
Rule-based Explaining Module:
Enhancing the Interpretability

of Recurrent Relational Network in Sudoku Solving

Pimpa Cheewaprakobkit 1,2, Timothy K. Shih 2,∗, Timothy Lau2,
Yu-Cheng Lin 3 and Chih-Yang Lin 4

1Department of Information Technology, Asia-Pacific International University, Saraburi, Thailand
2Department of Computer Science and Information Engineering, National Central University,

Taoyuan, Taiwan
3Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan

4Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
∗Corresponding author: Timothy K. Shih (timothykshih@gmail.com)

Abstract Computer vision has gained significant attention in the field of information technology due to
its widespread application that addresses real-world challenges, surpassing human intelligence in tasks
such as image recognition, classification, natural language processing, and even game playing. Sudoku, a
challenging puzzle that has captivated many people, exhibits a complexity that has attracted researchers
to leverage deep learning techniques for its solution. However, the reliance on black-box neural networks
has raised concerns about transparency and explainability. In response to this challenge, we present the
Rule-based Explaining Module (REM), which is designed to provide explanations of the decision-making
processes using Recurrent Relational Networks (RRN). Our proposed methodology is to bridge the gap
between complex RRN models and human understanding by unveiling the specific rules applied by the
model at each stage of the Sudoku puzzle solving process. Evaluating REM on the Minimum Sudoku
dataset, we achieved an accuracy of over 98.00%.

Keywords: rule-based explaining module, recurrent relational network, Sudoku puzzle solving, machine
learning.

1. Introduction

Sudoku is one of the most popular intellectual puzzle games [26] that involves logical
thinking to fill in numbers. It comprises a 9×9 grid, forming a numerical puzzle with
nine rows and nine columns, totalling 81 cells. The grid is further divided into nine 3×3
subgrids, referred to as blocks, each containing nine cells. To initiate the game, a set of
given numbers is provided as hints. These hints are placed in some of the cells of the
Sudoku puzzle, providing clues to help the player solve the puzzle. In most cases, the
more cells that are given, the easier the puzzle trends to be. Currently, to the best of
our knowledge, the fewest clues required for a proper Sudoku puzzle is 17. This means
that the most challenging Sudoku puzzles now are those with only 17 known cells. The
goal is to fill the empty cells with the numbers 1 through 9, ensuring that each number
appears only once in each row, column, and block [28]. An example of a Sudoku puzzle
and its solution is shown in Fig. 1.

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://orcid.org/0000-0002-7888-2053
https://orcid.org/0000-0003-4154-4752
https://orcid.org/0000-0003-2967-0764
https://orcid.org/0000-0002-0401-8473
mailto:timothykshih[at]gmail.com
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


126 Rule-based explaining module. . .

Fig. 1. Sudoku puzzle and its solution.

The rapidly evolving realm of computer vision has increasing in various aspects of
our daily lives, encompassing domain such as image recognition [19], language transla-
tion [25], and critical medical applications like X-ray image analysis for disease diag-
nosis [10, 27], and game playing [8]. The challenging of Sudoku puzzle has attracted
researchers to leverage deep learning techniques for its solution. The fascination lies not
only in the puzzles’ complexity but also in the diverse strategies required for their solu-
tion. Traditional rule-based methods have been prevalent, employing strategies such as
elimination, naked singles, and hidden singles. The advent of deep learning has ushered
in a revolution of puzzle-solving, introducing adaptive and data-driven approaches to
tackle Sudoku’s complexities. Despite the remarkable capabilities of deep learning, the
reliance on black-box nature of neural network has raised concerns about inner work-
ings and transparency of their decision-making processes, particularly in contexts where
machine learning applications make critical decisions. Enhancing the transparency of
black-box neural networks becomes particularly crucial in applications requiring abstract
reasoning about objects and their interactions, enabling audiences to comprehend the
rationale behind the decision process of machine learning. One direct method to achieve
this transparency is through the addition of explanations [21]. Existing explanation
methods for specific applications such as tracking feature extraction in image recogni-
tion to visualize the interpretation of input data [12]. Furthermore, logical methods that
integrate logical reasoning into neural networks have been proposed to enhance inter-
pretability throughout the entire process [7, 24]. However, these logical methods may
face challenges in generalizing to new data or situations, often relying on hand-crafted
rules or assumptions about the data. A similar approach, the expert system, is rule-
based [4] but demands a substantial amount of knowledge to be encoded in its rules.
This process can be time-consuming and expensive, particularly in complex domains.
Macha et al. introduced RuleXAI [13], a tool designed to enhancing explainability in
machine learning models. While currently limited to classification, regression, and sur-
vival analysis, RuleXAI leverages rule-based explanations and feature relevance to make

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


P. Cheewaprakobkit, T. K. Shih, T. Lau, Y. C. Lin, C. Y. Lin 127

models more understandable. However, it may not be perfectly accurate for all model
types, especially those with complex, black-box in neural network.

This study introduces the Rule-based Explaining Module (REM), a specialized tool
designed to unveil the specific rules applied by the model at each stage of the puzzle-
solving process. Therefore, the main contribution of our study is summarized as follows:
1. We present the Rule-based Explaining Module (REM), designed to offer comprehen-

sive, step-by-step explanations of the decision-making processes employed by Recur-
rent Relational Network (RRN) in Sudoku puzzle solving.

2. We conducted experiments using the Minimum Sudoku and 1 million Sudoku games
datasets. The results demonstrated that our model significantly contributes to the
transparency and interpretability of the Sudoku solving process.
The remainder of this paper is structured as follows: Section 2 provides a review

of related work, Section 3 introduces the proposed Rule-based Explaining module for
solving Sudoku, and Sections 4 and 5 present experimental results and conclusions,
respectively.

2. Related works

Sudoku is a wildly popular logic-based puzzle game, has captivated individuals of all
ages for many years. Its deceptively simple rules and endless variations have sparked a
worldwide fascination. The challenge of solving Sudoku puzzles lies in their ability to
test both logical reasoning and strategic thinking, especially for more difficult puzzles
that captivating players with their intricate patterns and hidden clues.

Over the years, various techniques have been explored for solving Sudoku puzzle.
Classical methods like backtracking [20], constraint propagation [14], and genetic al-
gorithms [11] have shed light on Sudoku solving strategies. For instance, the pencil-
and-paper method, also known as the human solver approach, efficiently solves easier
puzzles but faces difficulties with more challenging ones, especially in the absence of clear
clues. In contrast, backtracking, though it guarantees a solution for every valid puzzle,
is considerably slower [16]. Subsequently, a hybrid method for solving Sudoku puzzles,
integrating traditional backtracking algorithms with pencil-and-paper techniques was
introduced introduced [26]. This approach initially utilizes pencil-and-paper strategies,
followed by applying backtracking to specific sub-grids, and concludes with pencil-and-
paper methods on the remaining cells. This method is designed to improve puzzle-solving
efficiency. However, its complexity and computational demands could be a drawback.
The integration of algorithmic and intuitive strategies might lead to redundant opera-
tions and increasing the time required to solve complex Sudoku puzzles. Musliu and
Winter have integrated the structured approach of constraint programming with the it-
erative nature of local search methods in a hybrid solution [14]. This method leverages
the strengths of both: the proficiency of constraint programming in solving constraint

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


128 Rule-based explaining module. . .

satisfaction problems and the effectiveness of iterated local search in optimization tasks.
However, a primary challenge arises in balancing the systematic nature of constraint pro-
gramming with the adaptive strategy of local search. This balancing act could present
difficulties in efficiently finding solutions, especially in the context of complex Sudoku
puzzles. Das et al. present an evolutionary algorithm that employs genetic operators,
such as crossover and mutation, to generate new candidate solutions [3]. This algorithm
may require extensive computational resources and time to converge on a solution. Gad-
dam et al. propose a method for solving Sudoku puzzles using a combination of deep
learning and image processing techniques [6]. This method first utilizes image processing
techniques to extract the Sudoku grid from an image and then employs a deep learning
model to solve the puzzle. It demonstrates the potential of deep learning for solving
Sudoku puzzles. However, the accuracy of this method is dependent on the quality of
the input image. If the image is blurry or distorted, the accuracy of the deep learning
model may be compromised. These techniques, while laying the foundation for under-
standing the problem, often lacked the flexibility, solution explanation, and adaptability
needed to tackle complex puzzles. Björnsson et al., introduced a search-based approach
to generate explainable solutions to Sudoku puzzles [1]. This method involves modelling
the perceived human mental effort of using different familiar Sudoku-solving techniques.
This model serves as guidance for a search algorithm to identify the correct solutions
and present them in a way that is easily understandable to human solvers. However,
the method’s dependence on a potentially inaccurate model of human mental effort
could result in explanations that are not entirely accurate. Another approach, Demys-
tify, introduced by Espasa et al., provides step-by-step explanations for solving various
pen-and-paper puzzles, including Sudoku [5]. It utilizes Minimal Unsatisfiable Subsets
(MUSes) to solve puzzles through logical deduction, identifying essential puzzle com-
ponents for progress. While Demystify effectively explains puzzle solutions, it requires
human input in the form of high-level logical descriptions. Additionally, its applicability
may not be suitable for solving all types of pen-and-paper puzzles. Bogaerts et al. pro-
vide step-by-step explanations for constraint satisfaction problems (CSPs), focusing on
logic grid puzzles as a specific instance of CSPs [2]. They propose a framework for gener-
ating step-wise explanations of the inference steps taken during puzzle-solving. However,
this approach is particularly reliant on the availability of a formal rule representation
for the CSP domain. Without a well-defined set of rules, the framework may struggle to
generate meaningful explanations.

The introduction of neural networks, particularly Recurrent Relational Networks
(RRNs), revolutionized the landscape of Sudoku solving. RRNs [17], a type of neural
network well-suited for learning long-range dependencies in data, proved adept at cap-
turing the intricate relationships between cells in a Sudoku grid. While RRN’s capability
to learn from large datasets of Sudoku puzzles enabled them to achieve remarkable ac-
curacy, consistently outperforming classical approaches, their black-box nature makes

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


P. Cheewaprakobkit, T. K. Shih, T. Lau, Y. C. Lin, C. Y. Lin 129

Fig. 2. Overview of the framework.

it challenging to comprehend their decision-making processes. Palm et al. introduced
an RRN-based Sudoku solver that utilized a convolutional neural network (CNN) for
feature extraction and an RRN for capturing relational dependencies [17]. However, the
adoption of neural networks in Sudoku solving has raised concerns about transparency
and interpretability, prompting the exploration of explain ability modules.

To address the lack of transparency in RRN-based Sudoku solving, we leveraged rule-
based explanation techniques [21], inspired by prior research demonstrating their high
accuracy. This integration enhances transparency and interpretability by generating
human-readable rules that unveil the model’s decision-making process, these rules offer
a more accessible way to understand the process compared to examining the raw model
parameters.

3. Proposed method

Our proposed architecture incorporates the Recurrent Relational Network (RRN) [17]
and Rule-based Explaining Module (REM), aiming to provide comprehensive, step-by-
step explanations of the decision-making procedures in the context of Sudoku puzzle
solving as shown in Fig. 2. The process begins by inputting an unsolved Sudoku puz-

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


130 Rule-based explaining module. . .

Fig. 3. A Recurrent Relational Network structure with 3 nodes.

zle into the backbone network, the Recurrent Relational Network (RRN). Each input
node represents a feature vector (orange circles) corresponding to an individual Sudoku
cell. Subsequently, a multi-layer perceptron (MLP) captures patterns and dependencies
within the data. Recurrent computation updates all relevant information for each hid-
den state (green circles). The RRN then outputs probabilities for digits, representing
the possible candidate digits for each cell. Following this, all hidden states (green cir-
cles) from the RRN are forwarded to the Rule-based Explaining Module (REM) using
a multi-layer perceptron. This perceptron maps the hidden states to rules and outputs
the probability of selected rules, offering explanations for the decision-making process.
Finally, the Rule-based Sudoku step solver module receives output from both the RRN
and REM modules. It identifies conditions that trigger specific rules and updates the
knowledge base accordingly. This iterative process continues until the Sudoku puzzle is
solved, ultimately providing both the solution and explanations for the decision-making
steps involved.

3.1. Recurrent relational network (RRN)

RNN is a type of artificial neural network designed to capture long-range dependencies
in sequential data. It is able to do this by learning to pass messages between nodes in
a graph, which represents the relationships between the elements of the data. RRN is
a powerful tool for a variety of tasks, including natural language processing, machine
translation, and question answering. The RRN backbone consists of four main compo-
nents, which are data input, message passing, node hidden state, and the output result
as shown in Fig. 3.

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


P. Cheewaprakobkit, T. K. Shih, T. Lau, Y. C. Lin, C. Y. Lin 131

3.1.1. Data input
In the context of Sudoku puzzles, there are input nodes, denoted as i = 1, 2, . . . , 81,
each corresponding to a cell in the Sudoku grid. Each node i possesses an input xi,
representing the feature vector at that specific node.

3.1.2. Message passing
Message passing is responsible for communicating information between nodes. Each node
sends a message to each of its neighbours at each iteration of the RRN. The message
is a vector of numbers calculated based on the node’s current state and its relationship
to its neighbour. At each time step t, each node processes a hidden state vector ht

i.
During this process, each node sends a message mt

ij from node i to node j at time step t,
where node j represents a neighbouring node, utilizing message function f as illustrated
in formula (1)

mt
ij = f(ht−1

i , ht−1
j ) . (1)

In Recurrent Relational Network (RRN), the message function f is implemented as a
multiple-layer perceptron (MLP), enabling the network to learn the most effective types
of messages to send for each situation. To incorporate all relevant information, each node
must process all incoming messages, which are then summed together using formula (2).
The combination of the MLP and the summation of messages enables RRN to learn
complex patterns of communication and information exchange, making them powerful
tools for solving tasks that require relational reasoning:

mt
j =

∑
i∈N(j)

mt
ij , (2)

where N(j) represents all neighbouring nodes of node j, comprising nodes in the same
row, column, and block as node j. Consequently, messages are currently computed for
each node, allowing the model to progress to the next step in updating the network.

3.1.3. Recurrent nodes updates
Recurrent nodes are responsible for storing and updating the network’s state, which
represents the network’s current understanding of the data. The state of a recurrent
node is updated based on the messages it receives from its neighbours and the node’s
own internal state. The updates of recurrent nodes are key to the RRNs’ ability to learn
long-range dependencies in data. By repeatedly updating the state of each node based
on the received messages, RRN can learn to capture the relationships between elements
of the data that are separated by long distances in the input sequence. The formula for
updating the state of a recurrent node is illustrated in (3):

ht
j = g(ht−1

j , xj , mt
j) , (3)

where g represents the node update function, functioning as a multiple-layer perceptron
taking as input the hidden state from the previous iteration ht−1

i , the feature vector of

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


132 Rule-based explaining module. . .

input information xj , and the message mt
ij , the g function is trained to execute updates

for the hidden state.

3.1.4. The output
After updating the hidden state, we can obtain the output at step t for node i by applying
formula (4):

Ot
i = k(ht

i) , (4)

where k denotes the output function, a multiple-layer perceptron trained to decode
the hidden state into the output digit for the Sudoku. It converts the hidden state
into output probabilities for a total of 10 different digits using the softmax function.
The cross-entropy loss function, defined in formula (5), is used to optimize the model’s
performance during training. The target digits, represented by y = y1, y2, y3, . . . , y81
denote the correct digit at position i at step t.

lt = −
I∑

i=1
log Ot

i [yi] . (5)

3.2. Rule-based explaining module (REM)

Rule-based explaining is a technique in artificial intelligence employed to explain the
reasoning behind decision-making by identifying the conditions that triggered specific
rules and the conclusions reached by those rules. In our backbone network utilizing RRN,
the message passing in the RRN network encompasses valuable information, including
node relationships with its neighbours, which is highly valuable for examination. To
extract the explanations from the message, we incorporate a multiple-layer perceptron
that learns the rules from the hidden state after message passing and recurrent updating,
as defined by formula (6).

Rt
i = r(ht) , (6)

where Rt
i represents the output of the selected rules used to solve the Sudoku puzzle at

step t. The hidden states ht encompasses all of the RRN graph’s hidden states, and the
function r is a multiple-layer perceptron that maps the hidden state after message passing
to rules at step t. The variable i represents the number of rules, where i = 1, 2, . . . , n.
The selection of rules is guided by the tasks at hand. For Sudoku puzzles, we employ
rules proposed by Hobiger [9] and Riley [22]. From their set of rules, we selected six
rules for our experiments as they effectively solve the majority of the Sudoku puzzles in
our dataset. Sudoku solving is divided into steps, with each step corresponding to filling
in a single digit in the puzzle. Typically, multiple rules can be employed to determine a
single digit. Consequently, the rule identification process generates more than one rule
at each step. In this scenario, each Sudoku solving step can yield up to six different rule
outputs.

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


P. Cheewaprakobkit, T. K. Shih, T. Lau, Y. C. Lin, C. Y. Lin 133

Fig. 4. An example of Hidden Single.

3.3. Sudoku solving rules

We selected six rules from the rules proposed by Hobiger [9] and Riley [22]. These rules
include Hidden Single, Naked Single, Locked Candidates Type 1, Locked Candidates
Type 2, Naked Pair, and Hidden Pair. Although there are numerous rules beyond the
six we chose, our decision was based on the observation that these specific rules already
successfully solved over 98.00% of the most challenging Sudoku puzzles. In our study,
our primary focus is on explaining the Sudoku solving process rather than improving
accuracy. As such, we believe that utilizing these six rules is sufficient for our purposes.

3.3.1. Rule 1: Hidden single
A Hidden Single occurs when there is only one possible candidate number for a cell
within a row, column, or 3 × 3 block, but that candidate number does not appear in any
other cell within that row, column, or block. An example of the hidden single rule is
presented in Fig. 4.

Examining row 3 (r3) in Fig. 4, it becomes evident that the cell at row 3, column 4
(r3c4) marked with a green 6, is the sole occurrence of the digit 6 within row 3. Con-
sequently, we can confidently assign the digit 6 to cell r3c4 by eliminating other digit
candidates.

3.3.2. Rule 2: Naked single
A Naked Single occurs when there is only one possible candidate number in a row,
column, or 3 × 3 block that can contain a specific digit. An example of the naked single
rule is presented in Fig. 5.

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


134 Rule-based explaining module. . .

Fig. 5. An example of Naked Single.

Examining the cell at r6c7 in Fig. 5, it has only one possible digit candidate, which
is 6. Therefore, we can assign the digit 6 to that cell.

3.3.3. Rule 3: Locked candidates Type 1
The third and fourth rules are more advanced compared to the first two. They employ
an indirect method for eliminating potential candidates from a cell. In fact, all rules,
except for the first two, are utilized to eliminate possible candidates, eventually leading
to the condition where the first two rules can be applied to fill in a digit and complete
a step. Locked Candidates Type 1 occurs when all candidates of a specific digit within
a block are confined to a row or column, that digit cannot appear outside of that block
in that row or column. Fig. 6 illustrates an example of Locked Candidates Type 1.

Observing block 1 (b1) in Fig. 6, digit 5 only appears in row 3 (r3). Consequently,
there should not be another instance of digit 5 in row 3 outside of block 1. Therefore,
the candidate 5 in cell r3c7 can be eliminated.

3.3.4. Rule 4: Locked candidates Type 2
Locked Candidates Type 2 is the opposite of Locked Candidates Type 1. It occurs when,
in a row (or column), all candidates of a specific digit are confined to one block, allowing
the elimination of that candidate from all other cells in that block. Fig. 7 provides an
example of Locked Candidates Type 2.

Examining row 2 (r2) in Fig. 7, it is observed that all candidate positions for the
digit 7 appear only within block 1 (b1). Consequently, the digit 7 must be present in

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


P. Cheewaprakobkit, T. K. Shih, T. Lau, Y. C. Lin, C. Y. Lin 135

Fig. 6. An example of Locked Candidates Type 1.

Fig. 7. An example of Locked Candidates Type 2.

row 2 within block 1. As a result, the digit 7 candidates located outside row 2 in block 1
can be eliminated.

3.3.5. Rule 5: Naked pair
A Naked Pair occurs when there are exactly two candidate numbers for a cell within a
row, column, or 3 × 3 block, and those two candidate numbers also appear together in

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


136 Rule-based explaining module. . .

Fig. 8. An example of Naked Pair.

another cell within the same row, column, or block. This means that those two candidate
numbers must be in these two cells, and cannot be appear elsewhere in that row, column,
or block. Fig. 8 provides an example of naked pair.

Examining row 8 (r8), candidates 3 and 9 form a pair within a cell. Consequently,
the candidate 3 in cell r8c2, (row 8 in this case), can be eliminated

3.3.6. Rule 6: Hidden pair
A Hidden Pair occurs when there are two candidate numbers for a cell within a row,
column, or 3×3 block, and these two candidate numbers also appear together in another
cell within that same row, column, or block. However, that other cell is already filled with
another number. Consequently, all other candidates in those two cells can be eliminated.
Fig. 9 provides an example of hidden pair.

Examining column 9 (c9), we observe a pair of candidate digits, 1 and 9, located in
cells row 5 column 9 (r5c9) and row 7 column 9 (r7c9). Since 1 and 9 must occupy either
of these two cells, any other candidate digits, such as the possible candidate 6 in r5c9,
can be eliminated.

3.4. Rule-based sudoku step solver

Many Sudoku solving programs commonly eliminate candidates based on the given puz-
zle and search through all possibilities to identify the correct candidate digit. In contrast,
our Sudoku solver takes a distinct approach. It solves Sudoku in a stepwise, rule-based,
using specific rules in each action. The flow chart depicting our approach is presented

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


P. Cheewaprakobkit, T. K. Shih, T. Lau, Y. C. Lin, C. Y. Lin 137

Fig. 9. An example of Hidden Pair.

in Fig. 10. The initial step involves assigning possible candidate digits to each cell in
the provided Sudoku puzzle. Subsequently, we apply Sudoku rules by examining all
potential candidate digits to identify any patterns that conform the established rules.
As mentioned in the previous section, the first two rules form the foundation for solving
Sudoku puzzles, and we can observe that the Sudoku puzzle can be solved by applying
these two rules alone. Following the assessment of the first two rules, the remaining rules
are examined one by one to determine if any patterns meet the criteria of each rule. If a
pattern satisfying a rule is discovered, we revisit all the rules to ensure no other patterns
exist. This process iterates until the step is resolved by either the first or second rule.
Conversely, if no pattern satisfying the rule is found, that step cannot be solved, and
the solver will cease attempting to solve it. In other words, the Sudoku puzzle cannot
be solved within the framework of these six rules.

4. Experimental results

We conducted our experiments using a DGX station with a Nvidia V100 GPU with
32 GB of GPU RAM, employing a batch size of 128 and a learning rate of 2e-5. The
training process involved 32 steps because the model stabilized at this step and took
5 days. The total number of trainable parameters was 518 006. For testing, we used
both the Minimum Sudoku dataset from Gordon Royle and 1 million Sudoku games
(1M Sudoku) dataset [18]. Additionally, the Minimum Sudoku dataset [23] was used for
training, divided into an 80% training set, a 10% validation set, and a 10% testing set.

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


138 Rule-based explaining module. . .

Fig. 10. Flow chart of the Rule-based Sudoku step solver.

Our method demonstrated the ability to solve Sudoku puzzles at a speed of 20 puzzles
per second.

4.1. The Minimum Sudoku dataset from Gordon Royle

The Minimum Sudoku dataset [23] comprises49 151 puzzles, each assigned the difficulty
level of 17 given numbers. These puzzles are generated using a backtracking algorithm
and is guaranteed to have a unique solution. Leveraging the complexity of these Sudoku
puzzles with 17 given numbers during training enables our model to effectively handle a
wide range of puzzles, from easy to difficulty levels.

We investigated the model’s ability to apply six Sudoku-solving rules independently:
Naked Single, Hidden Single, Locked Candidate Type 1, Locked Candidate Type 2,
Naked Pair, and Hidden Pair. By testing the model on the Minimum Sudoku dataset,

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


P. Cheewaprakobkit, T. K. Shih, T. Lau, Y. C. Lin, C. Y. Lin 139

we aimed to determine how effectively the model can apply each rule to solve Sudoku
puzzles by applying 64 steps. The results are correctly verified using the Norvig Sudoku
solver [15].

The results of solving the Sudoku puzzle are presented in Tab. 1. This table illustrates
that, initially, the model assigns possible number candidates for the puzzle, enabling
Sudoku solution with an accuracy of 72.32%. Subsequently, the model employs Rule 1,
achieving a Sudoku accuracy of 99.00%. For cells in Sudoku puzzles that remain unsolved
after Rule 1, the model applies Rule 2, achieving an accuracy of 98.98%. If any cells
persistently resist resolution with Rule 2, the model turns to Rule 3, and so forth, up to
Rule 6. The accuracy rates for Rules 3 to 6 are 98.62%, 98.60%, 98.79%, and 98.67%,
respectively.

4.2. The 1 million Sudoku games (1M Sudoku) dataset

The 1M Sudoku dataset [18], available on Kaggle, was developed by Kyubong Park. Using
a computer program, he generated over a million Sudoku puzzles with their correspond-
ing solutions. The dataset encompasses a variety of difficulty levels, ranging from easy
to challenging. While several factors can influence a Sudoku puzzle’s difficulty, such as
the pattern of given cells, the puzzle’s symmetry, and the existence of hidden singles or
doubles, the number of given cells is a crucial factor. Sudoku puzzles with the fewest
given cells are generally considered to be more difficult. The majority of puzzles in this
dataset are of medium difficulty. We conducted experiments with our model using the
1M Sudoku dataset, performing 64 steps on each puzzle.

The results of solving these Sudoku puzzles are presented in Tab. 2. The contents
of this table demonstrates that, in the initial stage, the model assigns possible number
candidates for the Sudoku puzzle, enabling a 95.41% success rate in solving Sudoku
puzzles. Subsequently, the model employs Rule 1, achieving a perfect accuracy of 100%.
For any remaining unsolved cells after applying Rule 1, the model employs Rule 2, also
achieving a perfect accuracy of 100%. Since Rule 2 successfully solves all remaining

Tab. 1. The results of solving the Sudoku puzzle on the Minimum Sudoku dataset.

Accuracy (%) Rules used Description
72.32 - Model assigns possible numbers
99.00 1 Naked Single
98.98 2 Hidden Single
98.62 3 Locked Candidate Type 1
98.60 4 Locked Candidate Type 2
98.79 5 Naked Pair
98.67 6 Hidden Pair

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


140 Rule-based explaining module. . .

Tab. 2. The results of solving the Sudoku puzzle on the 1 million Sudoku games dataset.

Accuracy (%) Rules used Description
95.41 - Model assigns possible numbers
100.00 1 Naked Single
100.00 2 Hidden Single
100.00 3 Locked Candidate Type 1
100.00 4 Locked Candidate Type 2
100.00 5 Naked Pair
100.00 6 Hidden Pair

cells, Rules 3 to 6 become unnecessary. Therefore, Rules 3 to 6 consistently exhibit
100% accuracy when applied. Refer to Tab. 4 for more details. Since our model was
trained on the Minimum Sudoku dataset, renowned for its difficulty, it excels in solving
Sudoku puzzles, achieving an outstanding 100% success rate.

4.3. Rule-based explanation

Our rule-based explaining module allows us to understand how the RRN model solves
Sudoku puzzles by breaking it down step by step based on established rules and infer-
ences. This is demonstrated through examples, such as inputting a Sudoku puzzle from
the Minimum Sudoku dataset, where each cell’s candidate number represents the proba-
bility of it being the correct answer. Fig. 11 depict a graph showcasing solving accuracy
at various steps ranging from 0 to 60 using the Minimum Sudoku dataset. Additionally,
Fig. 12 displays a graph representing rule accuracy employed at different steps with the
same dataset.

Tab. 3 provides a comprehensive analysis and interpretation of the rule accuracy
applied at various steps in the Sudoku-solving process. In the initial stage, the model
achieved its highest accuracy near step 32. The model employed rules 1 through 6 to
solve the puzzle. This indicates that the Sudoku puzzle is significantly complex, requiring
the use of more than two rules to achieve a solution.

In another instance, we utilized input data from the 1M Sudoku dataset. As depicted
in Fig. 13, a graph illustrates solving accuracy at various steps, ranging from 0 to 60.
Fig. 14 presents a graph illustrating rule accuracy at different steps, with the model
achieving its highest accuracy around step 32. Accompanying these figures is Tab. 4,
where rules 1 and 2 were employed to solve the puzzle, achieving 100% accuracy. This
observation sheds light on why rules 3 to 6 consistently show 100% accuracy. The reason
behind this is that the model does not anticipate the utilization of rules 3 to 6, resulting
in their consistent correctness as unused rules.

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


P. Cheewaprakobkit, T. K. Shih, T. Lau, Y. C. Lin, C. Y. Lin 141

Fig. 11. A graph depicting solving accuracy at different steps using the Minimum Sudoku dataset.

Fig. 12. Illustrating rule accuracy at different steps using the Minimum Sudoku dataset.

5. Conclusion

In this paper, we address concerns regarding the transparency and interpretability of
machine learning applications, especially in critical decision-making domains. The opac-
ity of neural networks, often labelled as black-boxes, has raised questions, particularly
in Sudoku puzzle-solving scenarios. To tackle this challenge, we introduced the Rule-
based Explaining Module (REM) as a tool to understand the complex decision-making
processes of RRN during Sudoku puzzle-solving. While our REM has shown promise,
there are opportunities for further exploration and improvement. Future research could
explore broader applications of REM across diverse datasets. Additionally, extending

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


142 Rule-based explaining module. . .

Tab. 3. The analysis and interpretation of rule accuracies across different steps in Minimum Sudoku
dataset.

Steps (1-64) 1 16 32 48 64 Best Step/
accuracy (%)

Model assigns 9.71 71.91 72.17 71.19 69.66 24/72.32
possible numbers

Rule 1 98.89 98.96 98.98 98.94 98.88 6/99.00
Rule 2 98.89 98.92 98.97 98.96 98.91 21/98.98
Rule 3 98.18 98.54 98.56 98.51 98.37 20/98.62
Rule 4 98.25 98.54 98.56 98.55 98.41 30/98.60
Rule 5 98.63 98.72 98.76 98.79 98.69 40/98.79
Rule 6 98.72 98.60 98.63 98.52 98.44 26/98.67

Fig. 13. An example of a graph depicting solving accuracy at different steps.

our approach to other puzzle types or complex decision-making tasks. The development
of user-friendly interfaces and visualization techniques could facilitate the practical im-
plementation of REM in real-world scenarios. This work represents a significant step in
addressing transparency challenges posed by neural networks, offering a concrete solution
in the form of the Rule-based Explaining Module. The success of our proposed method
not only contributes to the field of explainable artificial intelligence but also paves the
way for broader applications in various domains requiring interpretable decision-making.

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


P. Cheewaprakobkit, T. K. Shih, T. Lau, Y. C. Lin, C. Y. Lin 143

Fig. 14. Illustrating rule accuracy at different steps.

Tab. 4. An example of the analysis and interpretation of rule accuracies across different steps in the 1M
Sudoku games dataset.

Steps (1-64) 1 16 32 48 64 Best Step/
accuracy [%]

Model assigns
possible numbers

14.26 94.95 95.34 95.07 94.29 34/95.41

Rule 1 100.00 100.00 99.99 99.99 99.99 1/100.00
Rule 2 100.00 99.99 99.99 99.99 99.99 1/100.00
Rule 3 100.00 100.00 100.00 100.00 100.00 0/100.00
Rule 4 100.00 100.00 100.00 100.00 100.00 0/100.00
Rule 5 100.00 100.00 100.00 100.00 100.00 0/100.00
Rule 6 100.00 100.00 100.00 100.00 100.00 0/100.00

References

[1] Y. Björnsson, S. Helgason, and A. Pálsson. Searching for explainable solutions in Sudoku. In:
2021 IEEE Conference on Games (CoG), pp. 1–8. Copenhagen, Denmark, 17-20 Aug 2021.
doi:10.1109/CoG52621.2021.9618900.

[2] B. Bogaerts, E. Gamba, and T. Guns. A framework for step-wise explaining how to solve constraint
satisfaction problems. Artificial Intelligence, 300:103550, 2020. doi:10.1016/j.artint.2021.103550.

[3] K. N. Das, S. K. Bhatia, S. Puri, and K. Deep. Solving Sudoku puzzle by evolutionary algorithm. In:
Proc. 21st Asian Technology Conference in Mathematics. Mathematics and Technology, LLC, Pat-
taya, Thailand, 14-18 Dec 2016. https://atcm.mathandtech.org/EP2016/contributed/4052016_
21261.pdf.

[4] G. D. Engin, B. Aksoyer, M. Avdagic, D. Bozanli, U. Hanay, et al. Rule-based expert

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://doi.org/10.1109/CoG52621.2021.9618900
https://doi.org/10.1016/j.artint.2021.103550
https://atcm.mathandtech.org/EP2016/contributed/4052016_21261.pdf
https://atcm.mathandtech.org/EP2016/contributed/4052016_21261.pdf
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


144 Rule-based explaining module. . .

systems for supporting university students. Procedia Computer Science, 31:22–31, 2014.
doi:https://doi.org/10.1016/j.procs.2014.05.241.

[5] J. Espasa, I. P. Gent, R. Hoffmann, C. Jefferson, and A. M. Lynch. Using small
MUSes to explain how to solve pen and paper puzzles. ArXiv, 2021. ArXiv.2104.15040.
doi:10.48550/arXiv.2104.15040.

[6] D. K. R. Gaddam, M. D. Ansari, and S. Vuppala. On Sudoku problem using deep learning and
image processing technique. In: Proc. 3rd Int. Conf. Communications and Cyber Physical Engi-
neering (ICCCE) 2020, vol. 698 of Lecture Notes in Electrical Engineering, pp. 1405–1417, 2020.
doi:10.1007/978-981-15-7961-5_128.

[7] O. Gerasimova, N. Severin, and I. Makarov. Comparative analysis of logic reasoning and graph
neural networks for ontology-mediated query answering with a covering axiom. IEEE Access,
11:88074–88086, 2023. doi:10.1109/ACCESS.2023.3305272.

[8] T. Guns, E. Gamba, M. Mulamba, I. Bleukx, S. Berden, et al. Sudoku assistant – an AI-powered
app to help solve pen-and-paper Sudokus. In: Proc. AAAI Conference on Artificial Intelligence, p.
16440–16442. AAAI Press, 2023. doi:10.1609/aaai.v37i13.27072.

[9] B. Hobiger. Sudoku for Java – HoDoKu, 2013. https://sourceforge.net/projects/hodoku/,
[Accessed: 15 Oct, 2023].

[10] A. Hussain, S. U. Amin, H. Lee, A. Khan, N. F. Khan, et al. An automated chest X-ray im-
age analysis for Covid-19 and pneumonia diagnosis using deep ensemble strategy. IEEE Access,
11:97207–97220, 2023. doi:10.1109/ACCESS.2023.3312533.

[11] B. Indriyono, N. Pamungkas, Z. Pratama, E. Mintorini, I. Dimentieva, et al. Comparative anal-
ysis of the performance testing results of the backtracking and genetics algorithm in solving
Sudoku games. International Journal of Artificial Intelligence and Robotics, 5(1):29–35, 2023.
doi:10.25139/ijair.v5i1.6501.

[12] P. Linardatos, V. Papastefanopoulos, and S. B. Kotsiantis. Explainable AI: A review of machine
learning interpretability methods. Entropy, 23(1):18, 2021. doi:10.3390/e23010018.

[13] D. Macha, M. Kozielski, Ł. Wróbel, and M. Sikora. RuleXAI—A package for rule-based explanations
of machine learning model. SoftwareX, 20:101209, 2022. doi:10.1016/j.softx.2022.101209.

[14] N. Musliu and F. Winter. A hybrid approach for the Sudoku problem: Using con-
straint programming in iterated local search. IEEE Intelligent Systems, 32(2):52–62, 2017.
doi:10.1109/MIS.2017.29.

[15] P. Norvig. Solving every Sudoku puzzle, 15 Jan 2012. https://norvig.com/sudoku.html, [Accessed:
15 Oct, 2023].

[16] E. Onokpasa, D. Bisandu, and D. Bakwa. A hybrid backtracking and pencil and paper Sudoku
solver. International Journal of Artificial Intelligence and Robotics, 181(47):39–43, 2019. https:
//dspace.unijos.edu.ng/jspui/handle/123456789/2769.

[17] R. B. Palm, U. Paquet, and O. Winther. Recurrent relational networks. In: Advances in Neural
Information Processing Systems 31 – Proc. 32nd Int. Conf. Neural Information Processing Systems
(NeurIPS) 2018, vol. 31 of NIPS’18, p. 3372–3382, 2018. https://proceedings.neurips.cc/paper/
2018/hash/b9f94c77652c9a76fc8a442748cd54bd-Abstract.html.

[18] K. Park. 1 million Sudoku games, 2017. https://www.kaggle.com/datasets/bryanpark/sudoku,
[Accessed: 15 Oct, 2023].

[19] X. Pengcheng, H. Zhenlin, Z. Liuqi, W. Ning, Z. Hanghang, et al. A realtime im-
age recognition method of Power AI based on quadtree algorithm. In: Proc. 2023 2nd
Int. Conf. Innovation in Technology (INOCON), pp. 1–6. Bangalore, India, 3-5 Mar 2023.
doi:10.1109/INOCON57975.2023.10101145.

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://doi.org/https://doi.org/10.1016/j.procs.2014.05.241
https://doi.org/10.48550/arXiv.2104.15040
https://doi.org/10.1007/978-981-15-7961-5_128
https://doi.org/10.1109/ACCESS.2023.3305272
https://doi.org/10.1609/aaai.v37i13.27072
https://sourceforge.net/projects/hodoku/
https://doi.org/10.1109/ACCESS.2023.3312533
https://doi.org/10.25139/ijair.v5i1.6501
https://doi.org/10.3390/e23010018
https://doi.org/10.1016/j.softx.2022.101209
https://doi.org/10.1109/MIS.2017.29
https://norvig.com/sudoku.html
https://dspace.unijos.edu.ng/jspui/handle/123456789/2769
https://dspace.unijos.edu.ng/jspui/handle/123456789/2769
https://proceedings.neurips.cc/paper/2018/hash/b9f94c77652c9a76fc8a442748cd54bd-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/b9f94c77652c9a76fc8a442748cd54bd-Abstract.html
https://www.kaggle.com/datasets/bryanpark/sudoku
https://doi.org/10.1109/INOCON57975.2023.10101145
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7


P. Cheewaprakobkit, T. K. Shih, T. Lau, Y. C. Lin, C. Y. Lin 145

[20] M. Prabha, S. Radha, P. M. Priya, and B. S. Dhivya. Sudoku solver using minigrid based back-
tracking algorithm. International Journal of Research in Engineering, Science and Management,
5(6):138–140, 2022. https://journal.ijresm.com/index.php/ijresm/article/view/2180.

[21] G. P. Reddy and Y. V. P. Kumar. Explainable AI (XAI): Explained. In: Proc. 2023 IEEE Open
Conference of Electrical, Electronic and Information Sciences (eStream), pp. 1–6. Vilnius, Lithua-
nia, 27-27 Apr 2023. doi:10.1109/eStream59056.2023.10134984.

[22] G. Riley. CLIPS rule based programming language code, jan 2016. https://sourceforge.net/p/
clipsrules/code/HEAD/tree/branches/63x/examples/sudoku/, [Accessed: 15 Oct, 2023].

[23] G. Royle. Good at Sudoku? Here’s some you’ll never complete. The Con-
versation, 12 Feb 2012. [Accessed: 15 Oct, 2023]. https://theconversation.com/
good-at-sudoku-heres-some-youll-never-complete-5234.

[24] S. Shi, H. Chen, W. Ma, J. Mao, M. Zhang, et al. Neural logic reasoning. In: Proc. 29th ACM Int.
Conf. Information & Knowledge Management (CIKM ’20), p. 1365–1374. Boise, ID, USA, 21-25
Oct 2020. doi:10.1145/3340531.3411949.

[25] Y. Singh, P. Kumar, S. Goel, P. Garg, T. Srivastava, et al. Anuvadak: Language sys-
tem using machine learning techniques. In: Proc. 2023 Int. Conf. Artificial Intelligence
and Smart Communication (AISC), pp. 742–745. Greater Noida, India, 27-29 Jan 2023.
doi:10.1109/AISC56616.2023.10085373.

[26] A. A. Suha Binta Wadud and M. Abdullah-Al-Wadud. An improved hybrid method combining
backtracking with pencil and paper for solving sudoku puzzles. In: Proc. Int. Symp. Electrical,
Electronics and Information Engineering (ISEEIE) 2021, p. 438–441. Association for Computing
Machinery, Seoul, Republic of Korea, 19-21 Feb 2021. doi:10.1145/3459104.3459176.

[27] Y. Tian. Artificial intelligence image recognition method based on convolutional neural network
algorithm. IEEE Access, 8:125731–125744, 2020. doi:10.1109/ACCESS.2020.3006097.

[28] P.-S. T. P.-S. Tsai, T.-F. W. P.-S. Tsai, J.-Y. C. T.-F. Wu, and J.-F. H. J.-Y. Chen. Integrating of
image processing and number recognition in Sudoku puzzle cards digitation. Journal of Internet
Technology, 23(7):1573–1584, 2022. doi:10.53106/160792642022122307012.

Machine GRAPHICS & VISION 32(3/4):125–145, 2023. DOI: 10.22630/MGV.2023.32.3.7 .

https://journal.ijresm.com/index.php/ijresm/article/view/2180
https://doi.org/10.1109/eStream59056.2023.10134984
https://sourceforge.net/p/clipsrules/code/HEAD/tree/branches/63x/examples/sudoku/
https://sourceforge.net/p/clipsrules/code/HEAD/tree/branches/63x/examples/sudoku/
https://theconversation.com/good-at-sudoku-heres-some-youll-never-complete-5234
https://theconversation.com/good-at-sudoku-heres-some-youll-never-complete-5234
https://doi.org/10.1145/3340531.3411949
https://doi.org/10.1109/AISC56616.2023.10085373
https://doi.org/10.1145/3459104.3459176
https://doi.org/10.1109/ACCESS.2020.3006097
https://doi.org/10.53106/160792642022122307012
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.7



	Introduction
	Related works
	Proposed method
	Recurrent relational network (RRN)
	Data input 
	Message passing
	Recurrent nodes updates
	The output

	Rule-based explaining module (REM)
	Sudoku solving rules
	Rule 1: Hidden single
	Rule 2: Naked single 
	Rule 3: Locked candidates Type 1
	Rule 4: Locked candidates Type 2
	Rule 5: Naked pair
	Rule 6: Hidden pair

	Rule-based sudoku step solver

	Experimental results
	The Minimum Sudoku dataset from Gordon Royle
	The 1 million Sudoku games (1M Sudoku) dataset
	Rule-based explanation 

	Conclusion

