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Abstract Plant disease classification using machine learning in a real agricultural field environment
is a difficult task. Often, an automated plant disease diagnosis method might fail to capture and
interpret discriminatory information due to small variations among leaf sub-categories. Yet, modern
Convolutional Neural Networks (CNNs) have achieved decent success in discriminating various plant
diseases using leave images. A few existing methods have applied additional pre-processing modules
or sub-networks to tackle this challenge. Sometimes, the feature maps ignore partial information for
holistic description by part-mining. A deep CNN that emphasizes integration of partial descriptiveness
of leaf regions is proposed in this work. The efficacious attention mechanism is integrated with high-
level feature map of a base CNN for enhancing feature representation. The proposed method focuses
on important diseased areas in leaves, and employs an attention weighting scheme for utilizing use-
ful neighborhood information. The proposed Attention-based network for Plant Disease Classification
(APDC) method has achieved state-of-the-art performances on four public plant datasets containing
visual/thermal images. The best top-1 accuracies attained by the proposed APDC are: PlantPathology
97.74%, PaddyCrop 99.62%, PaddyDoctor 99.65%, and PlantVillage 99.97%. These results justify the
suitability of proposed method.

Keywords: agriculture, attention, Convolutional Neural Networks, CNNs, Deep Learning, plant disease
classification.

1. Introduction

Modernization in agriculture is reckoned as an emerging research area. Decent growth
has been achieved over conventional engineering and laborious farming technologies using
artificial intelligence and machine learning [29, 32]. A myriad of diversified applications
of computer vision, in conjunction with the plethora of machine learning (ML) tech-
niques, are playing important roles in agricultural development and in supporting the
sustainability. Still, agriculture needs to be improved further to meet growing global food
demands as envisaged by scientists. Several key challenges are identified in allied areas of
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agriculture and related futuristic aspects, which seek more research attention, e.g., early
disease prediction, crop yield estimation, crop health monitoring, and others [13,34].

Automated plant disease prediction from leaf images using computer vision tech-
niques is difficult due to wider variations in visual symptoms [40, 43]. In general, the
images of various plants and crops are collected by the users/farmers and pre-processed
with image processing techniques, such as noise removal, leaf-area detection, area of in-
terest localization, edge map extraction, scaling, contrast adjustment, and others [27].
Several existing methods have applied pre-processing techniques for image segmentation,
especially, segmented the region of interests (RoIs) representing infected regions/spots
within the leaves, mask generation, and others [30]. Hence, these conventional pipelines
essentially require a well-defined set of tasks to be accomplished before the feature ex-
traction. To alleviate this, many deep learning methods have used actual images of plants
and defined a deep network by integrating several sub-modules, such as generative ad-
versarial networks (GAN) for augmentation [11] or U-Net for segmentation [41]. Some
works have devised deep convolutional neural networks (CNNs) [10]. Also, lightweight
CNNs have been studied for corn disease prediction and other applications due to lesser
parametric complexities [13].

In recent years, attention mechanism plays as an indispensable component of modern
deep architectures due its superior performance in solving diverse challenges in natural
language processing, computer vision, and others [5, 7, 8, 46]. An attention method is
effective for crop disease classification too [28]. Its aptness is witnessed for plant disease
classification using self-attention [60]. Several prior works have used additional offline
pre-processing, GAN-based augmentation, and additional sub-networks for localizing
the infected leaf regions, as said above. Also, some methods are developed by transfer
learning and ensemble techniques. Often, these existing techniques might overlook part
and region based local information for subtle discrimination between infected similar
types of leaves. Other than a global feature map, local descriptors are very useful for
automated diagnosis and localizing finer details within a leaf. Because, various diseases
can infect similar leaves of the same plant category [13, 47]. For example, the same
tomato leaf can be infected by several diseases (e.g., mosaic, septoria, curl virus, etc.),
and the differences among various plant leaves are naturally subtle. Thus, an efficient
feature descriptor is crucial for discriminating and solving this problem.

The proposed Attention-based deep network for Plant Disease Classification (APDC)
approach can be divided into three phases, shown in Fig. 1. A high-level feature map
of an input leaf image is extracted using a backbone CNN in the first phase. The
output feature vector is upsampled to a higher resolution for pooling the features from
a set of fixed-size disjoint region proposals. These regions are spatially mapped with the
upsampled base CNN’s feature vector. Next, a bilinear pooling layer is applied to extract
the upsampled convolutional features from each region [6]. The output dimension of these
regions are kept the same as the output feature space of a base CNN. Overall, these
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Fig. 1. The proposed APDC framework is divided into three phases: (1) Deep feature extraction from
base CNNs and computing region proposals. (2) Attention-based weight computation for the
candidate regions across the channel dimension with a residual connection. (3) Regularization
of the learning task for plant disease classification using softmax activation.

region-based pooled feature maps are considered as the output of Phase 1. Then, intra-
attention is computed for emphasizing the importance of various regions and assigning
weights accordingly in Phase 2. The weighted attention score directs at accumulating
a precise feature description relevant to classification. A residual path is added as a
skip connection which is the output of a global average pooling layer applied to the base
CNN’s feature map. The added feature map combining the attention scores and skip path
defines an efficient feature vector representing the output of Phase 2. A regularization
technique is applied for handling the overfitting issues during the training of the proposed
network, followed by a softmax layer for classification in the third phase. Experimentally,
proposed APDC is found to be an effective and easy solution for leaf disease recognition.

The main contributions of this paper are summarized as:
• An attention-driven deep network integrating three key phases to emphasize the infor-

mativeness of complementary regions by weight assignment that represents an efficient
feature vector for plant disease recognition.

• The proposed method is end-to-end trainable avoiding additional pre-processing mod-
ule and bounding-box regression, implying a simple implementation.

• The proposed method has achieved state-of-the-art performance on four public data-
sets, representing visual and thermal leaf images of various plant classes.

• Rigorous experimental evaluation and ablation studies justify the importance of major
components of the proposed deep network.

The rest of this paper is organized as follows: related works are summarized in Section 2.
The proposed method is described in Section 3. The experimental results and ablation
studies are discussed in Section 4. The conclusion is given in Section 5.

Machine GRAPHICS & VISION 33(1):47–67, 2024. DOI: 10.22630/MGV.2024.33.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.3


50 An attention-based deep network for plant disease classification

2. Related work

Various deep-learning techniques for plant disease detection and classification have been
developed [10,27,38]. Common crop leaves such as the potato, rice, tomato, corn, wheat,
etc., have been tested for solving disease identification [31]. A deep network consisting
of object detector YoloX and siamese network is described for classifying rice diseases in
RiceNet [33]. Multiple pest detection of orchard apples using improved faster R-CNN is
presented [15]. A modified GoogLeNet is used for rice disease detection [50]. MobInc-Net
is developed by combining MobileNet with the Inception module for disease recognition
of 12 rice categories [12]. A dual-stream hierarchical bilinear pooling (DHBP) method is
presented in [47]. Bacterial spot detection in the peach leaf images using Convolutional
Autoencoders (CAE) and CNN is presented [4]. Six disease classes (e.g., anthracnose,
etc.) of the maize crop is tested using NPNet-19 [31]. Pre-trained CNNs (e.g., Inception-
v3, etc.) are used for transfer learning to detect 12 types of abnormalities, including
huanglongbing of citrus [17].

A CNN is built with the Inception and residual architecture with a convolution block
attention module (CBAM) is described in [56]. The method is tested on the epidemi-
ological PlantVillage dataset [22], containing 54.3k images of 14 plant species. Fine-
grained classification of infected tomato leaves of the PlantVillage dataset is tested [49].
A lightweight CNN for leaf disease identification is developed and tested on five data-
sets [45]. A multi-granular feature aggregation approach using self-attention is tested
for crop disease classification [60]. A lightweight double fusion block with a coordi-
nate attention network (DFCAnet) is developed [13]. A shuffle attention method and
HardSwish function are introduced for recognizing tomato leaf diseases [52]. A cross-
attention module, and bidirectional transposed feature pyramid Network is developed for
apple disease detection [54]. A Multi-channel recurrent attention network is described
for tomato leaf disease prediction [53]. The least important attention pruning algorithm
selects the most important attention heads of multi-head self-attention module of each
layer in the Transformer model for detecting Cassava leaf disease [43].

A convolutional vision transformer-based lightweight model (ConvViT) is proposed
for apple leaf disease identification [26]. A Swin transformer is applied in the path
aggregation Swin transformer network (PAST-Net) [48] for detecting and segmenting
anthracnose-infected crops, e.g., apple, strawberry, pepper, etc. The Inception convo-
lutional vision transformer (ViT) is developed [51]. The explainable ViT fuses vision
transformers with CNN for plant disease identification [44]. A transformer-based with
spatial convolutional self-attention transformer is developed for strawberry disease iden-
tification [25]. The GANs have been explored to enrich data diversity from small-scale
various plant datasets [11]. GrapeGAN [23] follows a U-Net-like generator structure, and
the discriminator is built with a convolution block and capsule structure. Four types of
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grape leaf images are generated by GrapeGAN. Fine grained-GAN method presents a lo-
cal spot area data augmentation for grape-leaf disease classification [57]. Double GAN is
applied for producing high-quality leaf images, representing five classes of PlantVillage
dataset [55]. MergeModel identifies tea-leaf diseases [19]. It has applied the U-Net for
segmentation and SinGAN for augmentation.

Thermal imaging is explored for crop yield estimation, disease detection, and classi-
fication [34]. Thermal images were tested for disease detection from tomato, wheat, and
other leaves [18, 58]. The deep explainable artificial intelligence (PlantDXAI) classified
plant diseases using CNN-16 in thermal images [3]. The PlantDXAI could be improved
by adopting the class activation map and discriminator network during the training.
Blight disease detection in rice plants using thermal images is tested [9]. A fusion of
color information with thermal and depth information, could attain better accuracy
for detecting diseases [35]. In this work, we have presented an attention-driven deep
architecture tested on color and thermal leaf images for disease classification.

3. Proposed method

A global feature descriptor could be extracted from an input image using a backbone
CNN. Sometimes, a global descriptor might overlook underlying detailed information
and and might summarize an overall feature representation, which is relevant to a gen-
eral classification problem. In contrast, the detailed and subtle information is essential
for categorization of leaf sub-categories. An aggregation of partial feature descriptors
extracted from complementary regions could effectively capture finer details. We aim to
integrate subtle informativeness of several disjoint regions into a comprehensive feature
descriptor. The proposed APDC method combines contextual information from comple-
mentary regions by aggregating their overall weighted attention scores, which improves
holistic feature representation capability. The proposed APDC method is conceptualized
in Fig. 1; it is divided into three phases for easier understanding. The extraction of base
feature map, and region proposals are described in Phase 1. The attention module with
weight computation from pooled regions and is performed Phase 2. The classification is
discussed in Phase 3.

3.1. Disjoint region proposal

A region proposal generation method avoiding object detectors, segmentation modules,
or bounding box annotations is devised to capture contextual descriptions from differ-
ent locations of an input image. Let an input leaf image, Iy ∈ Rh×w×3, is to be fed
into a backbone CNN with its class label y representing a leaf category. A backbone
CNN extracts deep features F ∈ Rh×w×c, where h, w, and c denote the height, width,
and channels, respectively. The feature vector F represents high-level information of
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input Iy. It could also be interpreted that a local region at low-level image represen-
tation is summarized within a small window of the high-level feature space F. Thus, a
correspondence between a local image-region with its feature map is necessary to cor-
relate their significance holistically. We consider each uniform/regular region as a fixed
rectangular dimension of p × p pixels. The window-size for spatial pooling from different
uniform regions requires to be aligned because the spatial dimension of an Iy is squeezed
to a lower size at the deeper levels through successive non-linear transformations in bot-
tleneck layers of a standard CNN. Hence, F is upscaled to a higher spatial size q × q
using a bilinear interpolation. The number of RoIs is n = (q/p)2, generated without
additional pixel-level adjustment during spatial pooling. The set of RoIs is denoted as
R = {r1, r2, ..., rn}, and feature map of ri-th region is denoted as Fi. The feature maps of
all regions are FR =

{
Fr

}r=n

r=1 ∈ Rn×(h×w×c). In addition to these key steps of Phase 1,
a global average pooling (GAP) layer is added to optimize the output features of a base
CNN across the channel dimension. A GAP layer squeezes the spatial dimension of a base
CNN’s output feature map. The pooled feature vector is GR = GAP (FR) ∈ Rn×1×c

maintaining the same channel dimension of F.

3.2. Attention mechanism

The visual attention mechanism focuses on the most informative region(s) of an input
image to improve the learning efficacy of a deep architecture by contriving long-range
dependency of partial descriptors. Here, self-attention is applied across the channel
dimension of feature maps for all regions [2, 46]. The self-attention captures channel-
wise relationships among various regions. It correlates cross-channel feature interactions
and explores essential parts, accordingly. The self-attention uses three similar feature
vectors to compute attention scores: the query Q, key K, and value V which are derived
from the same feature vector GR. The attention matrix is considered as a dot product
of Q and K, multiplied by V to produce a weighted feature vector. Here, intra-attention
is applied to the rn region and its neighbor rm region such that n ̸= m. The attention
method generates feature vector V to focus on discriminative regions in Iy. The vectors
Gn and Gm are computed from the rn and rm regions, respectively. The feature map
is defined as

ϕn,m = tanh(WϕGn + Wϕ′Gm + bϕ) , (1)
θn,m = σ (Wθϕn,m + bθ) , (2)

where weight matrices Wϕ and Wϕ′ compute attention vectors of rn and rm, respec-
tively; and Wθ is their nonlinear combination. The bias vectors are bϕ and bθ, and
σ(·) is an element-wise activation function. The importance of each rn is computed
next using a weighted sum of the attention scores generated from all regions in R. The
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attention matrix Ĝn indicates the importance to be given to a region conditioned on its
neighborhood regions.

βn,m = softmax(Wβθn,m + bβ) , Ĝn =
n∑

m=1
βn,mGm , (3)

where the weight matrix is Wβ , and bβ is the bias. Next, the feature map Ĝn is
undergone to produce a weighted attention map γm using a softmax activation over all
regions. The output vector of attention importance scores is considered as attention
weights representing a high level encoding of all regions and is denoted as GA. This
overall attention map interprets underlying explanation of a given region by weighting
its importance towards decision making, essential for plant disease recognition.

GA =
n∑

m=1
γmĜm , γm = softmax(WϕĜm + bγ) . (4)

A residual path is connected by including a GAP layer to the feature maps of a base
CNN. This residual path supports further refinement of attentional weighted feature
description by improving the gradient flow from the output layers to early layers during
the learning without any additional computational overhead. The GAP layer inherently
selects the mean features by scaling down a high dimensional feature map precisely to
(1 × 1 × c), obtained from a base CNN by neglecting trivial information. Also, the GAP
enriches the confidence scores for classification, and is robust to spatial translation. The
rendered feature map is denoted as H = GAP (F) ∈ R1×1×c where the feature mapping
is F → Fgap : R(1×1×c). Both GA and H feature vectors are added to represent the final
attentional feature vector FA ∈ R(1×c).

FA = Addition
(

GA, H
)

; Ypred = Softmax(FA) . (5)

3.3. Image classification

The dropout and batch normalization layers act as regularizers to ease overfitting is-
sues, stabilizes and accelerate the speed of training. Thus, these two layers effective for
enhancing the performance during the training. The final feature vector FA is passed
through a softmax layer to compute the output probability vector representing each class
of leaf sub-categories. The categorical cross-entropy loss Lce(Ytrue, Ypred) optimizes the
errors between the true class label (Ytrue) and predicted class label (Ypred). Overall,
the attention technique strengthens the distinctness of feature vectors by capturing finer
details without adhering to computational complexities, which is essentially required for
leaf disease classification in the proposed APDC method.
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Fig. 2. Samples of leaf images of the PlantPathology-22 dataset.

3.4. Model implementation

The standard backbone CNNs are used for deep feature extraction in Phase 1 of the pro-
posed APDC. The input image-size of 224×224 is fed into a deep CNN, e.g., MobileNet-
v2 [39], NASNetMobile [59], DenseNet-169 [20], Inception-v3 [42], etc. During the im-
age pre-processing stage, data augmentations of random rotation (±30 degrees), scaling
(1±0.30), and random region erasing (within 0.2-0.7 scale) with a fixed RGB value
q = 127, are applied for data diversity. Though the output feature dimension of various
base CNNs are different, the feature maps are rescaled to a higher resolution using a
bilinear interpolation for uniform spatial pooling in Phase 1. For example, a feature map
of size 7×7 is upsampled to 40×40 and then the features of non-overlapping regions with
a fixed size are computed. Three different sets comprised a total of 16 (4×4), 25 (5×5),
and 36 (6×6) regions are generated for experiments. The upscaled resolution is 42×42
for 36 regions, and 40×40 for 25 and 16 regions. The purpose of using such resolutions
is to maintain proper pixel alignment during spatial pooling with a fixed window size.
However, no feature dimension is calibrated in Phase 2. The output dimension of at-
tention and GAP layers are the same as the output channel dimension of a base CNN,
e.g., c = 1280 for MobileNet-v2. Finally, a batch normalization and a dropout rate of
0.2 are applied for stabilization of input distributions and regularization for improving
the training capacity prior to a softmax layer in Phase 3. Our model is trained with pre-
trained ImageNet weights for initializing a base CNN, as well as trained from scratch,
i.e., random initialization in different experiments to observe performance variation due
to weight initialization not altering other parameters.

The Stochastic Gradient Descent (SGD) is used to optimize the categorical cross-
entropy loss function (Lce) with an initial learning rate of 1×10−3, and multiplied by
0.1 after every 75 epochs for smoother convergence of the learning parameters θ. The
proposed APDC is trained for 200 epochs with a mini-batch size of 8 using a Tesla M10
GPU of 8 GB. The top-1 accuracy [%] is used for performance evaluation. The model
parameter is estimated in million (M).
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Fig. 3. Diseased leaves of the PaddyDoctor-13 dataset representing infected leaves of plants and crops
collected in a natural field environment.

Fig. 4. Examples of diseased leaf images of PaddyCrop-6 thermal dataset.

4. Experimental results and discussions

First, a summary of various datasets tested in this work is briefed. Next, the experi-
mental results, ablation studies, and visualizations are analysed.

4.1. Dataset description

One of the major challenges in agricultural disease diagnosis is the availability of a large
realistic dataset of various crops and plants. Since the inception of the PlantVillage
dataset, the largest crop dataset to date (to the best of our knowledge), several ap-
proaches have been tested for disease recognition and classification. However, this epi-
demiological dataset is curated in a controlled environment (Fig. 5) and not presented
in a realistic manner (e.g., does not consider natural background, leaves are indepen-
dent and isolated), which is considered as a restriction of this dataset while dealing with
a real-world scenarios in agricultural fields. To alleviate this limitation, several other
datasets representing various plants/crops are constructed (e.g., Fig. 3). However, most
of these recent plant datasets are small-scale, which is further increased in size and image
quality by leveraging GAN-based and other augmentations.

A summary of the datasets used in our study is listed in Table 1. Examples of diseased
leaves from different datasets, namely PlantVillage-25 [22] (Fig. 5), PlantPathology-
22 [14] (Fig. 2), PaddyDoctor-13 [24] (Fig. 3), and PaddyCrop-6 [3] (Fig. 4) are illus-
trated. The image examples imply that the PlantVillage and PlantPathology datasets
are formulated in a simple and clear background condition. On the contrary, PlantDoc
and PaddyDoctor represent realistic field environments and complex backgrounds.
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Fig. 5. Samples of diseased leaf images of the PlantVillage dataset.

Tab. 1. Summary of the datasets tested in this work.

Dataset Name Train Test Class Type

PlantVillage-25 24240 16053 25 RGB
PlantPathology-22 2695 1809 22 RGB
PaddyDoctor-13 12980 3245 13 RGB
PaddyCrop-6 397 240 6 Thermal

The PlantPathology-22 dataset represents healthy (2278) and diseased (2225) leaves
from 12 different plants, containing a total of 4503 images and categorised into 22 fine-
grained classes.

The thermal images of diseased and healthy leaves of paddy crops comprising a total
of 636 samples representing 6 classes were collected using a high-resolution FLIR E8
Thermal camera. Details of this dataset are given in PlantDXAI [3].

4.2. Performance analysis

Firstly, the baseline performances on each dataset are evaluated using four base CNNs.
Next, the performances of our method using 16 (4×4), 25 (5×5), and 36 (6×6) RoIs
are evaluated in different sets of experiments. The results are given in Table 2. The
results imply that the accuracy could be improved with a more number of regions.
Because, the attention mechanism focuses on the most important regions of leaf images
and emphasizes their inter-channel interactions for weighted feature aggregation. The
attention scheme enhances overall prediction performances using four base CNNs. The
experimental results, given in Table 2, are achieved by training with ImageNet weights
for a fair comparison with existing works on diverse datasets. The model parameters
(last column, Table 2) of various experiments remain almost the same for different RoIs
and differ according to the backbone CNNs.

Next, the performances on these datasets are evaluated by training the networks from
scratch, i.e., initializing the APDC with random weights, and the results are reported
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Fig. 6. Confusion Matrix of APDC (36 RoIs) on the PlantVillage-25 dataset.

Fig. 7. Confusion Matrix of APDC (36 RoIs) using DenseNet169 on PlantPathology (left) dataset.
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Tab. 2. Top-1 accuracy [%] of the proposed APDC using various CNNs backbones trained with Ima-
geNet weights on five plant datasets. The accuracy of similar experiments attained by the CNNs
trained from scratch is given in parenthesis. Bold font indicates the best performance(s) for
each dataset.

Method PlantVill PlantPath Pad’Crop Pad’Doc Par

Mob’Net 97.98 (97.69) 94.96 (90.76) 96.66 (83.33) 98.24 (95.82) 2.3
16 RoI 99.32 (98.43) 97.34 (94.79) 97.91 (94.16) 99.02 (96.63) 2.4
25 RoI 99.58 (99.61) 97.45 (95.52) 98.75 (95.41) 99.47 (98.20) 2.4
36 RoI 99.97 (99.90) 97.62 (97.12) 99.16 (98.25) 99.62 (98.85) 2.4

NasNet 98.49 (95.51) 95.13 (93.58) 95.00 (86.25) 98.14 (95.30) 4.3
16 RoI 99.73 (98.34) 97.46 (96.23) 97.50 (94.58) 99.04 (98.70) 4.4
25 RoI 99.85 (98.76) 97.61 (97.10) 98.33 (95.00) 99.25 (99.21) 4.4
36 RoI 99.93 (99.85) 97.65 (97.24) 99.52 (95.82) 99.60 (99.40) 4.4

DenseNet 99.31 (97.92) 96.73 (92.80) 95.83 (87.50) 98.40 (96.62) 12.7
16 RoI 99.52 (98.55) 97.56 (95.52) 99.16 (93.75) 99.26 (98.45) 12.9
25 RoI 99.67 (98.67) 97.61 (96.72) 99.50 (96.21) 99.58 (99.02) 12.9
36 RoI 99.94 (99.89) 97.74 (97.32) 99.58 (98.52) 99.65 (99.43) 12.9

Inception 99.37 (97.65) 96.23 (92.53) 97.00 (86.23) 98.00 (96.72) 21.9
16 RoI 99.91 (98.55) 97.51 (96.23) 98.75 (95.30) 99.41 (98.71) 22.0
25 RoI 99.92 (98.98) 97.60 (97.12) 99.28 (95.81) 99.56 (99.32) 22.1
36 RoI 99.97 (99.94) 97.64 (97.21) 99.62 (97.50) 99.63 (99.41) 22.1

Tab. 3. Performance Summary of APDC (36 RoI) using various metrics [%].

Dataset Base CNN Top-1 Top-5 Precision Recall F1-score

PlantPathology DenseNet169 97.74 99.94 98.0 98.0 98.0
PaddyCrop MobileNetV2 99.16 100.0 99.0 99.0 99.0
PaddyDoctor MobileNetV2 99.62 99.97 100.0 100.0 100.0
PlantVillage MobileNetV2 99.97 100.0 100.0 100.0 100.0

within parenthesis in Table 2. It signifies a clear distinction between the accuracy of
APDC while trained with ImageNet weight vis-à-vis random weight initialization which
requires more epochs to attain similar accuracy compared to the former. Our model
is trained for 300 epochs from scratch in this test, while other hyper-parameters were
unaltered. Whereas, 200 epochs are sufficient to attain satisfactory results with the
ImageNet weights, which converged quickly. The influence of pre-trained ImageNet
weights, compared to random weights, for plant disease prediction accuracy is notable.
This accuracy gaps are small on the PlantVillage, and PlantPathology datasets. A reason
could be the nature and characteristics of datasets. The samples of these two datasets
(Fig. 5-2) were collected in a controlled manner with limited variations by following
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Fig. 8. Confusion Matrix of APDC (36 RoIs) using MoblieNetv2 on the PaddyDoctor (left) and Pad-
dyCrop (right) datasets.

Fig. 9. t-SNE plots of baseline (left) and APDC (36 RoI) using DenseNet-169 (ImageNet) on the Plant-
Pathology dataset.

simple image acquisition scenarios. A summary of the best performances (%) of APDC
with 36 RoIs and ImageNet weights on five datasets using standard metrics, namely
the top-1 accuracy, top-5 accuracy, precision, recall, and F1-score, are evaluated and
reported in Table 3.

Also, one confusion matrix per dataset is shown in Fig. 6-8 for better clarity. In this
assessment, MobileNetv2 (MN) is considered for the PlantVillage (Fig. 6), PaddyCrop,
and PaddyDoctor datasets (Fig. 8). Whereas, DenseNet169 (DN) is used for generating
the confusion matrices on the PlantPathology dataset (Fig. 7) for fair comparison.

Machine GRAPHICS & VISION 33(1):47–67, 2024. DOI: 10.22630/MGV.2024.33.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.3


60 An attention-based deep network for plant disease classification

Tab. 4. Performance comparison with SOTA on the PlantVillage dataset

Method [Ref] Plant’s Disease / #Class Dataset Size Accuracy [%]

GrapeGAN [23] Grape leaf 4.1 K 96.13
Fine-grained-GAN [57] Grape leaf-spot disease 1.5 K 96.27
ConvViT [26] Apple disease 15.8 K 96.85
DenseNet-169 [1] Corn Foliar disease, 4 cls. 9.1 K 99.50
PCA DeepNet [36] Tomato, 10 classes 18.1 K 99.60
Double-GAN [55] 10 disease, 5 classes 31.3 K 99.70
PDD271 [27] 38 classes 50.3 K 99.78
FPDR (ResNet50) [16] 38 classes 50.3 K 99.84

APDC: MobileNet-v2 25 classes 40.3 K 99.97
DenseNet-169 99.94

4.3. Performance comparison

According to our study, many SOTA methods have achieved more than 99.50% accuracy
on the PlantVillage dataset [27], and a few recent of them are listed in Table 4 for com-
parative study. The dataset was created in a controlled laboratory setup with a clear
background. Hence, several deep-learning models achieved 99.50% accuracy. The gains
in different successive works are competitively very small, e.g., 0.1% only between [36]
and [55]. In this work, the average accuracy achieved by APDC with 36 RoIs is 99.95%
with a standard deviation of ±0.02, considering four base CNNs trained with ImageNet
weights (Table 2). The results on PlantVillage are computed with 25 classes of leaf
categories. A brief description of existing disease prediction approaches and their ac-
curacies are summarized in Table 4. The APCD (99.95%) has attained a competitive
gain of 0.25% accuracy compared to Double-GAN (99.70%), whereas the accuracy gain
over other methods is significant. The PCA DeepNet [36] reported 99.60% accuracy
and 98.55% precision. Our APDC has gained 100% precision and F1-score (Table 3).
In [27], 99.78% accuracy is obtained by ResNet-152, which is a heavier/deeper base model
(≈60.4M) regarding the model parameters compared to lightweight backbones used here.
The detailed results are given in Table 2. The IBSA-Net [52] has reported 99.40% ac-
curacy, 98.90% precision, 99.30% and recall. Considering FPDR [16] as the previous
best accuracy, 99.84% using ResNet-50 with ImageNet weights, the best 99.97% accu-
racy of APDC implies a 0.13% margin, with a lesser model parameters of MobileNet-v2.
Nevertheless, to analyze the efficiency of our model, the gains on other datasets are sig-
nificant. We have achieved SOTA performances on recently published public datasets.
Rigours experiments have been conducted on the PlantPathology, PaddyDoctor, and
PaddyCrop datasets. A fused multi-stream fusion (fsn) with learnable filters scheme [37]
has reported 90.02% accuracy on the PlantPathology, curated with a clear background
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Tab. 5. Comparison with SOTA on the PlantPathology, PaddyDoctor, and PaddyCrop Datasets [%].
The bottom row-set provides the accuracy of APDC with 36 RoIs using different base CNNs.

PlantPath’y Acc PaddyDoc Acc PaddyCrop Acc

Multi-strm fsn [37] 90.02 MobileNet [24] 92.42 CNN16 [3] 88.63
DenseNet201 fsn [21] 96.14 ResNet34 [24] 97.50 PlantDXAI [3] 90.04

MobileNetv2 97.62 MobileNetv2 99.62 MobileNetv2 99.16
DenseNet169 97.74 DenseNet169 99.65 DenseNet169 99.58

like the PlantVillage. An ensemble of CNNs and statistical descriptors has reported
an improved classification accuracy of 96.14% using DenseNet-201 [21]. Contrarily, our
method has achieved at least 97.62% accuracy using MobileNet-v2 with 36 RoIs. The
highest 97.74% accuracy is attained by DenseNet-169. The results are given in Table 5.

PaddyDoctor is a recent dataset on which transfer learning were tested [24]. The best
97.50% accuracy is achieved by ResNet-34, and MobileNet has attained 92.42% accuracy
by training with ImageNet weights. The accuracy of APDC underlying on MobileNet-
v2 (ImageNet weights) is 99.62%, and training from scratch achieves 98.85% accuracy.
Also, APDC based on other CNNs has obtained SOTA results on PaddyDoctor (Table 5)
irrespective of training scheme.

The PaddyCrop is a very small dataset containing thermal leaf images of infected
rice crops. The PlantDXAI [3] is built with a CNN-16 and trained with class activation
map and discriminator network. It has attained 90.04% accuracy on PaddyCrop. The
accuracy achieved by our method underlying on DenseNet-169 is 99.58%, and Inception-
v3 is 99.62%. Also, more than 99% accuracy is gained by APDC with 36 RoIs, while
trained with ImageNet weights. The comparative results are given in Table 5. Overall
result analysis evinces that our method outperforms existing works and achieves SOTA
performances.

4.4. Ablation study

The necessity of major components of APDC is evaluated through two types of ex-
periments. Firstly, various sets of regions avoiding the attention module are tested to
understand their usefulness on different datasets using MobileNet-v2, NASNetMobile,
and DenseNet-169 backbones. The results are given in Table 6. The contributions of
various RoIs sets are notable using MobileNet-v2. However, in a few other cases, dif-
ferences between the accuracies of 25 and 36 RoIs using various CNNs are small, e.g.,
PlantPathology. A reason could be the characteristics of dataset formulation which
considered a simple background, such as the PlantPathology (Fig. 2). As a result, a
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Tab. 6. Ablation Study I: Top-1 accuracy [%] in proposed APDC (ImageNet Weights) with RoIs Only,
excluding attention mechanism.

Base CNN RoIs PlantPathology PaddyCrop PaddyDoctor

MobileNet-v2 16 96.18 94.58 98.85
25 96.40 96.66 98.98
36 96.79 98.75 99.10

NASNetMobile 16 95.06 95.46 98.80
25 96.02 96.24 99.12
36 97.01 96.66 99.44

DenseNet-169 16 96.90 98.33 99.16
25 97.21 99.16 99.44
36 97.34 99.50 99.56

Inception-v3 16 96.84 98.35 99.19
25 97.06 99.16 99.41
36 97.23 99.58 99.63

Tab. 7. Ablation Study II: Top-1 accuracy [%] of using attention on lightweight CNNs (random weight
initialization) outputs, neglecting RoIs.

Base CNN PlantPathology PaddyyCrop PddyDoctor

MobileNet 95.56 88.75 96.46

NASNet 95.44 87.25 96.23

few smaller regions may represent trivial information which directs the network to fo-
cus on central part of an image where crucial information about an infected leaf exists,
neglecting other regions as insignificant.

Fig. 10. A generalized CNN-based attention model excluding the regions from proposed APDC.
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Next, lightweight MobileNet-v2 and NASNetMobile backbones are considered only
and trained with random weight initialization. Here, the candidate regions are ne-
glected from full model, and only intra-attention is applied to the base CNN’s output
features, followed by a GAP layer before a softmax layer. The deep network is shown in
Fig. 10. The base CNN could be replaced by other backbones, e.g., ResNet, DenseNet,
and other CNN families. The results are given in Table 7. In this test, the model
parameters are reduced slightly, which also causes performance degradation in various
datasets. The parameters of considering 36 RoIs for MobileNet-v2 based implementation
are 2.46 M. Whereas, excluding the regions, 2.34 M parameters are required using the
same MobileNet-v2. Similarly, the parameters for NASNetMobile based implementation
are 4.34 M. These results (Table 7) are competitive on various datasets. This study
justifies that complementary RoIs are effective to accomplish SOTA results on diverse
plant datasets.

5. Conclusion

This paper proposes a deep architecture utilizing a visual attention mechanism, called
APDC, for plant disease classification from visual/thermal images of leaves. Experiments
were carried out using four plant datasets representing a wider variations in the plant
categories, and background conditions. The proposed method follows an end-to-end
trainable deep network and simple implementation using class labels only. It avoids
extra pre-processing stage or sub-network for data pre-processing compared to existing
techniques. The proposed APDC has achieved SOTA performances and emphasized
lightweight CNN implementation balancing the accuracy with lower model parameters,
unlike the existing ensemble of multiple CNNs-oriented techniques which are heavier
models. The lightweight implementation of APDC requires lesser than 5M parameters
only. We plan to develop a realistic approach for experimenting on larger and real-
world datasets for plant disease classification in the future. A fusion with other sensory
information such as soil data of agricultural fields will be another pertinent research
direction for sustainable agricultural growth.
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