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Abstract Aerial images are valuable for observing land, allowing detailed examination of Earth’s surface
features. As remote sensing (RS) imagery becomes more abundant, there is a growing need to fully utilize
these images for smarter Earth observation. Understanding large and complex RS images is crucial.
Satellite image scenery categorization, which involves labeling images based on their content, has diverse
applications. Deep Learning (DL), using neural networks’ powerful attribute learning capabilities, has
made significant strides in categorizing satellite imagery scenes. However, recent advances in DL for
scenery categorization of RS images are lacking. In our study, we employed three transfer learning
(TL) models – VGG16, Densenet201 (D-201), and InceptionV3 (IV3) – for classifying aerial images.
VGG16 achieved 94% accuracy, while D-201 and IV3 reached 97% accuracy. Combining these models
into an ensemble (V3DI ensemble model) improved accuracy to an impressive 99%. This ensemble
model combines individual models’ classification decisions using majority voting. We demonstrate the
efficiency of this approach by showing how ensemble classification accuracy surpasses that of training
individual models. Additionally, we preprocess the dataset with a Gabor filter for edge enhancement
and denoising to enhance the model’s overall performance.

Keywords: aerial image classification, remote sensing, deep learning, transfer learning, ensemble learn-
ing.

1. Introduction

A key data source for terrestrial observation, remotely sensed imagery aids in measuring
and observing comprehensive features on top of the earth’s surface. The number of
images is rapidly increasing, leading to a greater demand for research on how to efficiently
produce and analyze the majority of these images captured through remote sensing
(RS) technology for detailed Earth inspection. Therefore, it is crucial to be able to
understand huge and intricate remotely sensed images. Recognizing scenes in aerial
photography is a demanding but required task for effective image interpretation, making
it a key study topic. Recent high-resolution benchmark data sets have been made widely
accessible by researchers from various organizations for the scene classification of RS
data. The practical applications of RS scene categorization in urban planning, the
discovery of natural hazards, environmental tracking, vegetation mapping, and geospatial
item detection have spurred a number of studies over the past few decades. Fig. 1
illustrates how to appropriately classify a scene using RS imageries and established
semantic categories.

The purpose of RS image analysis is to visually inspect Earth’s surface using data
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Fig. 1. Several scene images from the NWPU-RESISC45 dataset. (a) Tennis court; (b) commercial

area; (c) river; (d) circular farmland; (e) palace; (f) golf course.

collected from satellites and unmanned aerial vehicles. Categorization of imagery is the
backbone of visual recognition systems; after objects have been tagged with meaning-
ful terms, they may be organized according to their conceptual significance. There are
several applications of conceptual image organization in machine vision and imagery
processing, including video synthesis, scenery evaluation, detecting objects, picture an-
notation, extraction, and content-driven image interpretation. By categorizing the pixels
into different classes, image classification simplifies the data and makes it easier for users
to analyze and understand spatial patterns, trends, and relationships. This information
can be employed for several uses, like terrestrial usage and ground cover plotting, ur-
ban planning, agriculture monitoring, natural resource management, and environmental
studies, among others.

In the past few decades, various academics have suggested multiple Deep Learning
(DL) algorithms. These algorithms are used for categorizing scenes. They utilize freely
available high-resolution standard data sources within this framework. While these mod-
els have demonstrated effective precision for smaller datasets, they encounter limitations
in extracting features from high-resolution data. Our observation reveals that architec-
tures enhanced with Gabor layers consistently improve robustness over regular models

Machine GRAPHICS & VISION 34(1):25–52, 2025. DOI: 10.22630/MGV.2025.34.1.2.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.1.2


A. Shastry, R. Itagi 27

and maintain high generalization performance in tests. To determine the optimal ensem-
ble learning approach, we train multiple Convolutional Neural Network (CNN) models
on aerial datasets preprocessed with Gabor filters. Subsequently, we combine these
models by averaging their predictions, resulting in improved accuracy. It is through
this combination of predictions that we achieve the benefits of ensemble learning. Our
research aims to develop an ensemble DL model capable of categorizing and labeling
pixels or groups of pixels in satellite or aerial images based on their spectral values. Key
objectives include identifying the most suitable pre-trained DL models for image classi-
fication based on previous research, constructing predictive models to extract features
from high-resolution data and interpret complex patterns and information within the
images, and converting raw data into more meaningful information applicable to various
applications.

Transfer Learning (TL) involves applying skills learned from previous tasks to a
new model for a different task. In deep learning, pre-trained networks are the core
form of TL. There are two popular approaches: enhancing pre-trained models and using
them as attribute extractors. The idea behind using pre-trained models as attribute
extractors is to utilize the parent model with fresh data, replacing only the model’s top
layer while keeping its weights constant during training. Our research introduces a new
framework that combines TL techniques and an ensemble method for Remote Sensing
(RS) imagery classification. This framework incorporates the majority voting method
and spatial features of landslides to achieve automatic and accurate results. Various
organizations have recently made high-resolution benchmark datasets widely accessible
for RS data scene classification.

The three main contributions of our research are as follows:
• The proposed ensemble model consists of pre-trained networks like VGG16, Incep-

tionV3, and DenseNet201 that are trained using the datasets RESISC45 and NWPU-
RESISC45 to categorize the RS images more accurately. The dataset is preprocessed
with a Gabor filter for edge enhancement and denoising. This aids in enhancing the
model’s general performance.

• Our research offers a thorough analysis of the latest advancements in this area. We
examine current benchmark repositories which are easily available to the public and
several deep feature learning-based TL algorithms.

• Finally, we evaluate a number of representative methods including the TL-based DL
approach and usage of CNN models with different classifiers which were performed
with different datasets
The remaining part of this paper is organized as follows. In Section 2 the relared

work is discussed. In Section 3 we propose our solution to the aerial scene classification
problem. The results of experiments are presented in Section 4. Section 5 concludes the
paper.

Machine GRAPHICS & VISION 34(1):25–52, 2025. DOI: 10.22630/MGV.2025.34.1.2.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.1.2


28 V3DI ensemble model for high-accuracy aerial scene classification

2. Related work

This section gives a complete evaluation of the works encompassing a broad spectrum
of relevant work in RS imagery categorization is presented including network architec-
tures (traditional CNN; Fully Convolutional Networks, FCN; encoder-decoder, recurrent
networks; attention models, and generative adversarial models). The characteristics, ca-
pabilities, and limitations of current DL models were examined, and potential research
directions are discussed. Since RS gives us imagery that enables accurate measurement
and study of the Earth’s surface features, it is a vital data source for Earth observa-
tion. These remote-sensing images offer a wealth of information, allowing us to examine
and study the intricate details of our planet’s surface. A growing volume of software’s
use remote sensor pictures. Because of this, it is more important than ever to figure
out how to effectively use expanding quantities of RS information for insightful earth
observation. Therefore, it is crucial to comprehend large and intricate remote-sensing
images. Images captured by satellite have a variety of applications. Advanced learning
uses images or data that have been remotely acquired. Consequently, researchers are
able to comprehend numerous facets of the relevant domains. The noise and blur present
in such photographs is a severe disadvantage. Noise removal is therefore the primary
and initial step in the learning of images. Various sounds are added to the images as an
outcome of the surroundings, such as particles in the sensor devices, light attenuation,
haze, dust, etc. For professionals, pre-processing these photos is a difficult undertaking.

The various noise types [34] in the photos include Saltand-Pepper, Gaussian, Poisson
noise, etc. Sudden and quick adjustments in the signal are what generate salt and
pepper noise. Errors in the data flow cause this type of noise to arise. It is depicted
by pixels of white and black that are sporadically present. The signal is equally spread
out over the Gaussian noise. It has a Gaussian distribution and is statistical noise.
A function with a probability density function that is identical to the Normal distribution
is known as a Gaussian distribution. Each point’s vibration operates independently of
pixel value intensity. Poisson noise occurs when there aren’t enough samples collected by
the sensor to generate visible statistical data. Shot noise seems to be present in varying
quantities, unlike light and electric current. Only a few of the numerous industries
that have effectively exploited RS of images include classification and change detection.
Nevertheless, RS image processing involves a few pre-processing processes in addition
to categorization and change detection, and it also largely relies on the approach used.
Because of this, the RS group is always trying to get better at areas like pre-processing,
segmentation, and classification through the use of RS methodologies. The DL (DL)
community has long used neural networks, which form the foundation of these techniques.
Prior to the development of DL models, ensemble classifiers, including random forests
(RF) and support vector machines (SVM), had replaced neural networks as the primary
focus in the area of RS for the purposes of picture categorization and additional jobs like
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change detection. Due to its ease of use (e.g., being largely unaffected by classification
parameter sensitivity) and typically high accuracy, SVM has grown in favour (Giorgos
Mountrakis, 2011) [26].

While RF acquired popularity for a variety of factors including its capacity to manage
high-dimensional data and perform effectively with limited training samples [3]. How-
ever, the growth of DL in more recent years has sparked a resurgence in interest in
neural networks. DL algorithms have displayed outstanding performance at many image
analysing tasks, including object identification, scene classification, and “land use and
land cover” (LULC) classification. Thanks to advancements in computer and remote
monitoring satellite technology, the images now have better spatial resolution, texture
information and appropriate processing techniques. Data from ”High Spatial Resolution
RS” (HSRRS) was utilized effectively for information extraction, categorization, and
object identification [22,23,37]. Numerous HSRRS images have been collected recently,
and key work has been done in the domains of pattern recognition, LULC [2, 7]. These
methods begin by mining attributes from training information before creating a classi-
fication model to test on more data. Most of the recognition techniques are DL-based.
DL performs better for target identification, object recognition, and classification. It
was effectively used to extract abstract and semantic features [11,14,15,18,24,33,35].

CNNs are a popular DL technique and several CNN-based methods have been de-
signed for Natural Language Processing (NLP), computer vision, processing of medical
images, and processing of images from remote sensors [30]. These real-world examples
showed that a network’s depth is crucial for the model since it allows it to extract more
complicated characteristics when there are more layers. While a deep layered model
will improve performance and require a small amount of training, deep CNN (DeCNN)
models frequently need a large quantity of labelled data. Finding enough labelled data
to train the DeCNN model for the HSRRS scene classification issue is challenging. Addi-
tionally, labelling the HSRRS data requires a lot of manpower and materials. When the
amount of labelled data is insufficient, the trained DeCNN model will quickly exhibit
an over-fitting issue. Many research investigations have proven that TL is effective in
classifying and identifying objects from small-sized training records.

2.1. RS imagery scene categorization

• Multilevel RS imagery scene categorization An in-depth study has been
conducted on the challenge of single-label photo categorization throughout the past
few decades. However, because of the usage of the birds-eye imaging method, it is
very typical in the actual world for several ground objects to show up in a satellite
image. Due to this, single-label RS picture scene categorization hinders the ability to
fully comprehend the complex information included in RS imageries. Despite recent
research into multilabel satellite image scene classification [4,9,12,13,19,31,32], there
are still a number of challenges that require to be resolved, including how to utilize

Machine GRAPHICS & VISION 34(1):25–52, 2025. DOI: 10.22630/MGV.2025.34.1.2.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.1.2


30 V3DI ensemble model for high-accuracy aerial scene classification

the relationships between various labels, how to acquire more generally applicable
discriminative characteristics, and how to construct sizable multilevel datasets for
scene categorization.

• Increasing the size of scene classification datasets Every type of scene in
every open-world scenario would be easily and accurately recognised by the ideal
scene classification system. Recent scene classification algorithms are only potentially
capable of classifying scenes which prevail in the training datasets because they are
trained on a restricted number of datasets. Consequently, a convincing method for
classifying scenes ought to appropriately classify a brand-new scene image. There
are many fewer scene classes in the published datasets [24–26] than what people can
differentiate. A normal deep CNN also has a myriad of criteria and a propensity to
overfit the several thousand of training instances. As a consequence, it is very difficult
to completely train a deep classification model using the scene classification records
that are presently available. Most sophisticated scenery categorization procedures
either use pre-trained CNNs as attribute miners or refine already-trained CNNs on
the target records. Transfer techniques outperform a fully trained deep CNN model
on target records with fewer types and examples, but it’s not the best choice because,
with enough training samples, the model can derive more specialized characteristics
that can adapt to the target domain.

• RS imageries The category of RS imageries also includes photographs taken by as-
tronomical satellites. These are employed in a variety of research on the environments
of stars, planets, and galaxies. Galaxies’ classification is another important topic of
research. Astronomers are expected to need vast volumes of data for their studies.
The categorization of this material as disks, bars, spirals, etc., will aid in the predic-
tion of the evolution of the cosmos. The bars signify fully developed galaxies and the
end of the academic years. In order to research the marine mammals that live in the
deep ocean, RS photographs are also used to capture underwater scenes. Additionally,
the investigation of oceanic sediment, seas, etc. makes use of these images. They are
essential to the investigation of the occurrence of different species in the water. The
Catalina survey and the Sloan Digital Sky survey both provide the galaxy view and
astronomical data set as open source. These show a telescope-taken screenshot of the
sky. Because of how blue and greyscale these telescopic views are, studying the sun
and stars is difficult. To learn from these photos, several methods for mistake or noise
removal must be incorporated. The categorization of these images is crucial to the
domain of physics. Abraham et al. [1] employed the DNN architecture to categorize
barred and non-barred galaxies. A 95% accuracy rate in categorizing the images was
made possible by the neural network. There are still more advancements to be made
in astronomical research, and they will shortly occupy a sizable developmental area.
In other words, there hasn’t yet been a comprehensive and methodical analysis of
how DL is used in the domain of RS.
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Although Zhu et al. [38] review was comprehensively compared to others, it focused
on a few deserving (and more prevalent) sub-regions related to the domain of RS, such as
3D modeling applications, while disregarding numerous others, such as image classifica-
tion applications. To fully and objectively comprehend the uses of DL for RS analysis, it
seems necessary to conduct a greater amount of structured (i.e., quantitative) study. The
number of publications on the subject is clearly growing at the moment. In a range of RS
subfields, DL methods are used. For instance, scholars interested in both DL and RS can
benefit from understanding the various applications of DL and the problems identified
in such studies. Scene classification using remote-sensing data has many applications,
which try to assign semantic categories to remote-sensing images based on their con-
tents. Due to DNNs’ capacity for feature learning, the categorization of remote-sensing
picture scenes has attracted a great deal of attention. The study [6] offers a methodical
assessment of DL algorithms for RS picture scenery categorization by encompassing a
total of 160 articles, considering the field’s quick evolution. The primary methods in
categorizing and surveying RS images are auto-encoder-inspired techniques, CNN meth-
ods for classifying RS imageries, and “Generative Adversarial Network” (GAN) based
methods. The efficacy of several sample techniques/algorithms on three frequently uti-
lized standard datasets is also described in this study [6]. Specifications for RS imagery
classification, and new and exciting research avenues are investigated.

2.2. Scene classification for RS images

An image captured by RS includes a range of ground objects. An industrial landscape
might, for instance, include buildings, trees, and roads. Scene classification is much more
challenging than object-oriented classification due to the diversity and complex spatial
distributions of earth’s surface objects that prevail in the scene. The classification of
satellite picture sceneries has been the subject of extensive research in the past. To group
RS imageries with sufficient precision, however, there hasn’t yet been a method which
can do it. The difficulty with within-class diversity is primarily due to the wide variations
in how ground things look across semantic classes. It could be challenging to correctly
classify scene images because ground objects frequently vary in design, structure, size,
and distribution. Additionally, because of the imaging circumstances, that could be
affected by factors like cloud, mist, weather, etc., when RS imageries are taken by aerial
platforms, there can be evident variations in hue and rays strength observable inside
the identical semantic class. Among the difficulties in classifying RS imageries are the
significant within-class diversity and between-class similarity. Within-class diversity may
also result from alterations in picture illumination. For instance, in Fig. 2, the physical
characteristics of the scene labeled beach exhibit significant variations under various
imaging circumstances. When it comes to between class similarity, the main problem
is when the same items are present in various scene classes or there exists semantic
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a

b

c

Fig. 2. Images with within-class diversity (a) and between-class similarity (b) and (c) used for scene
classification. (a) Beach; (b) bridge; (c) flyover.

overlap between different scene types. As shown in Fig. 2, the bridge scene classes have
structures similar to flyover scene classes.

So, both the bridge scenes and flyover scenes could contain identical objects including
bridges, and share an abundance of semantic information. Moreover, interclass dissimi-
larity develops as a consequence of the ambiguous meaning of scene classes. Additionally,
some complicated scenes share visual elements with one another. Consequently, it might
be very challenging to differentiate between these scene classes. Unsupervised DL mod-
els that GANs have lately gained a lot of popularity (Goodfellow et al., 2014 [10]). The
GAN has a framework consisting of a generative network and a discriminative network
that are in competition with one another. The generative network’s generated data and
actual data are distinguished by the discriminative network. The generative network
gains the ability to map from a hidden space to an interesting data distribution. It
is trained with the intention of ”fooling” the discriminative network. A convolutional
network is typically used by the discriminative network to generate odds. In a zero-sum
game, the two networks attempt to optimise a distinct and antagonistic loss function
(Oliehoek et al., 2017 [27]). GANs have been effectively utilized in numerous computer
vision and image processing applications over the past three years. Based on a hierarchi-
cal law method, Classification Tree [16] is a multivariate, incremental, and evolutionary
pattern detection system. The root, non-terminal, and terminal of a CT are its pre-
ceding components. It determines membership by frequently using binary dividing laws
to segment a dataset. These laws are based on ”impurity” and are determined using
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mathematical techniques from the training data. A given node is perfect and there is
no impurity present if the pixels that contain it belong to the same group. Unless the
logical requirement is satisfied at a specific node, the left branch is selected; in that case,
the right branch is noted. Until the terminal node is obtained or till the node is free, the
loop continues to run. SVMs, among the most current advancements in AI, are based
on ideas from statistical theory. Additionally, SVMs have outperformed the majority of
other image classification algorithms in terms of classification accuracy. SVMs are binary
classifiers that divide training data into two groups and maximize the difference between
them using appropriate hyperplane division on multidimensional function space.

2.3. Recent study on DL techniques used for numerous applications

By comparing the overall accuracy of scene categorization of RS imagery methods us-
ing feature extraction done by pre-trained networks and classifiers, collected in Tab. 1,
with proposed TL we can observe that the suggested technique of combining multiple
pre-trained networks and forming an ensemble model achieves ideal classification perfor-
mance in most classes.

3. Proposed methodology

It is challenging to classify remote data because of the intricacy of the environment, the
variety of remote data, image processing, and classification techniques, to name just a few
factors. The dynamic process of RS necessitates numerous picture analyses. Choosing a
classification scheme, picking training objects, pre-processing the image, extracting fea-
tures, putting appropriate classification methods into practice, postclassification storing,
and accuracy evaluation are some of the essential actions in the classification of pictures.

TL is a DL technique that involves reusing a previously trained model. TL consists of
re-using the knowledge gained from previously seen tasks to be applied to a newly created
model in another task. In the context of DL, pre-trained networks are the basic form of
TL. The two most popular approaches are using pre-trained models as feature extractors
and fine-tuning pre-trained models. The main idea of using pre-trained models as feature
extractors is to only replace the top layer of the source model and use it with the new
data without updating the model weights during training. We will use this approach
of incorporating prior knowledge taken from RS research literature in the creation of a
customized high-performing DL model for satellite data tasks. The focus is to utilize
a mildly complex and efficiently pre-trained model, learned from a large amount of
reference information, such as ImageNet, and then “transfer” the learned information to
a relatively simple task (in this study, extract features for scene classification) with a
limited amount of information. Three features are very helpful in the transfer:
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Tab. 1. Comparative analysis of the proposed method with other state-of-the-art techniques used for
image scene classification.

Ref. Method Dataset Accuracy Description

[29] DDIPNET DDIP-
NET+

Aerial Image
Dataset-AID

(95.31±0.22)% Applied the Discriminant Deep Image
Prior Network and the Discriminant
Deep Image Prior Network+, which
combine Deep Image Prior and Triplet
Networks learning strategies.

[36] The suggested tech-
nique creates an
SVM-based RS
picture classifier

Aerial images
from Pingshuo
mining area,
China

94.72% After using the seven-layer CNN
model, whose activation function
makes use of the TReLU function, the
three high-level image features are se-
quentially fused and fed into the SVM
classifier.

[21] TLDeCNN High Spatial
Resolution
Remote Sens-
ing Scenes
(HSRRS)

96.1%-VGG19,
97.1%-ResNet50,
99.4%-InceptionV3

The three TL-DeCNN models
TLVGG19, TLResNet50, and TLIn-
ceptionV3 are put forth for use in
classifying HSRRS scenes in built-up
urban regions.

[28] CNN + PCA + SVM UC Merced and
WHU-RS

(98.26±0.40)% With the extraction of features, a
unique representation of the features
was produced by combining the av-
erage pooling layer’s features and
the convolutional layer’s PCA trans-
formed features with SVM for classi-
fication.

[20] DNN, i.e., CNN,
CapsNet, SMDTR-
CNN, and SMDTR-
CapsNet

HSRRS 95.0% Convolutional neural networks
(CNN), capsule networks (CapsNet),
the same model based on CNN
with a different training rounding
(SMDTR-CNN), and the same model
based on CapsNet with a differ-
ent training rounding are the four
deep neural networks (DNNs) used.
(SMDTR-CapsNet).

[25] Applied DCNN
Model

High resolution
satellite image

92.0% Multichannel water body detection
network.

[17] FeatSpace EnsNets
and Avg EnsNets for
Change Detection

ESA’s Sentinel-
1 and DInSAR
processed geo-
referenced im-
ages

84.862% Applied TL by fine-tuning neural
networks (TLFT) is referred to as
”Feature space Ensembles of TLFE
neural networks” (FeatSpaceEnsNets)
and ”Average Ensembles of TLFE
neural networks” (AvgEnsNets).

[8] TL-DenseUNet Remote Sens-
ing Images
dataset from
NSFC, China

92.4% There are two subnetworks in Ap-
plied TL DenseUNet. A transferring
DenseNet pre-trained on three-band
ImageNet images is one of them that
the encoder subnetwork employs.
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Fig. 3. Flowchart for the proposed classification procedure for RS images

• The advancement of the pre-trained model eases the process of getting rid of hyper-
parameter tuning.

• The very first layers of a pre-trained model could be assumed to feature extractors,
assisting in the separation of minimal features such as edges, colors, masses, shades,
and surfaces.

• Because we accept that the subsequent layers complete the complicated identifying
tasks, the objective framework may only need to retrain the next few layers of the
pre-trained model.
The dynamic process of RS necessitates numerous picture analyses. Fig. 3 shows the

flowchart of the classification procedure used for RS images.
It is challenging to classify remote data because of the intricacy of the environment,

the variety of remote data, image processing, and classification techniques, to name just
a few factors. Choosing a classification scheme, picking training objects, pre-processing
the image, extracting features, putting appropriate classification methods into practice,
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Fig. 4. Architecture of the proposed Ensemble Model for the automatic classification of RS images

post-classification storing, and accuracy evaluation are some of the essential actions in
the classification of pictures. In this work, we stack multiple pre-trained CNN models
on the ImageNet repository as an Ensemble Model and use them to train the aerial
datasets. We train the ensemble model to get a high validation accuracy of around 98%.
The output is obtained by combining the predictions of multiple trained models and
averaging them. The proposed model is illustrated in Fig. 4.

The models are then combined by averaging, there taking a weighted average in-
creases accuracy. The advantage of the ensemble learning method, which is improved
predictive performance, is attained by combining the predictions. Ensemble techniques
of stacking the model decisions rely on the assumption that different models will not
make the same mistakes. In other words, given a set of diverse models, minimum of one
will make the right classification. Fig. 5 demonstrates the data flow chart of the devised
work.

TL has developed as a powerful method in the domain of DL, allowing us to lever-
age pre-trained models that were on large-scale datasets. By using TL, we could profit
from the learned features of these models and adapt them to our specific task of aerial
image classification. In this study, we employ three well-known TL models: VGG16,
Densenet201, and InceptionV3. By combining the outputs of these models we aim to
leverage their diverse strengths and improve the overall accuracy of aerial image classi-
fication. The findings and perceptions derived from this research will contribute to the
advancement of automated analysis and understanding of aerial imagery, benefiting a
wide range of applications and industries.
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Fig. 5. Data flow plot of the devised work

3.1. Image acquisition and preprocessing

In this module, we will get the data from the online source. Further, we will resize the
image for future use. Image resizing, also known as imagery scaling, is a geometrical
operation that applies an image approximation technique to alter the scale of an image.
By increasing or decreasing the pixel density of a target image, the aforementioned
resizing operation modifies the final dimension of image information. Computers are
able to perform computations on 0s and 1s and are unable to interpret images in the
way that we do. We have to somehow convert the images to 0s and 1s for the computer
to understand. The image will be converted to grayscale (range of gray shades from
white to black) the computer will assign each pixel a value based on how dark it is. All
the 0s and 1s are put into an array and the computer does computations on that array.
We then feed the resulting array for the next step. It is common practice to first divide
the dataset into two parts, the “Train” and the “Test”. Then, with the Test set put
aside, the Train set is selected at arbitrarily from the Train dataset, and the remaining
(100-X)% is used as the Validation set, with X resolved at a certain percentage (e.g.,
80%). The algorithm is then developed and verified continually using these two sets.
So we will follow the same method to prepare data for the training and testing phase.
We are building our model by using the Ensemble network. Now that we’re done pre-
processing, we can start implementing our individual deep-learning model. Max-pooling:
A technique used to reduce the dimensions of an image by taking the maximum pixel
value of a grid. This also helps reduce overfitting and makes the model more generic.
After that, we add 2 fully connected (FC) layers. Since the input of FC layers should
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a b c d e f g
Fig. 6. Predefined classes from RSSCN7 dataset. (a) grass; (b) river; (c) industrial; (d) field; (e) forest;

(f) residential; (g) parking.

be two-dimensional, and the convolution layer output is four-dimensional, we need a
flattening layer between them. At the very end of the FC layers is a softmax layer. We
are using 2 remote-sensing image datasets in this study.

• NWPU-RESISC45 Dataset: It is a 2017 dataset presented by Cheng, Han, and Lu [5].
It contains 31 500 256×256 RGB images split into 45 classes of 700 images each. It
represents a comprehensive dataset regarding land use. NWPU-RESISC45 has a more
diverse assortment of classes as well as more samples per class. The authors developed
it in order to have both urban and rural classes as well as scenes classifiable by large
features and small features alike. For all models, the input images are resized to
64×64×3, resizing from their original size of 256×256x3 while preserving the 3 RGB
channels.

• RSSCN7 Dataset: It contains satellite imageries learned from Google Earth, which is
originally collected for RS imagery categorization [39]. We conduct image synthesis
on RSSCN7 to make it capable of the image inpainting task. It has seven classes:
“grassland, farmland, industrial and commercial regions, river and lake, forest field,
residential region, and parking lot”. Each class has 400 images, so the dataset com-
prises of 2 800 images. Samples of the dataset are shown in Fig. 6.

When processing images, the linear Gabor filter is just one of several methods used
for things like feature extraction, examination of texture, boundary identification, etc.
The band pass filtering devices, of which gabor filters are a subset, allow through only
a narrow range of frequencies (or “band”) while blocking out all others. A Gabor filter
can be viewed as a sinusoidal signal of particular frequency and orientation, modulated
by a Gaussian wave. Gabor descriptor for an image is computed by passing the image
through a filter bank of Gabor filters. Gabor filter represents a linear band-pass filter
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whose impulse response is defined as a Gaussian function modulated with a complex
sinusoid. An artificial and actual part, signifying opposite directions, make up the filter’s
structure. The two components may be formed into a complex number.

g(x, y; λ, θ, ϕ, γ) = exp
(

− x′2 + γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ ϕ

)
, (1)

where λ – wavelength of the sinusoidal component, θ – direction of the normal to the
parallel bands of Gabor function, ϕ – phase balance of the sinusoidal procedure, σ –
standard deviation of the Gaussian envelope, and γ – the Gabor function’s ellipticity
specified by the temporal dimension ratio.

The artificial and actual components of the “Gabor filter kernel” are applied to
the image and the response is returned as a pair of arrays. An example of a linear
filter is the “Gabor filter”, which uses a sinusoidal plane waveform as modulation and
a Gaussian base. Similar to how human vision represents frequencies and direction, the
Gabor filter does the same. Gabor filters are appropriate for edge detection and texture
classification. Attributes are mined from gray-scale character images by Gabor filters
which are particularly devised from numerical data of character forms. An adaptive
sigmoid module is employed to the outputs of Gabor filters to achieve better performance
on low-quality images.

Gabor filters are used in texture analysis, edge detection, and attribute mining. When
a Gabor filter is applied to an image, it delivers an optimal outcome at boundaries and
at points where texture changes. Algorithm 1 illustrates the procedure used to generate
Gabor layers for the input dataset.

In algorithm 1, two output directories (gdir 1 and gdir 2) are defined to store the
processed images. The function create dir() is called to ensure that the required
directories exist. This function is responsible for creating directories if they do not
already exist. The algorithm iterates through each label in the input directory (in dir).
Each label corresponds to a category or class of images. For each label, the algorithm
processes each image in the corresponding directory. If the image file does not conclude
with ’.db’ (indicating it is not a database file), the following steps are performed:

• The path to the current image (in path) and the output paths for the processed
images (out path 1 and out path 2) are defined.

• The image is read from in path.
• Two Gabor kernels (gabor 1 and gabor 2) are generated with specified parameters.
• The image is filtered using gabor 1 to obtain filtered img 1, and then filtered img 1

is further filtered using gabor 2 to obtain filtered img 2.
• The resulting filtered images (filtered img 1 and filtered img 2) are saved to the

corresponding output paths (out path 1 and out path 2).
Once all images for a particular label have been processed, the algorithm ends.
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Algorithm 1 Resource Allocation Algorithm
1: Initialize directories:

Set gdir 1 as ’/content/drive/MyDrive/Colab Notebooks/processed/gabor 1’
Set gdir 2 as ’/content/drive/MyDrive/Colab Notebooks/processed/gabor 2’

2: Create directories:
Call create dir(in dir, out dir, gdir 1, gdir 2)

3: Process images:
for each label in the list of directories in in dir do

for each image name in the list of files in the dir corresponding to label do
if image name does not end with ’.db’ then

Set in path as the path to the current image
Set out path 1 as the output path for the first Gabor filtered image
Set out path 2 as the output path for the second Gabor filtered image
Read the image img from in path
Generate Gabor kernel gabor 1 with parameters:

Size: (18, 18)
Sigma: 1.5
Theta: π/4
Lambda: 5.0
Gamma: 1.5

Filter img using gabor 1 to obtain filtered img 1
Write filtered img 1 to out path 1
Generate Gabor kernel gabor 2 with the same parameters as gabor 1
Filter filtered img 1 using gabor 2 to obtain filtered img 2
Write filtered img 2 to out path 2

end if
end for

end for

Algorithm 1 essentially preprocesses a collection of images using Gabor filters. It
enhances features in the images by applying Gabor filtering with two different kernels
(gabor 1 and gabor 2). The administered imageries are subsequently kept in separate
directories (gdir 1 and gdir 2). The final goal of this preprocessing step is to prepare
the images for further processing or analysis, such as imagery categorization using TL
models like VGG16, Densenet201, InceptionV3 and the ensemble model.

After preprocessing of the input dataset with Gabor filter the features in the image are
enhanced and help in training the model to distinguish between pre-defined categories.
Fig. 7 shows sample imageries which are acquired after preprocessing with the Gabor
filter bank.
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a

b

c

d

e

f g
Fig. 7. Sample scene images categorized under different classes processed by the Gabor filter from

the NWPU-RESISC45 dataset. (a) Grass; (b) parking; (c) field; (d) industry; (e) river lake;
(f) forest; (g) resident.
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3.2. Ensemble model

In machine learning, the ensemble approach refers to combining multiple models to im-
prove the general performance of the prediction task. The fundamental notion in ensem-
ble learning is that by combining multiple models, we can reduce the risk of individual
models making errors and enhance the model’s generalization performance. Ensemble
methods can be applied to a wide range of machine learning algorithms, including de-
cision trees, neural networks, and support vector machines. There are two key kinds
of ensemble learning techniques: Bagging: Several models are trained independently on
different subsets of the training data, and their predictions are aggregated by taking the
average (for regression problems) or voting (for classification problems) of the outputs.
Boosting: Here, the models are trained sequentially, and each novel model is trained to
rectify the errors of the previous models. The notion is to create a strong model by com-
bining many weak models. This system uses the Bagging ensemble approach. Ensemble
learning integrates the forecasts from numerous neural network models to decrease the
changes in forecasts and decrease generalization errors. The method starts by fine-tuning
the 3 CNN models using the training data. By comparing models like VGG16, Incep-
tionV3, and DenseNet201 and combining its output to get higher accuracy among the
model predictions. To amalgamate the projected outcomes, the most straightforward
approach is to compute the mean of the forecasts generated by the base classifiers.

4. Experimental results

This Section provides details concerning the results obtained during the classification
of data with NWPU-RESISC45 and RSSCN7 datasets. It also summarizes the diverse
measures utilized for performance evaluation. When utilizing DL methods for image clas-
sification, choosing the appropriate evaluation metrics is essential for determining which
model to use, how to adjust the hyperparameters, whether regularization approaches
are necessary, and other issues. Tab. 2 in page 43 summarizes the evaluation metrics
for four models (Ensemble, InceptionV3, DenseNet201,and VGG16) across seven target
classes (field, forest, grass, industry, parking, resident, and river lake).

The models generally exhibit high performance, with high precision, recall, and F1-
scores for most classes. The Ensemble model achieves near-perfect scores for all classes,
while the other models also show strong performance, although with some variations
across metrics and classes. Overall, the models demonstrate accurate classification of the
target classes, highlighting their effectiveness. A confusion matrix is a way to summarize
the performance of a classification model by comparing its predictions with the actual
values of a dataset. It is a square matrix where the rows correspond to the true or actual
classes, and the columns correspond to the predicted classes. Accuracy is a measure that
generally describes how the model performs across all classes. (number of all correct
predictions divided by the total number of elements in the dataset).
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Tab. 2. Classification report of pre-trained models with ensemble model.

VGG16 Model Results
Class Precision Recall F1-Score Support

Field 0.92 0.97 0.94 69
Forest 0.99 0.99 0.99 78
Grass 0.94 0.92 0.93 50
Industry 0.87 0.97 0.92 63
Parking 0.97 0.85 0.90 66
Resident 0.95 0.97 0.96 62
River lake 0.98 0.93 0.96 60

Densenet201 Model Results
Class Precision Recall F1-Score Support

Field 1 0.99 0.99 69
Forest 0.95 1 0.97 78
Grass 0.94 1 0.97 50
Industry 0.91 0.98 0.95 63
Parking 1 0.88 0.94 66
Resident 0.97 0.94 0.95 62
River lake 1 0.98 0.99 60

InceptionV3 Model Results
Class Precision Recall F1-Score Support

Field 0.92 1 0.96 69
Forest 1 0.97 0.99 78
Grass 1 0.96 0.98 50
Industry 0.98 0.92 0.95 63
Parking 0.93 0.97 0.95 66
Resident 0.95 0.98 0.98 62
River lake 0.9 0.93 0.97 60

Proposed Ensemble Model Results
Class Precision Recall F1-Score Support

Field 1 1 1 69
Forest 1 1 1 78
Grass 0.98 0.98 0.98 50
Industry 0.98 0.98 0.98 63
Parking 1 1 1 66
Resident 1 1 1 62
River lake 1 0.98 0.99 60
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a b
Fig. 8. Training model accuracy and loss plot graphs on RSSCN7 using using VGG16. (a) Accuracy

plot graph; (b) Loss plot gragh.

a b
Fig. 9. VGG16 confusion matrix for the classification result for: (a) RSSCN7 dataset; (b) NWPU-

RESISC45 dataset.

4.1. Experimental findings on the VGG16 Model

Fig. 8 demonstrates the training model accuracy and loss plot graphs on RSSCN7 using
VGG16.

Fig. 9 shows the chart for the confusion matrix VGG16 model.
From the confusion matrix it can be concluded that this model is performing excellent.

448 photos from RSSCN7 dataset are provided in total and this model achieved 94%
accuracy.
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a b
Fig. 10. Training model accuracy and loss plot graphs on RSSCN7 using DenseNet201. (a) Accuracy

plot graph; (b) Loss plot gragh.

4.2. Experimental findings on the DenseNet201 model

Fig. 10 illustrates the training model accuracy and loss plot graphs on RSSCN7 using
DenseNet201.

Fig. 11 displays the confusion chart for the Densenet201 model, illustrating its per-
formance. The confusion matrix indicates that the model performs exceptionally well.
A total of 448 photos from RSSCN7 dataset were evaluated, and the model achieved an
impressive accuracy rate of 97%.

4.3. Experimental findings on the InceptionV3 model

Fig. 12 shows the training model accuracy and loss plot graphs on RSSCN7 using In-
ceptionV3.

Fig. 13 illustrates the confusion matrix chart for the InceptionV3 model. Centered
on the examination of the confusion matrix, it is evident that the model’s performance
is excellent. The dataset consisted of a total of 448 photos from RSSCN7 dataset, and
the model achieved an impressive accuracy of 97%.

4.4. Experimental findings on the ensemble approach

An ensemble model of InceptionV3, Densenet201, and VGG16 was evaluated using a con-
fusion matrix, represented by Figure 14. With 444 out of 448 images correctly predicted
for the RSSCN7 dataset, the resulting accuracy is 99.11%, indicating high accuracy.
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a b
Fig. 11. DenseNet confusion matrix for the classification result for (a) RSSCN7 dataset; (b) NWPU-

RESISC45 dataset.

a b
Fig. 12. Training model accuracy and loss plot graphs on RSSCN7 using InceptionV3. (a) Accuracy

plot graph; (b) Loss plot graph.

The ensemble model performed exceptionally well in predicting the labels for these im-
ages. Fig. 14 shows the training model accuracy and loss plot graphs on RSSCN7 using
InceptionV3.
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a b
Fig. 13. InceptionV3 confusion matrix for the classification result for: (a) RSSCN7 dataset; (b) NWPU-

RESISC45 dataset.

a b
Fig. 14. Ensemble Confusion matrix for the classification result for: (a) RSSCN7 dataset; (b) NWPU-

RESISC45 dataset.

4.5. Ensemble technique results comparision and analysis

In this study on aerial image classification, TL and ensemble models were employed
to achieve high accuracy. Three individual models, VGG16, Densenet201, and Incep-
tionV3, were evaluated, and an ensemble approach was utilized. Results showed that
Densenet201 achieved an accuracy of 97.1%, while InceptionV3 performed even better
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Fig. 15. Accuracy comparison graph for RSSCN7 dataset.

with 97.32%. VGG16, although slightly worse, still attained a respectable accuracy of
91.29%. Fig. 15 shows the graph depicting the compared models.

The ensemble approach, combining all three models, yielded a remarkable accuracy
of 99.11%. These findings highlight the effectiveness of TL in improving classification
accuracy, with InceptionV3 being the most successful individual model. The ensemble
approach demonstrated its strength by surpassing the accuracy of all individual models.
Overall, this research contributes to the advancement of aerial imagery study, deliver-
ing significant insights for various applications such as urban planning, environmental
monitoring, and agriculture.

5. Conclusion and future scope

The various RS classification techniques are fully described in this paper, along with the
study fields where they are used. The different algorithms employed in the classification
and clustering of the RS images and how this data is compiled for the learning process
are also covered in detail. It also goes into great depth on how to extract features from
remote-sensing images using a CNN Model. This study has developed a DL-based clas-
sification method for RSSCN7 and NWPU-RESISC45 datasets with multiscene classes.
The analysis of these datasets using Gabor filters and TL has achieved high accuracy in
classifying diverse forms of aerial view scenes. Specifically, VGG16 attained an accuracy
of 94%, DenseNet201 achieved 97%, and InceptionV3 also had 97%. These high levels of
accuracy suggest that the Gabor filters and DL models are efficient in mining important
attributes from aerial view images and accurately classifying them. An ensemble model
built with these 3 models was also evaluated with sample test data. The accuracy, kappa
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coefficient, F1 score, and confusion matrix have all been used to verify the performance
of the suggested approaches. The results revealed that the ensemble model obtained the
best overall accuracy (99.11%) and kappa coefficient (0.99), while also improving the
precision of river samples by 4%, respectively. The model’s accuracy is valuable for a
range of applications, such as RS, weather forecasting, and environmental monitoring.
By identifying various aerial view scenes with high accuracy, the model offers effective
intuitions into ecological surroundings, that would aid to inform decision-making pro-
cesses. For instance, the model can help predict weather patterns, monitor air quality,
and assess changes in environmental conditions.

Further research and testing will be necessary to evaluate the model’s generalizability
and robustness across different datasets and image categories. It’s important to note that
the model’s performance is limited to the specific dataset and image categories utilized in
the analysis. It might not generalize appropriately to new datasets or different types of
aerial view scenes. Therefore, further research is needed to test the model’s robustness
and generalizability across different datasets and applications. The sample size and
scope of the study could be increased, as well as the variation in aerial view scenes
captured. Additionally, the study focused on the accuracy of the model, but it is also
important to consider other performance metrics to gain a more complete insight of the
model’s effectiveness. Future extensions could include fine-tuning individual pre-trained
networks. We also need to look into new methods and systems which may be utilised to
deploy the combination of RS information from social media, and spatial technology in
order to advance the state-of-the-art of RS image scene categorization.
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