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Abstract The rise in fungal infections, attributed to various factors including medical interventions
and compromised immune systems, necessitates rapid and accurate identification methods. While tra-
ditional mycological diagnostics are time-consuming, machine learning offers a promising alternative.
Nevertheless, the scarcity of well-curated datasets is a significant obstacle. To address this, a novel
approach for identifying fungi in microscopic images using Residual Neural Networks and a subimage
retrieval mechanism is proposed, with the final step involving the implementation of majority voting.
The new method, applied to the Digital Images of Fungus Species database, surpassed the original
patch-based classification using Convolutional Neural Networks, obtaining an overall classification ac-
curacy of 94.7% compared to 82.4% with AlexNet FV SVM. The observed MCC metric exceeds 0.9,
while AUC is near to one. This improvement is attributed to the optimization of hyperparameters
and top layer architecture, as well as the effectiveness of the Mish activation function in ResNet-based
architectures. Noteworthy, the proposed method achieved 100% accurate classification for images from
8 out of 9 classes after majority voting and is high resistant to overfitting, highlighting its potential for
rapid and accurate fungal species identification in medical diagnostics and research.

Keywords: Residual Neural Networks, fungal image classification, deep learning, microscopic images,
majority voting, machine learning, image processing.

1. Introduction

Fungi kingdom is characterized by species diversity and various life forms. Its organisms
can be microscopic to macroscopic [7]. Fungi are eukaryotic organisms, which means that
their cells consist of nucleus and an organized inner structure. Unlike plants, fungi do
not perform photosynthesis, meaning they do not produce their own food from sunlight.
Instead, most of them feed on dead or decaying organic matters, which plays a crucial
role in the decomposition of organic material and in whole ecosystems [34]. They have
great impact on humans life. Both positive and negative.

There are many different domains where fungi found their utility helping humans.
Some of them, such as yeasts, take important part in food production. They are essen-
tial to produce bread [2], beer [17], etc. Furthermore, certain fungi possess medicinal
properties and are successfully used in the production of pharmaceuticals [11]. On the
other hand, over the past several decades, there has been a notable rise in the occurrence
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of fungal infections, which has resulted in elevated rates of morbidity and death [23].
The key factors of observed rise are recognized as the use of catheters, wide-spectrum
antibiotics, immunosuppression, chemotherapy and radiation [28].

One of the fungi species covered by this research are Candida. Although they are part
of the normal microbiota of the mouth cavity, digestive system and vaginal canal [32],
they can cause infections if they grow out of control and enter deep into the body.
Candida are responsible for a variety of clinical symptoms, including mucocutaneous
overgrowth and bloodstream infections. More than 90% of all invasive infections are due
to this species, thanks to their ability to overcome host defense capacity, adhere and
create biofilms [30]. Candida infection is the most prevalent causative agent of fungal-
related biofilm infections and the third most common cause of nosocomial infections in
patients seeking emergency medical attention [13]. That ultimately represents the need
of accurate and vast identification of species through the diagnostic tests.

The identification of fungal species by mycological diagnostics is a laborious procedure
that can take four to ten days. The goal is to replace biochemical tests with machine
learning methods, shortening whole diagnosis process by 2-3 days.

Due to a dearth of well-prepared datasets, fungal microscopic pictures are scarce
in machine vision and learning applications. Based on the frequency of each fungal
infection, the paper by Zieliński et al. [46] introduced the database called Digital Images
of Fungus Species database (DIFaS) consisting of nine strains of fungi, responsible for
most of the infections. It contains, in total, 176 images of resolution 3600×5760 taken
with an Olympus BP74 camera. The strains were cultivated and then stained with Gram
method. The original manuscript presented the experimental application of patch-based
classification using Convolutional Neural Networks (CNNs), e.g. AlexNet, InceptionV3,
DenseNet169, rendering the best overall accuracy of 82.4% for AlexNet FV SVM. The
classifier struggled to correctly identify two of the species – Candida glabrota (CG) and
Candida neoformans (CN) resulting in class accuracy of 50%.

Rawat et al. proposed a methodology named MeFunX that leverages a meta-learning-
based deep learning architecture, comprising two base learners implemented as CNNs
and XGBoost as the meta-learner [31]. Rigorous experimentation demonstrates the
outstanding performance of MeFunX, achieving an overall accuracy of 92.49% for the
early diagnosis of fungal infections in microscopic images.

Struniawski et al. devised a novel pipeline for the automated identification of soil
fungi based on single-instance extraction and deep learning techniques [39]. The ap-
proach employs a series of machine vision methods, including thresholding, morpholog-
ical operations and flood fill algorithms, to isolate individual fungi elements from raw
microscopic images. These subimages are subsequently fed into a ResNet50 CNN, achiev-
ing an accuracy of 82%. To further enhance the performance, a majority voting scheme
is incorporated, resulting in an overall accuracy and F1 score of a remarkable 97%.
This pipeline underscores the extraordinary potential of single-instance retrieval, deep
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learning and voting mechanisms for accurate and efficient fungi identification. Similarly,
the effectiveness of the proposed method of segmentation, majority voting and machine
learning methods was demonstrated for identifying mycorrhizal bacteria from raw mi-
croscopic images [19, 38]. These findings reinforce the versatility of these techniques for
automated microorganism identification, extending their applicability beyond fungi.

The core principle of this research is to testify if the procedure of single object retrieval
creating subimaged dataset for training CNNs and then applying majority voting rule for
results concatenation can be also applied directly for fungi that are harmful for humans.

2. Methods

A comprehensive analysis is presented of the subimage retrieval procedure and the inte-
gration of CNNs and majority voting for image classification. The intricate details of the
image preprocessing pipeline are delved into, highlighting the meticulous methods em-
ployed to extract the most representative fungal samples from raw microscopic images.
Additionally, valuable insights into the training process and optimization strategies are
provided, revealing the actions taken to achieve presented performance.

2.1. Dataset information

The DIFaS dataset [46] used in this study consists of 176 microscopic images of fungi,
divided into nine distinctive classes (Fig. 1):

• Class 0: Candida albicans (CA) – 20 images
• Class 1: Candida glabrata (CG) – 20 images
• Class 2: Candida lustianiae (CL) – 20 images
• Class 3: Cryptococcus neoformans (CN) – 15 images
• Class 4: Candida parapsilosis (CP) – 20 images
• Class 5: Candida tropicalis (CT) – 20 images
• Class 6: Maalasezia furfur (MF) – 21 images
• Class 7: Saccharomyces boulardii (SB) – 20 images
• Class 8: Saccharomyces cerevisiae (SC) – 20 images

2.2. Subimages retrieval

To enable further image processing, at the very beginning of the algorithm, the images
were converted to grayscale. To smooth out small-scale variations in the images, the
Gaussian Blur technique was applied [12], improving the quality of the images, which is
crucial since samples retrieved in the process are very small. Another procedural step
involved the application of the thresholding technique [33]. Various approaches were
tested, such as Otsu, Mean, Minimum, and local thresholding with five different block
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(a) Candida albicans (b) Candida glabrata (c) Candida lustianiae

(d) Cryptococcus neoformans (e) Candida parapsilosis (f) Candida tropicalis

(g) Maalasezia furfur (h) Saccharomyces boulardii (i) Saccharomyces cerevisiae

Fig. 1. Microscopic images of each fungus from the dataset.

sizes (35, 45, 55, 65, 75). The best results were obtained for local thresholding [36] with
a block size of 55. However, this method introduced noise to the background, which was
eliminated by creating another mask that set all pixels with intensity greater than 192
back to black color. This value was chosen experimentally after prior analysis of the
background histogram for several images from each class. To separate the samples that
were merging on the mask, a morphological operation [18, 37], called binary opening
was employed. Thresholding and morphological operations caused gaps in the fungi,
which were filled using an an algorithm of OpenCV [8] that extracted contours [41] in
the mask and then reconstructed them with filling on a new black background. Apart
from fungi, the images also contained other objects such as image overexposures or
sample contamination. To eliminate them, the image was divided into regions [40] and
additional filters were applied. First, regions with solidity lower than 0.75 were removed,
as after testing multiple values within the range of 0.7 to 0.9, it was found that this
value performed the best in removing unwanted objects while minimizing the removal
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Fig. 2. The data flow diagram illustrating the proposed algorithm for subimages retrieval.

of desired ones. Solidity is the ratio of the region’s area to the area of its convex hull, a
shape enclosing the object’s most extreme points [25]. A greater solidity score denotes
a more compact or convex shape, whereas a lower value denotes an extended or uneven
shape. Then, random fungi cells from each class were analyzed. It was observed, that
the vast majority do not exceed 350 pixels in either height or width. Based on this,
regions with a height or width exceeding 400 pixels were discarded, as it was highly
possible, that those regions did not contain single cell, but rather a group of several
fungi interconnected. Finally, regions with an area smaller than 20% of the difference
between the largest and smallest area were removed. This formula excellently dealt
with undesired small objects while ensuring universality for each class and image, as
minimum threshold was not imposed. It adapted to each case individually. From the
remaining ones, 50 objects with the largest surface area were selected. They underwent
binary dilation [37] to ensure that the masks contained complete fungal samples with
their entire contours. Finally, it was ensured that the samples fit the format of 224×224
pixels as it was required by the utilized neural network. If they were larger, they were
scaled to meet the specified parameters. The entire process is presented graphically as
a data flow diagram in Fig. 2 and the sample retrieved subimages are shown in Fig. 3.
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(a) Candida albicans (b) Candida glabrata (c) Candida lustianiae

(d) Cryptococcus neoformans (e) Candida parapsilosis (f) Candida tropicalis

(g) Maalasezia furfur (h) Saccharomyces boulardii (i) Saccharomyces cerevisiae

Fig. 3. Sample subimages retrieved from the original dataset.
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2.3. Convolutional Neural Network

Convolutional Neural Network [20] is a deep learning architecture inspired by the pro-
cesses ongoing in human’s brain. The deeper the network is, the more advanced shapes
it can learn to recognize, much like the brain [35]. Certainly, brain cells are much more
complex structures than convolutional layers. Although CNNs are based on simple math-
ematic operations [21], thanks to increasing computational resources of computers, they
found their application in many domains related to Computer Vision (CV), as they can
be faster and more precise than humans in specific tasks. They are already successfully
utilized in medical image analysis [3,24], facial recognition [42] or autonomus driving [1].

The main difference, that made CNN much more useful in CV than traditional ma-
chine learning methods is the fact, that they achieve progressively higher level of abstrac-
tion autonomously, unlike traditional methods, which heavily depend on handcrafted
features [27]. They also handle better with high-dimensional nature of the image data.
There are two main layers responsible for the most of CNN computations. Mentioned
earlier convolutional layers [20] and pooling layers [20]. They work quite similarly, yet
are responsible for the very different tasks. Convolutional layers use small, learnable
fillters (kernels), that move across the image, learning its patterns and spatial hierar-
chies. Each layer, can contain multiple kernels learning different patterns. When the
data travels to deeper layers, previous convolutions connect, recognizing more advanced
structures. Pooling layers also work based on a kernels, which traverse across the image.
Their purpose is to reduce number of parameters in the image that reduces complexity
and improves efficiency of CNNs. They achieve it by aggregating group of pixels around
the kernel and computing the value, which represents given small area the best. In the
final stage, the network is connected to the fully connected dense layer, with number of
neurons corresponding to the number of classes in the dataset. This layer processes out-
puts from the preceding pooling layer, producing images with associated probabilities.
Image with the highest probability is recognized as the identified patch or pattern.

2.4. Residual Neural Network

CNNs were a milestone in the field of CV. Their success led to extremely fast develop-
ment of this domain. Huge interest in the subject made many scientists and engineers
explore new architecture. As understanding of CNNs started to grow, despite their great
flexibility and capabilities, some of its limitations started to become transparent. At-
tempts to train increasingly deeper networks stopped yielding expected outcomes. It
happened, because neurons adjust their weights via the backpropagation algorithm [9],
which minimizes the loss function. Increase in the networks depth, caused gradient’s
magnitude to decrease in the deeper layers, which led to slowdown of training process.
That is when two undesired issues were defined as vanishing [29] and exploding gradi-
ent [29]. The vanishing gradient occurs when the gradient is so small that changes to
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Fig. 4. Residual block architecture of ResNet V1 (left) and ResNet V2 (right).

the tuned parameters throughout the training phase are insignificant. The exploding
gradient, on the other hand, arises when the gradient grows so enormous that changes
to the tuned parameters throughout the training phase become excessive.

To overcome these challenges, a new type of CNN, the Residual Neural Network
(ResNet) was introduced [15]. ResNet deals with the issues of vanishing and exploding
gradient using skip connections [15]. These connections enable information to bypass
one or more layers increasing network efficiency and its ability to learn more advanced
features. They can also allow following layers to learn from information captured in
initial ones. There are various versions of the ResNet architecture, such as ResNet34,
ResNet101, etc. They differ mainly in terms of depth and width of the network.

This study makes use of the ResNet50v2, an upgraded version of the ResNet50 net-
work, which is one of the most often employed in such tasks [14]. ResNet50 is excellent
compromise between the depth and network’s performance. The ResNetV2 version in-
troduces changes to the architecture aimed at improving stability and overall network’s
efficiency. Both versions differ mainly in how the layers are organized within the residual
block. In ResNet, convolution is followed by Batch Normalization and ReLU activation.
ResNetV2 changed the order, applying Batch Normalization and activation function be-
fore convolution. ResNetV2 has also removed the last non-linearity, after the addition,
creating identity connection between the input and output [14](see Fig. 4).
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2.5. Transfer learning

Along with addressing the gradient descent problem, depth of the networks started
to increase, what automatically made models much more complex. Training hundreds
of thousands of parameters necessitates powerful computing resources. That is why
huge CNN models are typically trained using systems optimized specifically for deep
learning workloads. There are a few types of such systems: cloud platforms, clusters,
supercomputers [39]. Each of them is expensive and not avaliable for everyone. To make
deep learning more affordable for private users, technique known in industry for decades,
transfer learning [4], found its perfect place.

The idea of transfer learning is to utilize knowledge gained in different, but related
task to solve other problems. Not only does it make computations faster, but also
requires less data to achieve high scores, than the models trained from scratch [45].
When so called pre-trained models are pre-trained using sufficiently large data sets, they
have basic understanding of shapes, colors etc. from the very beggining. The goal is to
fine-tune that knowledge to our own classes and images, by creating a relation between
previous and the target task [16]. That is why many of the most common models, such
as Inception and ResNets, were pretrained on the ImageNet dataset [10]. ImageNet
consists of over 14 milions of images and over 21 thousands of classes. It is a benchmark
in object category classification and detection domains.

It is worth pointing out that although ImageNet consists of very wide range of images
and task such us microscopic image classification is very specific, transfer learning has
been successfully utilized in this area [19].

3. Experiments

Although a pre-trained model was used to classify the dataset, there are various ways
to improve its performance. Hyperparameters, such as top-layer topology, batch sizes,
activation functions, dropout rate, learning rate and decision whether ResNet is trainable
or not on a given layer, may have a tremendous impact on the final results [44], there is no
golden mean to choose it. That is why experiments play a crucial part during training. To
test many different combinations with limited time and computing resources, the Early
Stopping callback was implemented with the patience parameter set to 50, stopping the
training process when the value of the validation loss function has not dropped for the
last 50 epochs.

Experiments were split into two parts. First, 16 models with multiple configurations
of topology, batch sizes and dropout values were trained. Subsequently, subjectively
the best model was chosen and tested with many variations of activation functions and
learning rate. The attention was directed towards the relatively new and promising Mish
activation [26], as well as the implementation of cosine decay for the learning rate [43]:
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Model 1: Dense(512, ReLU) × Dropout(0.3) × Dense(512, ReLU) × Dropout(0.3); Learning
Rate = 0.001; Batch Size = 32; Trainable = FALSE

Model 2: Dense(1024, ReLU) × Dropout(0.2) × Dense(512, ReLU) × Dropout(0.2); Learning
Rate = 0.0001; Batch Size = 32; Trainable = FALSE

Model 3: Dense(512, ReLU) × Dropout(0.3) × Dense(512, ReLU) × Dropout(0.3) × Dense(256,
ReLU) × Dropout(0.3); Learning Rate = 0.0001; Batch Size = 32; Trainable = FALSE

Model 4: Dense(1024, ReLU); Learning Rate = 0.001; Batch Size = 32; Trainable = FALSE

Model 5: Model 1 with Trainable = TRUE

Model 6: Model 2 with Trainable = TRUE

Model 7: Model 3 with Trainable = TRUE

Model 8: Model 4 with Trainable = TRUE

Model 9: Model 1 with Batch Size = 64

Model 10: Model 2 with Batch Size = 64

Model 11: Model 3 with Batch Size = 64

Model 12: Model 4 with Batch Size = 64

Model 13: Model 1 with Batch Size = 64 and Trainable = TRUE

Model 14: Model 2 with Batch Size = 64 and Trainable = TRUE

Model 15: Model 3 with Batch Size = 64 and Trainable = TRUE

Model 16: Model 4 with Batch Size = 64 and Trainable = TRUE

Model 17: Dense(512, ReLU) × Dropout(0.3) × Dense(512, ReLU) × Dropout(0.3) ×
Dense(256, ReLU) × Dropout(0.3); Learning Rate = 0.001; Batch Size = 64; Trainable =
TRUE

Model 18: Model 17 with Learning Rate = 0.0001

Model 19: Model 17 with Cosine Decay Learning Rate with warmup (Warmup Steps = 50;
Decay Steps = 950; Initial Learning Rate = 0; Target Learning Rate = 0.01)

Model 20: Model 17 with Cosine Decay Learning Rate with warmup (Warmup Steps = 50;
Decay Steps = 950; Initial Learning Rate = 0; Target Learning Rate = 0.1)

Model 21: Model 17 with Cosine Decay Learning Rate with warmup (Warmup Steps = 100;
Decay Steps = 900; Initial Learning Rate = 0; Target Learning Rate = 0.001)

Model 22: Model 17 with Cosine Decay Learning Rate with warmup (Warmup Steps = 100;
Decay Steps = 900; Initial Learning Rate = 0; Target Learning Rate = 0.01)
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Model 23: Model 17 with Cosine Decay Learning Rate without warmup (Decay Steps = 1000;
Initial Learning Rate = 0.1)

Model 24: Model 17 with Cosine Decay Learning Rate without warmup (Decay Steps = 1000;
Initial Learning Rate = 0.01)

Model 25: Model 17 with Cosine Decay Learning Rate without warmup (Decay Steps = 1000;
Initial Learning Rate = 0.001)

Model 26: Model 17 with Cosine Decay Learning Rate without warmup (Decay Steps = 1000;
Initial Learning Rate = 0.0001)

Model 27: Model 17 with Mish activation function at each layer; Learning Rate = 0.01

Model 28: Model 27 with Learning Rate = 0.001

Model 29: Model 27 with Learning Rate = 0.0001

Model 30: Model 27 with Learning Rate = 0.00001

Model 31: Model 27 with Cosine Decay Learning Rate with warmup (Warmup Steps = 50;
Decay Steps = 950; Initial Learning Rate = 0; Target Learning Rate = 0.01)

Model 32: Model 27 with Cosine Decay Learning Rate with warmup (Warmup Steps = 50;
Decay Steps = 950; Initial Learning Rate = 0; Target Learning Rate = 0.1)

Model 33: Model 27 with Cosine Decay Learning Rate with warmup (Warmup Steps = 100;
Decay Steps = 900; Initial Learning Rate = 0; Target Learning Rate = 0.001)

Model 34: Model 27 with Cosine Decay Learning Rate with warmup (Warmup Steps = 100;
Decay Steps = 900; Initial Learning Rate = 0; Target Learning Rate = 0.01)

Model 35: Model 27 with Cosine Decay Learning Rate without warmup (Decay Steps = 1000;
Initial Learning Rate = 0.1)

Model 36: Model 27 with Cosine Decay Learning Rate without warmup (Decay Steps = 1000;
Initial Learning Rate = 0.01)

Model 37: Model 27 with Cosine Decay Learning Rate without warmup (Decay Steps = 1000;
Initial Learning Rate = 0.001)

Model 38: Model 27 with Cosine Decay Learning Rate without warmup (Decay Steps = 1000;
Initial Learning Rate = 0.0001)

Model 39: Model 27 with Learning Rate = 0.000001

Model 40: Model 27 with Learning Rate = 0.0000001

Machine GRAPHICS & VISION 32(3/4):45–64, 2023. DOI: 10.22630/MGV.2023.32.3.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.3


56 Residual Neural Networks in Single Instance-Driven Identification. . .

Tab. 1. Performance comparison of 40 single-instance retrieval and classification models. F1-score de-
notes the harmonic mean of Precision and Recall, while CN F1 represents the F1-score for class
CN against the rest of the classes (OvR), and MCC states as Matthews correlation coefficient.

First Part
Model Precision Recall F1 Accuracy CN F1 AUC MCC

1. 0.76 0.49 0.43 0.49 0.00 0.89 0.44
2. 0.74 0.73 0.73 0.73 0.05 0.97 0.69
3. 0.76 0.75 0.74 0.75 0.00 0.97 0.71
4. 0.75 0.72 0.72 0.72 0.06 0.96 0.68
5. 0.90 0.90 0.90 0.90 0.34 0.99 0.89
6. 0.92 0.92 0.92 0.92 0.17 0.99 0.91
7. 0.93 0.92 0.91 0.92 0.00 0.99 0.91
8. 0.89 0.90 0.89 0.90 0.06 0.99 0.88
9. 0.72 0.61 0.57 0.61 0.00 0.93 0.55

10. 0.74 0.73 0.72 0.73 0.06 0.96 0.69
11. 0.74 0.73 0.72 0.73 0.07 0.96 0.69
12. 0.78 0.77 0.77 0.77 0.15 0.97 0.74
13. 0.87 0.87 0.86 0.87 0.12 0.99 0.85
14. 0.91 0.92 0.91 0.92 0.12 0.99 0.91
15. 0.92 0.92 0.92 0.92 0.06 0.99 0.91
16. 0.90 0.91 0.90 0.91 0.11 0.99 0.89

Second Part
17. 0.91 0.91 0.90 0.91 0.12 0.99 0.90
18. 0.91 0.93 0.92 0.93 0.00 0.99 0.92
19. 0.90 0.91 0.91 0.91 0.18 0.99 0.90
20. 0.87 0.15 0.04 0.15 0.00 0.63 0.00
21. 0.76 0.75 0.73 0.75 0.00 0.97 0.72
22. 0.90 0.89 0.89 0.89 0.00 0.99 0.88
23. 0.69 0.15 0.05 0.15 0.00 0.63 0.04
24. 0.82 0.81 0.80 0.81 0.00 0.98 0.79
25. 0.84 0.85 0.84 0.85 0.06 0.98 0.83
26. 0.86 0.86 0.85 0.86 0.00 0.98 0.83
27. 0.65 0.54 0.48 0.54 0.00 0.90 0.49
28. 0.88 0.88 0.88 0.88 0.14 0.99 0.86
29. 0.86 0.88 0.87 0.88 0.00 0.99 0.86
30. 0.91 0.91 0.91 0.91 0.32 0.99 0.90
31. 0.88 0.87 0.86 0.87 0.00 0.99 0.85
32. 0.90 0.11 0.02 0.11 0.00 0.62 0.00
33. 0.59 0.53 0.48 0.53 0.00 0.90 0.46
34. 0.70 0.68 0.66 0.68 0.00 0.96 0.63
35. 0.87 0.15 0.04 0.15 0.00 0.63 0.00
36. 0.83 0.82 0.81 0.82 0.00 0.98 0.79
37. 0.91 0.92 0.91 0.92 0.17 1.00 0.91
38. 0.92 0.92 0.91 0.92 0.00 0.99 0.90
39. 0.89 0.89 0.88 0.89 0.00 0.99 0.87
40. 0.89 0.88 0.87 0.88 0.00 0.99 0.86
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(a) Cryptococcus neoformans (CN) (b) Candida glabrata (CG)

Fig. 5. CN class sample image structure compared to the CA class image.

4. Results

The models were trained on a total of 5 832 subimages extracted from the original
database. Noteworthy, the dataset is significantly imbalanced, with class 4 (CP) compris-
ing the largest proportion of samples (996) and class 3 (CN) containing the fewest (98).
This imbalance stems from the original dataset preparation process, which resulted in
fewer basic images for class CN and, more importantly, a fundamentally different struc-
tural organization of the images themselves. CN images exhibit a sparsity of visible
fungal elements, while other classes present hundreds of fungi instances across the image
field (see Fig. 5). Consequently, the subimage imbalance is primarily attributable to the
inherent structural disparities between the core images, rather than any shortcomings
in the subimage retrieval algorithm. The original dataset authors also observed poor
accuracy results for class CN, further corroborating the notion that this limitation lies
within the dataset collection process, which could paradoxically contribute to the overall
robustness of the proposed approach rendering at the same time low accuracy for the CN
class itself [46]. Acknowledged differences can be result of sample preparation variations
or natural observed phenomenon for this particular fungi spice that should be further
addressed by the microbiologists.

The dataset was divided into training, testing and validation sets in a 7:2:1 ratio,
ensuring that 70% of the images were assigned to the training set, 20% to the test-
ing set and the remaining 10% to the validation set, respectively. Table 1 presents the
classification results obtained on the testing set for each of the 40 models. At first,
six performance metrics were tracked: Precision (the proportion of correctly identified
positive instances), Recall (the proportion of positive instances that were correctly iden-
tified), F1-Score (the harmonic mean of Precision and Recall), Accuracy (the percentage
of correctly classified instances), AUC (Area Under the Curve) and MCC (Matthews’s
correlation coefficient) that is observed due to the unbalanced input dataset [6]. Initial
experiments revealed that while most models achieved satisfactory performance for eight
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out of nine classes, they faced difficulties with class CN. To address this issue, an addi-
tional metric was monitored: CN class F1-Score. The green cell’s color represents the
highest values in each statistic for each experiment group.

The final step of the proposed pipeline involves the application of majority voting [22].
Despite its simplicity, this technique has been successfully used in various tasks, consis-
tently enhancing the performance of classifiers [22,39]. The underlying principle behind
majority voting is to combine predictions from various sources. In this context, the in-
dividual predictions correspond to the classification results obtained for single instances
extracted from the input images. These subimages are then concatenated back into the
original images, allowing majority voting to combine the predictions for each cell-level
classification. Noteworthy, the methodology is primarily suited for monoculture scenar-
ios, where a single fungus species dominates the image. In the case of polycultures, where
multiple microorganism species coexist within a single image, majority voting should be
replaced with image-level labeling. The performance evaluations for each subimage (see
Tab. 1) revealed five promising models emerged as viable solutions. The ultimate selec-
tion among these candidates depends on specific business requirements and performance
optimization priorities. Models 18 and 15 are clear front-runners in terms of MCC and
AUC. Model 15 exhibits superior Precision compared to its counterparts, whereas mod-
els 5 and 30 merit attention for their enhanced F1-Score for the underrepresented CN
class. The selected five models were subjected to majority voting to demonstrate its per-
formance in this setting. Table 2 compares the results before and after majority voting,
the number in bracket indicates increase or decrease for each metric. The inclusion of
the majority voting rule consistently resulted in a slight improvement in performance,
demonstrating the effectiveness of this method. As shown in the Tab. 2, in 2 out of 5
models, all metrics except AUC recorded a slight increase. Particularly notable was the
improvement in F1-Score for the CN class. Following a comprehensive analysis of the
obtained results, model 30 emerged as the most promising solution, consistently out-
performing its counterparts across various performance metrics, including Recall, Pre-
cision, F1-Score, AUC and MCC. Notably, model 30 exhibited exceptional performance
in terms of 3rd class F1-Score, surpassing most other models. Figure 7 illustrates the
model’s learning trajectory, demonstrating rapid convergence to a low loss value. The
efficient implementation of transfer learning techniques, coupled with a well-calibrated
early stopping mechanism, effectively prevented overfitting. The dropout layers incor-
porated into the network and the underlying ResNetv2 architecture contributed to the
model’s robustness. To further evaluate 30th model’s versatility, the Micro-Averaged
One-versus-Rest ROC curve with AUC values are examined. Fig. 8 shows the model’s
ability to generalize across classes and adequately handle the underrepresented CN class.
Finally, the confusion matrices comparing classification before and after majority voting
implementation applied on model 30 are presented in Fig. 6.
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Tab. 2. Comparative performance of the leading five classification models post majority voting, with
values in brackets indicating changes compared to pre-majority voting results.

Metrics of selected models with majority voting and without it
Model Precision Recall F1 Accuracy CN F1 AUC MCC

5. 0.96(+0.06) 0.95(+0.05) 0.94(+0.04) 0.95(+0.05) 0.50(+0.16) 0.98(−0.01) 0.94(+0.05)
7. 0.94(+0.01) 0.92(+0.00) 0.89(−0.02) 0.92(+0.00) 0.00(+0.00) 0.95(−0.04) 0.91(+0.00)

15. 0.96(+0.04) 0.95(+0.03) 0.94(+0.02) 0.95(+0.03) 0.00(−0.06) 0.97(−0.02) 0.94(+0.03)
18. 0.96(+0.05) 0.95(+0.02) 0.94(+0.02) 0.95(+0.02) 0.00(+0.00) 0.95(−0.04) 0.94(+0.02)
30. 0.96(+0.05) 0.95(+0.04) 0.94(+0.03) 0.95(+0.04) 0.50(+0.18) 0.98(−0.01) 0.94(+0.04)

Fig. 6. Comparison of Confusion Matrices for the 30th model for each subimage (left) and after majority
voting (right).

5. Conclusion

This paper describes a method for identifying microscopic images of fungi utilizing
ResNets and a subimage retrieval mechanism (Fig. 2). The research highlights the sig-
nificance of hyperparameter and top layer architecture tuning, and its impact on model
performance, as demonstrated in Tab. 1. Notably, the best performing model employed
the relatively new Mish activation function, despite the widespread use of ReLU in
ResNet-based architectures for image classification tasks.

In conclusion, the method presented in this study yields promising results. First, the
MCC metric, which is believed to be one of the best metrics when it comes to classifying
unbalanced datasets, exceeded 0.9 both before and after majority voting for the top-
performing models (Tabs. 1, 2). Furthermore, OvR ROC Curve (Fig. 8a) also presented
expected results, as it rapidly approached the value of 1. Despite challenges with the
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Fig. 7. Accuracy (left) and loss (right) functions during training of the 30th model on training and
validation sets.

(a) (b)

Fig. 8. AUC values and ROC curves of the 30th model on test set, micro–averaged: (a) One vs. Rest
and (b) CN vs. Rest.

underrepresented CN class, Fig. 8b illustrating the ROC Curve for the CN versus Rest
also showcases a promising results. Worthy of note is the fact, that after application
of majority voting (Tab. 2), model 30 classified images belonging to 8 out of 9 classes
correctly 100% of the time (Fig. 6). On the other hand, majority voting can also produce
negative outcomes due to the fact, that if model struggles with certain class, despite some
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of the subimages are classified correctly, majority voting chooses wrong class as the final
prediction, decreasing metrics. Model 30 overall accuracy reached 94.74% for the testing
set, classifying correctly 36/38 images. In the original paper, B. Zieliński et. al. [46]
reached maximum of of 82.4% obtained by aggregating patch-based classification.

The primary challenge associated with the dataset is the imbalanced distribution of
classes. Despite a comparable number of microscopic images, each image encompasses
significantly different sample quantities. Certain images, such as those belonging to the
CP class, contained a few hundred fungi, while the CN class consisted of only a handful
of samples. Enhancing the efficiency and adaptability of the model would necessitate
a larger and more balanced dataset. Furthermore, conducting tests on a more exten-
sive variety of fungal species could yield valuable insights. In a study by Cagatan et
al., a VGG16-based method was introduced for identifying Cryptococcus neoformans, a
fungal pathogen, in patient samples [5]. The initial dataset for this study comprised
only 63 images, later augmented to 1000 through the generation of synthetic images us-
ing data augmentation techniques. This approach introduces an interesting concept for
further system development, specifically in generating artificial images to enhance the
input dataset. Convolutional-based single-instance detection methods, such as YOLOv4,
represent promising avenues for future advancements, but their practical applicability
should be thoroughly evaluated. In contrast to supervised methods like YOLO, the
segmentation approach presented in this paper leverages well-established image oper-
ations omitting the laborious procedure of image annotation that can be significantly
hard due to the fact that the microscopic images contain hundreds of small objects. Im-
ages with such intricate structures may be challenging for YOLO. Nevertheless, delving
into alternative techniques for single image retrieval, a crucial aspect of the proposed
methodology, opens up a promising avenue for further exploration.
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