
and referred to it as PAL-ranked. We trained and tested FG-ranked and PAL-ranked
datasets using 5-fold cross-validation and obtained MAEs of 8.86 and 6.27 years with
LBP features and 4.55 and 4.32 years with VGGFace features on FG-ranked and PAL-
ranked datasets, respectively. As expected, the MAEs are higher in the cross-dataset
environment, however, the result is worse when FGnet images are used to rank the data.
This is because FGnet has 44 images less than PAL and FGnet contains 7 missing ages,
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Fig. 4. CS curves of best-reported works on FGnet

while PAL contains only 1 missing age. PAL also covers a wider age range and contains
more images for its age groups than FGnet. This goes to show that with more images
available for age ranking and more ages represented within each age group, AGR offers
better performance.

In the second setting, because of the differences in the number of age groups in each
of the combined datasets, we created a new set of 15 age groups covering all the age
groups in all three datasets and ranked each image in the combined dataset on this.
There are a total of 2715 images in the combined dataset. We trained and tested with
5-fold cross-validation and obtained MAEs of 4.03 years and 4.33 years for VGGFace and
LBP, respectively. However, the increased error rate is attributed to the ethnic diversity
of the three datasets and the possibility that the age groups have become relatively too
much for the dataset size.

The improved performance of VGGFace over LBP is an indication of the expressive-
ness of deep features in more complicated settings such as cross-dataset validation and
with more data (as in setting 2). Generally speaking, the MAEs in both cross-dataset
validation settings did not soar beyond expectations despite the wide inter-dataset vari-
ations; this is a pointer to the robustness of the AGR model and the intuition of age
group ranking.
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6. Conclusion

In this work, an age group ranking approach for facial age estimation was developed.
The developed model uses the intuition that age can be better estimated from faces
when there is sufficient information about other faces in several different age groups to
rank a query face. The developed method was tested and validated on four datasets
(FAGE, FGnet, PAL, and Adience). Experiments were performed on these datasets
using standard protocols and the results compete significantly with the state-of-the-
art age estimation methods. We further investigated the generalization of the method
using cross-dataset validation and it turned out that the developed AGR method gives
relatively good performance even across different datasets. The intuition of age group
ranking developed here is superior to the existing age ranking methods in that age group
ranking ranks images by age group rather than by exact ages thus making more data
available for an image to be ranked. This is done without the need for prior knowledge
of a particular age group rank via learning as the age ranking model uses available
aging information from all age groups to rank a given face. More interestingly, the AGR
model does not depend extensively on deep learning models as in current works but still
competes significantly with deep-learning-based age estimation models. The findings
from this work show that despite the impressive results of deep learning in recent times,
the impact of age group ranking on face-based age estimation is indeed significant and
should not be discarded. This work has also shown that age estimation via age-group
ranking is more intuitive and gives better performance than direct age estimation from
a single face.

The major limitation of the AGR model is that it does not fit directly into a deep
learning architecture as it requires features to be extracted and enhanced before it is
been passed to a classifier/regressor. However, the AGR model works when on simple
features such as raw pixels as well as deep features as the features are further enriched
with age group information before they are passed into a classifier/regressor.

Future works could consider building deep learning models that can explore the
relationship between faces in terms of their age groups while estimating the age of a
given face image. Future works could also consider using more rank-types and different
age groupings to understand the impact of the number of age groups vis-a-vis the age
range and the number of images within each age group. Considering the impact of the
statistical measures of variation used in DoFV, there is a need to explore more statistical
measures that could improve age estimation accuracy.
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