
An Improved Generative Design Approach
based on Graph Grammar for Pattern Drawing

Yufeng Liu∗, Yangchen Zhou, Fan Yang , Song Li and Jun Wu
College of Information Engineering, Nanjing University of Finance and Economics, Nanjing, China

∗Corresponding author: Yufeng Liu (yfengliu28@126.com)

Abstract Generative design is used to efficiently generate design solutions with powerful computational
methods. Generative design based on shape grammar is currently the most commonly used approach,
but it is difficult for shape grammar to formally analyze the generated pattern. Graph grammar derived
from one-dimensional character grammar is mainly used for generating and analyzing abstract models
of visual languages. However, there is a significant gap between the generated node-edge graphs and
the representation of shape appearance. To address these problems, we propose an improved generative
design approach based on virtual-node based continuous Coordinate Graph Grammar (vcCGG). This
approach defines a new type of grammatical rule named node transformation rules to convert nodes
into shapes with node transformation applications. By combining node transformation applications and
L-applications in vcCGG, we can generate a node-edge graph as the structure of the pattern through
L-applications, and then draw the shape outline, next adjust the positions of these shapes, thus relating
abstract structures and the physical layouts of visual languages. At the end of the paper, we provide an
example application of this approach: generating an illustration from Emma Talbot using a combination
of node transformation applications and L-applications.

Keywords: generative design; graph grammar; shape grammar; node transformation rules; pattern
drawing.

1. Introduction

Design is a complex solution process that involves professional knowledge, innovative
ability, comprehensive experience, aesthetic literacy, and use of scientific technology.
With the rapid development and popularization of new intelligent design automation
technologies such as machine learning, additive manufacturing, artificial intelligence,
and cloud computing, design approaches are constantly expanding. As a developing
design approach, generative design has been extensively studied in academia. Since the
introduction of generative design based on shape grammar, as proposed by G. Stiny
and J. Gips in 1971 [18], generative design has been introduced into different fields such
as architectural design [5], product customization design [9], and visual communication
design [14].

Shape grammar is a generation system oriented toward design. It is a design infer-
ence approach based on rules, using simple shapes as basic elements to establish the
rules for the generation of complex shapes. The foundational rules involve spatial trans-
formations such as translation, scaling, rotation and mirroring, which make one shape
part of another shape. With limited predefined rules, there can be an infinite number of

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://orcid.org/0000-0001-6861-9596
https://orcid.org/0000-0003-1765-4409
mailto:yfengliu28@126.com
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

4 An improved generative design approach based on graph. . .

designs generated through shape grammar. Following predefined rules, shape grammar
can iteratively replace shapes to generate various patterns. However, shape grammar
can generate only the shapes that consist of simple shapes such as lines, points and
rectangles. Therefore, it is not yet widely used in computer-aided architectural design
(CAAD) applications. Most designers design buildings manually or semi-automatically
on CAD platforms, e.g. Revit and AutoCAD.

Shape grammar focuses on generative design, while graph grammar derived from
one-dimensional character grammar focuses on modeling and analyzing the syntax and
semantics of visual languages. Shape grammar supports only unidirectional workflows.
It takes the initial shape and transformation rules as inputs to generate a preliminary
design and then adjusts the preliminary design by the rules to generate the final design.
In contrast, graph grammars have a bidirectional workflow across derivation and speci-
fication. Similarly, the graph grammar derivation process derives graphs by repeatedly
applying given productions. The graph grammar reduction process, on the other hand,
takes graphs and productions as inputs to parse the graphs by applying productions in a
bottom-up fashion. However, there is a significant gap between the generated node-edge
graphs and the representation of shape appearance for graph grammar.

In our previous work, we proposed an enhanced grammar system for shape gener-
ation [12]. This system defines shape rules to transform edges into shapes by shape
applications, which builds an inherent relation between abstract structures and physical
layouts of visual languages. The main weakness of this system is the position invariance
that reduces the flexibility of design. To address the aforementioned issue, our research
focuses on an analysis of semantic relations among shapes that make up a pattern. We
propose a generative design approach based on vCGG (virtual-node based Coordinate
Graph Grammar) [10]. Our approach defines a new type of grammatical rule named
node transformation rules to convert nodes into shapes with node transformation appli-
cations. By combining node transformation applications and L-applications in vCGG, we
can generate a node-edge graph as the structure of the pattern through L-applications,
and then draw the outlines of shapes with node transformation applications, next ad-
justing the positions of these shapes.

In summary, this paper presents an improved generative design approach that au-
tomatically generates or validates patterns conforming to the specified rules. First, the
structure of the target pattern is generated through vCGG, and then the nodes are
converted into shapes according to the node transformation rules. Finally, the position
of the shape is adjusted based on the edge attributes, and the target pattern is gener-
ated. This approach can set L-applications and node transformation rules in advance for
drawing patterns, and can also formally validate a target pattern to determine whether
it belongs to the pattern generated by the specified rules.

This paper addresses the aforementioned problems and makes the following contri-
butions:

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

Y. Liu, Y. Zhou, F. Yang, S. Li, J. Wu 5

• An improved approach for grammar specification, grammar induction, generation and
validation of pattern based on the vCGG formalism.

• A complete graph grammar for specifying and analyzing patterns that are composed
of multiple geometric shapes.

• According to the concrete requirements, productions and transformation rules are
designed to achieve customized designs.
The rest of this paper is organized as follows. Section 2 reviews the related works,

including patterns generated by shape grammars, several typical graph grammars and
our approach. Section 3 introduces the approach framework, including vCGG and node
transformation rules. Next, Section 4 gives an example of the Cloud & Bunny rabbit
pattern from Emma Talbot. Section 5 compares our approach and other generative
design approaches. Finally, Section 6 concludes the paper and mentions future work.

2. Related works

In 1971, G. Stiny and J. Gips proposed that shape grammar is a generative system ori-
ented toward design. G.Stiny detailed the concept and entire application process of shape
grammar in 1980 [17]. Design based on shape grammar was first applied in the field of
architectural design. M. Agarwal and J. Cagan [1] proposed the coffee machine shape
grammar as the first application of shape grammar in product design, demonstrating its
use for generating single products before gradually being applied to product design more
broadly. The coffee machine grammar is a parametric grammar consisting of 100 man-
ually created rules and labeled two-dimensional shape grammar implemented through
a Java-based application program. Its objective is to provide designers with selectable
design inspirations during the conceptual exploration phase. However, this method has
limitations because its conceptual nature lacks practical production benefits, resulting
in visual operational difficulties due to numerous labels.

H. H. Chau [3] concluded, through analysis of various electronic and fast-moving
consumer products, that the appearance of these products is largely determined by
straight lines, arcs, and their orthogonal projections. M. Pugliese and J. Cagan [13]
summarized previous research methods and found that grammar has become a design
tool for creating structures and functional requirements. However, there is no specific
method for establishing and maintaining product brand characteristics in the field of
product generation design. The field faces two challenges: engineers and designers need
tools to help understand, express, and maintain product brands, and engineers, designers,
and brand strategists need a common platform to discuss product brands. X. Chen
et al. [4] focused on geometric shape in packaging design, proposing an application of
shape grammar for packaging design research with personal care bottles as an example in
experimentation. S. Wannarumon et al. [20] proposed a method for generating jewelry
designs using shape grammar to support designers in exploring shapes as inspiration

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

6 An improved generative design approach based on graph. . .

sources with ring design as practice examples. S. Garcia and L.Romao [7] coded various
types embedded in multifunctional chair classes to develop generative design tools usable
during the chair concept design stage. Y. Yu et al. [21] proposed a method of generating
origami pattern based on shape grammar recursive applications of shape rewriting rules.
In addition, shape grammar provides a perspective and modeling technique for creating
origami tessellation patterns.

Compared to shape grammar in the field of design, graph grammar has the character-
istics of automated generation and specification. Designers can explore different design
options by defining symbols, rules, and parameters, quickly generate a large number of
design schemes, and make adjustments and modifications when necessary to improve
design efficiency and innovation. H. Bunke [2] proposed attributed programmed graph
grammars as a generative tool in image understanding. Based on that, an image un-
derstanding system was built to extract descriptions from input images, where a system
consists of two major subsystems for preprocessing and segmentation, and understand-
ing, respectively. H. Göttler et al. [8] described the data structures in terms of attributed
graphs and their changes in terms of attributed graph productions in an object-oriented
manner, applying Graph Grammar to CAD systems.

In the field of architectural design, X. Wang et al. [19] presented a generic approach
for grammar specification, grammar induction, validation, and design generation of
house floor plans using their path graphs based on the reserved graph grammar for-
malism (RGG). This approach validates floor plans in different styles with user-specified
graph productions and the derivation process is capable of generating floor plan designs.
G. Ślusarczyk [23] proposed a framework for supporting the design process by defining
design requirements over graph-based representations of designs. First, hierarchical lay-
out graph grammars are used to generate hierarchical layout hypergraphs (HL-graphs)
that represent designs; then, local and global graph requirements are defined over HL-
graphs, which correspond to design constraints. The proposed ontological interpretations
transform first-order and monadic second-order logic formulas expressing design criteria
into equivalent local and global graph requirements. The satisfiability of graph require-
ments by representations of designs allows for checking correctness of design solutions. In
subsequent research, G. Ślusarczyk et al. [24] proposed CP-graph grammars to support
building layout design, where the grammar rules are combined with semantic-driven
embedding transformations and the derivations in this type of grammars are defined.
The possibility of relating attributes of right-hand sides to that of the left-hand sides
enables the system to capture parametric modelling knowledge. The proposed gener-
ative method allows the system to automatically model alternative floor layouts with
similar structures but different geometry and parameters, which can be easily adapted
to different use case scenarios and environmental conditions.

Apart from the architectural design, graph grammar has been applied to different

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

Y. Liu, Y. Zhou, F. Yang, S. Li, J. Wu 7

fields, including mechanical parts description [6], XML validation [16], cluster analy-
sis [22], entity-relationship (E-R) diagram validation [11], and Web pattern recognition
and validation [15]. Overall, graph grammar is a powerful tool for defining and validat-
ing graph models, hence the generative design method in this paper is proposed within
the framework of graph grammar.

Because patterns are composed of various styles of shapes, there is a positional cor-
relation between each shape. The structure of patterns is generated through graph
grammar, which abstracts the positional relationships between various shapes. Then
we convert the node-edge graph generated by graph grammar into shapes through node
transformation rules, enabling graph grammar to generate shapes and draw patterns.
Moreover, graph grammar parsing can check whether a target pattern belongs to the
pattern set defined by the rules.

3. Improved generative design approach framework

VCGG is divided into virtual-node based discrete Coordinate Graph Grammar (vd-
CGG) and virtual-node based continuous Coordinate Graph Grammar (vcCGG) based
on different granularity descriptions of spatial semantics. Due to the strict coordinate
matching mechanism required in this approach, we choose vcCGG as the basic frame-
work. Below is the theoretical framework of the improved approach.

Definition 3.1. A directed graph G on a given label set L is a 2-tuple (N, E).
L consists of a virtual label set Lv and a real label set Lr, where Lr consists of a non-
terminal label set LNT and a terminal label set LT . N is a node set and consists of a
virtual node set NV and a real node set Nr, where Nr consists of a nonterminal node set
NNT and a terminal node set NT . E is a directed edge set.

Mapping for G includes the following:
• fNL : N → L is a mapping that assigns a label l ∈ L to node n ∈ N ;
• fNC : N → R × R is a mapping that assigns a 2D coordinate c ∈ R × R to node

n ∈ N ;
• fENs

: E → N is a mapping that assigns the start node to directed edge e ∈ E;
• fENe

: E → N is a mapping that assigns the end node to directed edge e ∈ E.

Definition 3.2. A production p: GL := GR is made up of a left-hand-side (or left
graph) GL and a right-hand-side (or right graph) GR. For a production, there exists a
bijection fNN : GL.Nv ↔ GR.Nv between Nv ∈ GL and Nv ∈ GR, where GL.Nv is a
virtual node set Nv of GL and GR.Nv is a virtual node set Nv of GR.

A production also satisfies the following conditions:
• ∀n((n ∈ GL.Nv) ⇒ (fNC(n) = f ′

NC(fNN (n)))), where fNC is a mapping that assigns
a coordinate to node n ∈ GL and f ′

NC is a mapping that assigns a coordinate to
n ∈ GR;

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

8 An improved generative design approach based on graph. . .

1 1

2 2

a a b c

(0,0)

(0,-4)

(0,-2)

(0,0)

(0,-4)

(0,-2)

(2,-2)(-2,-2)

:=

Fig. 1. vcCGG production.

1

2

a

b

c

a

(3, 0)

(3, -1)

(3, -2)

(0, 0)

(0, -1)

(0, -2)

Fig. 2. The isomorphic graphs in vcCGG.

• ∀n((n ∈ GL.Nv) ⇒ (fNL(n) = f ′
NL(fNN (n)))), where fNL is a mapping that assigns

a label to node n ∈ GL and f ′
NL is a mapping that assigns a label to n ∈ GR;

• ∀n1, n2((n1, n2 ∈ GL.Nv) ∧ (n1 ̸= n2) ⇒ (fNL(n1) ̸= fNL(n2)));
• ∀n1, n2((n1, n2 ∈ GR.Nv) ∧ (n1 ̸= n2) ⇒ (f ′

NL(n1) ̸= f ′
NL(n2))).

VcCGG stipulates that there is a bijection between the virtual node sets at GL and
GR, and the corresponding nodes have the same labels and coordinates. In addition,
to avoid ambiguity during graph embedding, each virtual node in the same graph must
have a unique label, which can be represented by a unique integer.

For example, Fig. 1 is a legal vcCGG production, where the dashed circle represents
the virtual nodes and the solid circle represents the real nodes. There is a bijection
between the left and right graphs of the production, and the corresponding nodes have
the same labels ‘1’, ‘2’ and equal coordinates (0, 0) and (0, 4).

Definition 3.3. Let G and Q be directed graphs. G and Q are isomorphic, denoted
as G ≈ Q, if and only if the following conditions hold:

• There exists a bijection between the nodes of G and Q, namely, fNN : G.N ↔ Q.N ;

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

Y. Liu, Y. Zhou, F. Yang, S. Li, J. Wu 9

• There exists a bijection between the edges of G and Q, namely, fEE : G.E ↔ Q.E;
• ∀n((n ∈ G.N) ∨ (n ∈ Q.N) ⇒ (fNL(n) ∈ Lv) ∨ (f ′

NL(fNN (n)) ∈ Lv) ∨ (fNL(n) =
f ′

NL(fNN (n)))), where fNL is a mapping that assigns a label to node n ∈ G; f ′
NL is

a mapping that assigns a label to n ∈ Q;
• ∀e((e ∈ G.E) ∨ (e ∈ Q.E) ⇒ (fNN (fENs

(e)) = fENs
(fEE(e))));

• ∀e((e ∈ G.E) ∨ (e ∈ Q.E) ⇒ (fNN (fENe (e)) = fENe(fEE(e)))).

When determining whether a pair of graphs satisfies the isomorphic condition, virtual
nodes have a higher abstract degree than real nodes and can match any labeled node.
Fig. 2 is an example of graph isomorphism in vcCGG, where all nodes and edges satisfy
a bijective relationship. Real node ‘a’ and the corresponding nodes must have the same
label, while virtual nodes ‘1’ and ‘2’ can match any labeled node. In Fig. 2, node ‘1’
matches ‘b’ and node ‘2’ matches node ‘e’.

Definition 3.4. Let G be a directed graph referred to as the host graph and Q be the
subgraph of G. Let GL|R be the left or the right hand-side of a production. Q is called
a redex of G with respect to GL|R, denoted as Q ∈ redex(G, GL|R) if and only if the
following conditions hold:

• Q ≈ GL|R;
• ∀n((n ∈ Q.N ∧ ((f ′

NL(fNN (n)) ∈ Lr)) ⇒
(ds(n) = ds(fNN (n))) ∧ (de(n) = de(fNN (n))));

• ∀n1, n2((n1, n2 ∈ Q.N) ⇒ (fNC(n1) − fNC(n2) = f ′
NC(fNN (n1)) − f ′

NC(fNN (n2)))).

The nodes of a redex could be divided into two types: the nodes matched by the vir-
tual nodes (context nodes) of the production, and the nodes matched by the non-virtual
nodes (inner nodes) of the production. All the edges between the redex and the rest
host graph are only allowed to be connected with the former type of nodes.

Definition 3.5. A L/R application to graph G is a process that generates graph
G′ using production p: GL := GR, denoted as G →p G′(L-application) or G →p G′(R-
application).

The L-application in vcCGG is as follows:
1. Generate an instance of the production as a copy of the production.
2. Translate the coordinates of the instance’s GR by the offset between any matched

nodes in the redex Q and GL.
3. Delete edges in the redex Q and nodes that match the real nodes in GL from the host

graph.
4. According to the mapping between the virtual node of GL and the redex Q, glue the

virtual node of GR to the corresponding node in the redex Q and remove the virtual
label from the host graph.

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

10 An improved generative design approach based on graph. . .

a

b c

d

c

d

a

b

1

2

1

2

x y:= x y

Production p Host graph G'

（0，0）

（-2，-2）

（1，-2）

（0，-4）

（2，2）

（3，0）

（2，-2）

（2，2）

（3，0）

（5，0）

（2，-2）

（0，0）

（-2，-2） （1，-2）

（0，-4）

（3，-2）
e1

e2

e1

e2

e1

e2

e1

e2

 Q

Host graph G

Fig. 3. New host graphs generated by a production.

Fig. 3 depicts an L-application process that generates new host graph G′ using pro-
duction p: GL := GR.
1. Generate an instance of production p.
2. Find a redex of G with respect to GL: In the host graph G, we denote a graph in the

dashed box as graph Q. Q ≈ GL and the coordinate differences of the corresponding
nodes are (2, 2), so Q ∈ redex(G, GL|R).

3. Subtract all node coordinates of GR (2, 2).
4. Delete edge ‘e1’, ‘e2’ and node ‘c’ from G.
5. Glue virtual node ‘1’ of GR to real node ‘a’ of G and virtual node ‘2’ of GR to real

node ‘d’ of G; and remove the virtual label from the host graph.
Definition 3.6. A node transformation rule is a 4-tuple(cset, cpoint, ops, parm),

where
• cset is a set of coordinates as the points to represent a shape;
• cpoint is the mean point of cset;
• ops is the operations performed on the cset, such as translation, rotation, scaling,

etc.;
• parm is the parameter of the ops, such as the offset of translation or the angle of

rotation.
Given a node transformation rule, the node transformation application is a process

that draws the outline of a shape from the perspective of the user using node transfor-
mation rules. Below are the steps for a node transformation application:
1. Draw a shape based on the outline described by a node’s cset, and make the cpoint

coincide with the node. As shown in Fig. 4, a node transformation rule is to transform
a node into a rectangle. Use this node transformation rule for node A and B: make the
cpoint of this rectangle coincide with node A and B, and transform edge e1 connecting
A and B to line segment l1;

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

Y. Liu, Y. Zhou, F. Yang, S. Li, J. Wu 11

:=
cpoint

A B

(0, 0) (5, 0)

(0, 0) (5, 0)

A node transformation rule

（a）

(b)

(c)

edge

line segment

Fig. 4. Demonstration figure of step 1.

2. As shown in Fig. 5, deform the shape by the following methods according to ops and
parm:

(a) Translation: Let A be a shape, and the position of A can change along the X and
Y axes, i.e.,
∀(x, y) ∈ A, (x′, y′) = (x + a, y + b),
where a is the distance that the position of A changes on the X axes and b is the
distance that the position of A changes on the Y axes.

(b) Scale: Let A be a shape that can expand or shrink in a certain proportion, i.e.,

∀(x, y) ∈ A,
[

x′

y′

]
=

[
S 0
0 S

] [
x
y

]
, where S is the factor by which shape A

expands or shrinks.
(c) Stretch: Let A be a shape that can be elongated or shortened along the X and Y

axes. Specifically, if the factors of elongation or shortening along the X and Y axes
are equal, A can be considered to be scaled, i.e.,

∀ (x, y) ∈ A,
[

x′

y′

]
=

[
Sx 0
0 Sy

] [
x
y

]
,

where Sx is the factor by which A is elongated or shortened along the X axes and
Sy is the factor by which A is elongated or shortened along the Y axes.

(d) Rotate:Let A be a shape that can rotate θ (0 < θ < 2π) counterclockwise around
the cpoint MA(XA, YA), i.e.,

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

12 An improved generative design approach based on graph. . .

a) translation b) scale c) stretch

d) rotate e) reflect

Fig. 5. A new shape formed by 5 operations.

∀ (x, y) ∈ A, (x′, y′) = ((XA − x) cosθ − (YA − y) sin θ +XA, (XA −x) sin θ +(YA −
y) cos θ + YA).

(e) Reflect: Let A be a shape. ∀l : PX + QY + M = 0(P 2 + Q2 > 0), new shape A′ is
a mirror image of A across line l, i.e.,
∀ (x, y) ∈ A, (x′, y′) =

(
x − 2P (P x+Qy+M)

P 2+Q2 , y − 2Q(P x+Qy+M)
P 2+Q2

)
.

3. Render the shape from the user’s perspective based on the outline described by the
cset through its own operations.

4. Adjust the position of the shape based on the attributes of the line segment l1.
Definition 3.7. For shape A and shape B, A and B are separated if and only if

∃l : Px + Qy + M = 0(P 2 + Q2 > 0), A and B are on both sides of line l, as shown in
Fig. 6.

As shown in Fig. 7, for shape A and B, MA is the cpoint of A and MB is the cpoint of
B. MA and MB are connected through a directed line segment lAB , where MA is the start
point of lAB and MB is the end point of lAB . The position of MA will change according
to the attribute of lAB , and the position of A will be changed following the changes in
MA position. The attribute of lAB is ‘far from d’ or ‘near d’, where d is the distance
at which the MA position changes. When using node transformation rules to transform

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

Y. Liu, Y. Zhou, F. Yang, S. Li, J. Wu 13

separated not separated

Fig. 6. The two shapes are separated or not.

near

B A

touch

near concentric

Fig. 7. A is near B; A touches B; A is concentric to B.

node A and B into shape A and B, it is necessary to ensure that they are separated.
Therefore, if the attribute of lAB is ‘far from d’, regardless of the value of d, A and B are
still separated. So, we won’t limit the value of d when the attribute of lAB is ‘far from d’.

Definition 3.8. If the attribute of lAB is ‘near d’, A may touch B or be concentric
with B during the process of changing the position of A.

• Touch: A.cset ∧ B.cset ̸= ∅ for the first time;
• Concentric: MA coincides with MB.

For convenience, when users want A to touch B or be concentric with B, they can

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

14 An improved generative design approach based on graph. . .

touch

touch

touch

touch

A

B

C

C

A

B

touch

A
B

C

B

C

A

touch

C

AB

C

A
B

（a）

(b)

Fig. 8. The final position of A will change due to the order of touch B or C.

set the lAB attribute to ‘touch’ or ‘concentric’. Before the position of MA changes, make
Dmax = |MA − MB |. So, 0 < d ≤ Dmax when the attribute of lAB is ‘near d’.

As shown in Fig. 8, for shape A, when MA is the starting point of two or more
directed line segments, the position of A must to be changed at least twice, and different
changing sequences can lead to different positions. As shown in the Fig. 8, A needs to
touch both B and C, and the final position of A will change based on the order of it
touches B or C. Therefore:

• When the X coordinate of the end nodes is different, the position of start node first
changes toward the end node with a smaller X coordinate;

• When the X coordinate of the end nodes is the same, the position of start node first
changes toward the end node with a smaller Y coordinate.

4. An example on rabbit pattern

This section gives an example to illustrating an application of the improved approach,
where a set of designed productions and node transformation rules are used to generate
a section of the Cloud & Bunny rabbit pattern from Emma Talbot. Emma is passionate
about mixed media research and enjoys using various media to create textures, patterns,
and collages to integrate into her artistic creations. The Cloud & Bunny rabbit pattern
is composed of simple geometric shapes such as arcs, rectangles, triangles, etc., forming

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

Y. Liu, Y. Zhou, F. Yang, S. Li, J. Wu 15

：=λp1

：=

：=

：=

p2

p3

p4

（0，0）

（0，-2）

（0，0）

（0，-2）

（0，0）

（0，-2）

（2，-2）

（0，-4）

（-2，-2）

（0，0）

（0，-2）

（0，-4）

（0，-6） （2，-6）（-2，-6）

（0，0）

（0，-2）

（0，-2）

（0，0）

（1，2） （3，2）（-1，2）（-3，2）

（0，0） （1，0） （0，0） （1，0）（-1，0）

（-1，2）

（-1，-2）

②

⑥

⑥
②②

⑦

⑥

②
②

②

②

⑤ ⑤

⑤

⑤

⑤

②②

④ ④ ④

⑧

⑥

1
1

1

1

1

1 1

：=

：=p5

① ② ③ ④

⑤

（0，0）

（0，-2） （2，-2）（-2，-2）

（0，0）

（2，-2）（0，-2）（-2，-2）

（-2，2）

（-2，0）

⑧

①

① ⑧

p6

（0，0）

（2，-8）（0，-8）（-2，-8）

（3，-7）

（2，-4）（0，-4）（-2，-4）

（0，-6）

：=

③

(0，-6)

③
（0，-6）

（0，0）

④ ④ ④

③

① ①②

⑥

node transformation rules

1

1

1 1 22 3 3

⑥ ⑦ ⑧

Fig. 9. Productions for a bunny rabbit.

patterns of rabbits, flowers, and clouds. In this paper, a rabbit pattern is selected as the
generated pattern. Fig. 9 shows a set of vcCGG productions and eight node transfor-
mation rules as a grammar set for the rabbit pattern, where the vcCGG productions are
used for the abstract models of pattern and node transformation rules describe physical
layouts. For the vcCGG productions, the initial symbol ‘λ’ denotes the beginning of
graph grammar. ‘λ’ is used to generate the right graph of p1 through production p1 and
then generate the target structure of the pattern based on the remaining productions
p2-p6. For the productions in Fig. 9, virtual nodes, which are represented by a dashed
circle and labeled ‘1’, ‘2’, and ‘3’, are used to match coordinates; real nodes, which are
represented by a solid circle and labelled ‘ 1⃝’, ‘ 2⃝’, and ‘ 3⃝’, are converted into shapes.
For the node transformation rules in Fig. 9, we set eight shapes to generate the final
pattern, including circle, rectangle, triangle, etc.

Fig. 10 shows a process of generating a rabbit pattern using the productions and
node transformation rules above. When using an L-application to generate the structure
of the target pattern, an attribute is assigned to each generated edge. The attribute
can be ‘near’, ‘touch’ or ‘concentric’. If the attribute is ‘near’, the distance needs to be

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

16 An improved generative design approach based on graph. . .

λ

（0，0）

near 1

（0，-2）

②

⑥

near 1

near 1 near 1

near 1
（0，-2）

（0，-4）

（2，-2）

②

②② ⑥

⑦

touch touch

near 1

near 1 near 1

near 1

（0，0）

（-1，2） （1，2）（-3，2）

（0，-2）

（0，-4）

（2，-2）（-2，-2）

near 1.5 near1.5
②

②

②

②②

⑤ ⑤

⑥

⑦

（3，2）

touch touch

near 1

near 1 near 1

near 1

touch

touch

touch

touch

touch

touch

（0，0）

（-1，2） （1，2） （3，2）（-3，2）

（0，-2）

（0，-4）

（2，-2） （4，-2）

（4，0）

（4，-4）

（-2，-2）

（-4，0）

（-4，-2）

（-4，-4）

near 1.5 near 1.5
②

②

②

②②

⑤

⑤

⑤

⑤

⑤

⑤ ⑤

⑤

⑥

⑦
near 1

touch

touch

touch

touch touch

near 1

near 1 near 1

near 1

touch

touch

touch

touch

touch

touch

（0，0）

（-1，2） （1，2） （3，2）（-3，2）

（0，-2）

（0，-4）

（2，-2）

（4，-2）

（4，0）

（4，-4）

（-2，-2）
（-4，0）

（-4，-2）

（-4，-4） （-2，-4）

（0，-6）

（0，-8）

（-2，-6）

（-2，-8） （2，-8）

near 1.5 near 1.5
②

②

②

②②

⑤

⑤

⑤

⑤

⑤

⑤ ⑤

⑤

⑥

⑦

①

①

④ ④ ④

⑧

touch

near 1.5
touch

touch

near 1

touch

touch

near 1

near 4

touch

touch touch

near 1

near 1 near 1

near 1

touch

touch

touch

touch

touch

touch

（0，0）

（-1，2） （1，2） （3，2）（-3，2）

（0，-2）

（0，-4）

（2，-2） （4，-2）

（4，0）

（4，-4）

（-2，-2）

（-4，0）

（-4，-2）

（-4，-4） （-2，-4）

（0，-6）

（0，-8）

（0，-10）

（0，-12）

（-2，-6）

（-2，-8） （2，-8）

（-2，-10） （2，-10）

（3，-13）

（2，-14）（0，-14）（-2，-14）

near 1.5 near 1.5
②

②

②

②

②

②

⑤

⑤

⑤

⑤

⑤

⑤ ⑤

⑤

⑥

⑥

⑦

①

①

①①

④ ④ ④

④ ④ ④

③

⑧

（0，0）

（-2，-2）

near near

near
near

near

near

p1

p2

p3

p4

p5

p6

node transformation rules

Fig. 10. Generation of a bunny rabbit.

given as parameter. When using node transformation rules for the final generated node-
edge graph, each node is traversed and converted into a shape based on the associated
label. Then, each edge is traversed, the position of each shape is adjusted based on the
attribute of each edge, and the target pattern is ultimately obtained.

5. Comparisons with other generative design approaches

In this section, we compare our approach proposed in this paper with shape grammar,
edge transformation grammar [12] and CP-graph grammar [24]. Shape grammar is
a design inference approach based on rules, using simple shapes as basic elements to
establish the rules for the generation of complex shapes. Edge transformation grammar

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

Y. Liu, Y. Zhou, F. Yang, S. Li, J. Wu 17

defines shape rules to transform edges into shapes by shape applications. The CP-
graph grammar is used to automatically generate CP-graphs corresponding to new layout
designs with non-geometrical properties (like sizes, areas) specified by graph attributes.

As Table 1 shows, these approaches can all design shapes through derivation. How-
ever, when drawing patterns using shape grammar, different shapes of a pattern are
related only in terms of position and have no semantic relations. Therefore, it is difficult
to formally analyze the generated pattern. Our approach based on vcCGG can formally
validate a target pattern to determine whether it belongs to the pattern generated by
the specified rules by combining node transformation applications and L-applications.
Moreover, after designing the transformation rules for shape grammar, edge transforma-
tion grammar and CP-graph grammar, they are unable to adjust the size and position of
the shape, resulting in a lack of position and size variability. However, for our approach,
after generating the structure of the target pattern through vCGG, the nodes which are
converted into shapes according to the node transformation rules can adjust the size and
position of themselves. Therefore, in terms of position and size variability, our approach
is superior to shape grammar and edge transformation grammar.

Tab. 1. Comparison between approach in this paper, shape grammar, edge transformation grammar
and CP-graph grammar.

Approach Derivation Parsing Positional and size variability
Our approach ✓ ✓ ✓
Shape grammar ✓ × ×
Edge transformation system ✓ ✓ ×
CP-graph grammar ✓ ✓ ×

6. Conclusions

When designers use shape grammar to generate patterns, there are no semantic relations
among the various shapes that make up the pattern or the small patterns that make up
the large patterns. Therefore, it is difficult to formally analyze the generated patterns. In
addition, graph grammar is primarily used for generating and analyzing abstract models
of visual languages. There is a significant gap between the generated node-edge graphs
and the visual representation of shapes, so few researchers have applied these concepts
in the design field.

This paper proposes an improved generative design approach for pattern drawing,
which introduces node transformation rules in the framework of vcCGG. First, the struc-
ture of the target pattern is generated through vcCGG, and then the nodes are converted
into shapes according to the node transformation rules. Finally, the position of each

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

18 An improved generative design approach based on graph. . .

shape is adjusted based on the edge attributes, and the target pattern is generated. In
this approach, L-applications and node transformation rules are set in advance for draw-
ing patterns, and a target pattern can be formally analyzed to determine whether it is
a pattern generated based on the specified rules.

In the future, we plan to improve the theoretical framework of the improved approach
and consider adding gray values to the node transformation rules. If it goes well, we
plan to add RGB to it so that the improved approach can be used to design the colored
patterns. Moreover, we plan to develop a support system for this approach with a friendly
GUI for end users to design graph productions and node transformation rules. The
system platform will provide support for grammatical operations and the implementation
of related applications.

Acknowledgement
This work was supported by the National Natural Science Foundation of China within
the grant No. 62002155 and the National Key Research and Development Program of
China within the grant No. 2022YFB3305504.

References

[1] M. Agarwal and J. Cagan. A blend of different tastes: The language of coffeemakers. Environment
and Planning B: Planning and Design, 25:205–226, 1998. doi:10.1068/b250205.

[2] H. Bunke. Graph grammars as a generative tool in image understanding. In: Graph-Grammars
and Their Application to Computer Science, pp. 8–19, 1983. doi:10.1007/BFb0000096.

[3] H. H. Chau. Preserving Brand Identity in Engineering Design Using a Grammat-
ical Approach. Ph.D. thesis, The University of Leeds, School of Mechanical Engi-
neering, and Keyworth Institute of Manufacturing and Information Systems, 2002.
https://www.researchgate.net/publication/286452884_Preserving_brand_identity_in_
engineering_design_using_a_grammatical_approach.

[4] X. Chen, A. McKay, A. de Pennington, and H. H. Chau. Package shape design princi-
ples to support brand identity. Proc. 14th IAPRI World Conference on Packaging, pp.
1–14, 2004. https://www.researchgate.net/publication/267797410_PACKAGE_SHAPE_DESIGN_
PRINCIPLES_TO_SUPPORT_BRAND_IDENTITY.

[5] G. Díaz, R. F. Herrera, F. Muñoz-La Rivera, and E. Atencio. Generative design for dimensioning
of retaining walls. Mathematics, 9(16):1918, 2021. doi:10.3390/math9161918.

[6] M. Flasiński. Use of graph grammars for the description of mechanical parts. Computer-Aided
Design, 27:403–433, 1995. doi:10.1016/0010-4485(94)00015-6.

[7] S. Garcia and L. Romao. A design tool for generic multipurpose chair design. In: Proc. Computer-
Aided Architectural Design Futures, pp. 600–619, 2015. doi:10.1007/978-3-662-47386-3_33.

[8] H. Göttler, J. Günther, and G. Nieskens. Use graph grammars to design CAD-systems!
In: Graph-Grammars and Their Application to Computer Science, pp. 396–410, 1990.
doi:10.1007/BFb0017402.

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://doi.org/10.1068/b250205
https://doi.org/10.1007/BFb0000096
https://www.researchgate.net/publication/286452884_Preserving_brand_identity_in_engineering_design_using_a_grammatical_approach
https://www.researchgate.net/publication/286452884_Preserving_brand_identity_in_engineering_design_using_a_grammatical_approach
https://www.researchgate.net/publication/267797410_PACKAGE_SHAPE_DESIGN_PRINCIPLES_TO_SUPPORT_BRAND_IDENTITY
https://www.researchgate.net/publication/267797410_PACKAGE_SHAPE_DESIGN_PRINCIPLES_TO_SUPPORT_BRAND_IDENTITY
https://doi.org/10.3390/math9161918
https://doi.org/10.1016/0010-4485(94)00015-6
https://doi.org/10.1007/978-3-662-47386-3_33
https://doi.org/10.1007/BFb0017402
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

Y. Liu, Y. Zhou, F. Yang, S. Li, J. Wu 19

[9] M. Lee, Y. Park, H. Jo, K. Kim, S. Lee, et al. Deep generative tread pattern design
framework for efficient conceptual design. Journal of Mechanical Design, 144(7):011703, 2022.
doi:10.1115/1.4053469.

[10] Y. Liu and Y. Fan. VCGG: Virtual-node based spatial graph grammar formalism. Journal of
Software, 32:3669–3683, 2021. doi:10.13328/j.cnki.jos.006164.

[11] Y. Liu, X.-Q. Zeng, and Y. Zhu. Application of graph grammar EGG to design of ER diagrams.
Computer Engineering and Design, 2014(3):1071–1075, 2014. https://api.semanticscholar.org/
CorpusID:63040768.

[12] Y. Liu, Y. Zhou, F. Yang, and H. Sun. An enhanced grammatical approach for graph drawing.
In: Conf. International Conference on Artificial Intelligence, Virtual Reality, and Visualization
AIVRV 2022, p. 1258803, 2023. doi:10.1117/12.2667201.

[13] M. Pugliese and J. Cagan. Capturing a rebel: modeling the Harley-Davidson brand through a
motorcycle shape grammar. Research in Engineering Design, 13:139–156, 2002. doi:10.1007/s00163-
002-0013-1.

[14] C. Qian, R. Tan, and W. Ye. An adaptive artificial neural network-based generative design
method for layout designs. International Journal of Heat and Mass Transfer, 184:122313, 2022.
doi:10.1016/j.ijheatmasstransfer.2021.122313.

[15] A. Roudaki, J. Kong, and K. Zhang. Specification and discovery of web patterns: a graph grammar
approach. Information Sciences, 328:528–545, 2016. doi:10.1016/j.ins.2015.08.052.

[16] G. Song and K. Zhang. Visual xml schemas based on reserved graph grammars. In: Conf. Interna-
tional Conference on Information Technology: Coding and Computing. ITCC 2004, pp. 687–691,
2004. doi:10.1109/ITCC.2004.1286546.

[17] G. Stiny. Introduction to shape and shape grammars. Environment and Planning B: Planning and
Design, 7(3):343–351, 1980. doi:10.1068/b070343.

[18] G. Stiny and J. Gips. Shape grammars and the generative specification of painting and sculpture.
In: Proc. Conf. International Federation for Information Processing IFIP 1971, pp. 125–135, 1971.
https://api.semanticscholar.org/CorpusID:36431081.

[19] X. Wang, Y. Liu, and K. Zhang. A graph grammar approach to the design and validation of floor
plans. The Computer Journal, 63:137–150, 2019. doi:10.1093/comjnl/bxz002.

[20] S. Wannarumon, P. Pradujphongphet, and I. Bohez. An approach of generative design system: Jew-
elry design application. IEEE International Conference on Industrial Engineering and Engineering
Management, pp. 1329–1333, 2014. doi:10.1109/IEEM.2013.6962626.

[21] Y. Yu, T.-C. Hong, A. Economou, and G. Paulino. Rethinking origami: A generative speci-
fication of origami patterns with shape grammars. Computer-Aided Design, 137:103029, 2021.
doi:10.1016/j.cad.2021.103029.

[22] K.-B. Zhang, M. A. Orgun, and K. Zhang. A prediction-based visual approach for cluster exploration
and cluster validation by HOV3. In: Proc. Knowledge Discovery in Databases. PKDD 2007, pp.
336–349, 2007. doi:10.1007/978-3-540-74976-9_32.

[23] G. Ślusarczyk. A graph grammar approach to the design and validation of floor plans. Computer-
Aided Design, 95:24–39, 2017. doi:10.1016/j.cad.2017.09.004.

[24] G. Ślusarczyk, B. Strug, A. Paszyńska, E. Grabska, and W. Palacz. Semantic-driven
graph transformations in floor plan design. Computer-Aided Design, 158:103480, 2023.
doi:10.1016/j.cad.2023.103480.

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://doi.org/10.1115/1.4053469
https://doi.org/10.13328/j.cnki.jos.006164
https://api.semanticscholar.org/CorpusID:63040768
https://api.semanticscholar.org/CorpusID:63040768
https://doi.org/10.1117/12.2667201
https://doi.org/10.1007/s00163-002-0013-1
https://doi.org/10.1007/s00163-002-0013-1
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122313
https://doi.org/10.1016/j.ins.2015.08.052
https://doi.org/10.1109/ITCC.2004.1286546
https://doi.org/10.1068/b070343
https://api.semanticscholar.org/CorpusID:36431081
https://doi.org/10.1093/comjnl/bxz002
https://doi.org/10.1109/IEEM.2013.6962626
https://doi.org/10.1016/j.cad.2021.103029
https://doi.org/10.1007/978-3-540-74976-9_32
https://doi.org/10.1016/j.cad.2017.09.004
https://doi.org/10.1016/j.cad.2023.103480
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

20 An improved generative design approach based on graph. . .

Yufeng Liu received the Ph.D. degree from Hehai University, Nanjing, China. He is now an associate
professor in College of Information Engineering, Nanjing University of Finance and Economics, China.
His main research interests include software engineering, machine learning and visual language.

Yangchen Zhou received the bachelor degree from Nanjing University of Finance and Economics,
China. He is now studying for a master’s degree at College of Information Engineering, Nanjing Uni-
versity of Finance and Economics. His main research interests include graph grammar and generative
design.

Fan Yang received the Ph.D. degree from Changchun University of Science and Technology,
Changchun, China. He is now an associate professor in College of Information Engineering, Nan-
jing University of Finance and Economics, China. His main research interests include multimodal data
fusion, machine learning, and deep learning.

Song Li received the Ph.D. degree from Anhui University, Hefei, China. He is now a lecturer in College
of Information Engineering, Nanjing University of Finance and Economics, China. His main research
interests include cloud security and applied cryptography.

Jun Wu received the Ph.D. degree from Nanjing University, Nanjing, China. He is now a lecturer in
College of Information Engineering, Nanjing University of Finance and Economics, China. His main
research interests include computational economics, algorithmic game theory, and mechanism design.

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1

	Introduction
	Related works
	Improved generative design approach framework
	An example on rabbit pattern
	Comparisons with other generative design approaches
	Conclusions
	Acknowledgement, Author notes

