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Abstract Bone fractures are common in diabetic patients and can result in several musculoskeletal
conditions. Both type 1 and type 2 diabetes substantially increase the risk and severity of bone frac-
tures. Prompt treatment and management of diabetes and its complications are crucial to mitigate this
serious complication. Detection and diagnosis in its early stage can reduce the challenging conditions in
treatment. Traditional image processing techniques like digital-geometric analysis, entropy measures,
and gray-level co-occurrence matrices have been used for automated bone fracture detection. However,
these detection methods rely neither on healthy controls nor diabetic-affected patients. Only few stud-
ies focused on detecting fractures in diabetic patients. The rising prevalence of diabetic ankle fractures
made the study emphasize the development of a fracture detection model based on the Meta Magnify
(MetaMag) efficiency model. The proposed model involves the Lower Extremity Radiographs (LERA)
dataset, which consists of image samples of normal and abnormal lower extremities of the body, such
as the hip, ankle, knee, and foot. Pre-processing involves a one-hot encoding method that handles
the missing data and represents categorical variables as numerical values. Further, the classification is
performed using the MetaMag efficiency model, incorporated with MetaMag scaling and unified nor-
malization. Further, the efficiency of the proposed model is analyzed by comparing it with conventional
EfficientNet and another model. Finally, the proposed work’s performance is analyzed using evaluation
measures such as accuracy, precision, recall and F1-score. The results indicate the improved efficiency
of the model.

Keywords: fracture, Lower Extremity Radiographs dataset, diabetes, Deep Learning, radiograph
images, EfficientNet.

1. Introduction

Among other parts of the body, the knee is considered the most complex joint that
involves many daily activities. A high prevalence of knee injuries occurs due to twisting
movements and sudden changes of direction [7]. This creates chances of knee damage and
other risk factors leading to severe impact on the patient’s lifestyle. Approximately one
in eight patients has diabetes and undergoes treatment for rotational ankle fractures.
With this, complications of ankle fracture fixation in patients with Diabetes Mellitus
(DM), after surgery vary between 26% and 47% [20]. Several researchers have also
identified that an ankle injury may trigger the process of Charcot neuroarthropathy.
These higher complication rates can cause bone deformity, loss, and joint destruction.
The most affected areas damaged due to an injury are the patellofemoral, ligaments,
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cartilage, and meniscus. In addition, the data analysis has resulted that a large cohort
of 58 748 patients who undergo ankle fracture fixation in New York discovered that 12.5%
were diabetic, and 14.6% of patients resulted in complicated diabetes [10]. Moreover,
the widely used methods involved in detecting lesions in the knee part are Magnetic
Resonance Imaging (MRI) and X-ray copies [3]. The results produced by these methods
are promising, but there is still a need to develop new equipment and research. So,
in recent times, AI has emerged as the significant opinion of specialists that assist in
providing non-invasive tools, and low-complexity and low-cost instruments [11]. These
methods enable the system to extract the patterns from the input data and map the
relationships among the input variables and outcomes. Thus, these new technologies tend
to efficiently identify knee abnormalities and diagnosing methods at their early stages to
avoid higher consequences of disease in patients. Although these techniques effectively
detect and interpret fractures in DM patients, they lack high detection accuracy due to
the irregularity and lucidity in the input sample images.

On the contrary, several studies investigated the prediction of knee fractures in dia-
betes patients by using Machine Learning (ML) and Deep Learning (DL) algorithms [1,
31]. Hence, the considered study [25] implements Convolutional Neural Network (CNN),
to perform the detection of abnormality on lower extremity radiographs. The lower ex-
tremity includes the range of abnormalities in hip, knee, ankle, and foot radiographs.
This study’s larger dataset comprises almost 93 455 input samples of lower extremity
radiographs of several body parts. These samples are labeled as normal and abnormal
at the initial interpretation by the attending radiologist. The CNN is pre-trained with
161-layer densely connected to achieve improved accuracy in the process of classifica-
tion. The performance of the study was analyzed by using three different models such
as pre-trained ResNet-101, DenseNet-161 [30], and ResNet-50. Further, an extensive
random hyperparameters search for each model is performed. The motive of the study is
to provide increased accuracy in the classification tasks. This is done by augmenting the
dataset by using MURA radiographs, this tends to optimize the efficacy of the model.
From analysis, it is found that the DenseNet-161 produced better diagnostic accuracy. In
the other aspects, the intimated study [2] applies the detection of Anterior Cruciate Liga-
ment (ACL) using the DL model. The model involves the customized 14-layer ResNet-14
structure of CNN and six directions. This is done by involving real-time data augmenta-
tion and hybrid class balancing. Three classes are classified: ruptured tears, partial and
healthy. Initially, the data pre-processing undergoes three steps and after the steps, the
three classes are raised. The original version-I residual ResNet-18 in the classification
model is modified into ResNet-14 network architecture. Here, the Batch Normalization
(BN) is added after the CNN model and previous to the activation function Rectified
Linear Unit (ReLu) [29]. The fine-tuned hyperparameters are being used that provide
a huge impact on the effectiveness of the method. The outcomes of the study projected
better outcomes in terms of accuracy, specificity, sensitivity, F1-score, precision, and
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AUC. However, the techniques failed to produce improved classification accuracy and
enhanced input sample images to perfectly interpret the affected region [19].

The present study aims to further optimize the automatic detection of fractures
by using a DL model with radiographic images. The MetaMag efficiency model using
MetaMag Scaling along with Unify Normalization is proposed in the present study, which
tends to significantly increase the detection of fractures and classifies whether the input
is fractured or non-fractured. Input from the LERA dataset is first passed into the pre-
processing stage, where the one-hot encoding method is applied. This method endeavors
to handle missing values and generates efficient features for classification. Then the
pre-processed data are fed into the train-test phase, where the train data are used for
pre-training the classifier. In the classification process, the MetaMag efficiency model
undergoes MetaMag scaling that uniformly scales all the dimensions of resolution, width
and depth for procuring improved performance. It systematically analyses the model
scaling and identifies the balancing network using a simple yet highly effective compound
coefficient. This work focuses on improving the practical efficiency of the traditional
EfficientNet model by using the unified normalization that reduces the computational
loss and inexpensively fine-tuning at higher resolution. It eventually increases the size of
the image and aids in obtaining finer details of the input image. This helps the classifier
distinguish the input images into two categories: normal as 0 and abnormal as 1. Thus,
the efficiency of the proposed model is evaluated by using performance measures.

1.1. The main contributions of the study

• To efficiently classify the normal and abnormalities in the input LERA dataset, to
detect fractures in the lower extremities of the human body.

• To implement MetaMag scaling and Unify Normalization approaches to precisely
analyze the attributes and improve classification accuracy.

• To evaluate the model’s efficacy by involving performance measures: accuracy, recall,
precision, and F1-score.

• To compare the proposed MetaMag efficiency model with other conventional algo-
rithms to project the effectiveness of the proposed system.

• To develop MetaMag efficiency model for improved bone fracture classification accu-
racy and efficiency, as well as plans to create automated systems to assist clinicians
in diagnosis and treatment planning.

1.2. Organization of the paper

The remaining parts of this paper are organized as follows. Section 2 deliberates the
review of conventional works with the problems identified by analysis of several studies.
Section 3 expounds on the projected procedures with the proposed flow, algorithms, and
their mathematical derivations. Subsequently, section 4 presents the results attained by
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the proposed and conventional models. The overall study is concluded in Section 5 with
future suggestions.

1.3. Motivation of the research

Patients with both type 1 and type 2 diabetes have a significantly increased risk of bone
fractures compared to those without diabetes. Diabetes can impair bone quality and
fracture healing, leading to a higher risk of complications like delayed union, non-union,
or prosthetic joint formation. Identifying and managing bone fragility in diabetic pa-
tients is an emerging challenge that requires more attention, as current osteoporosis and
diabetes guidelines do not adequately address this issue. Improving the understanding
and management of bone health in diabetes is crucial to mitigate this serious complica-
tion. Hence, the proposed model utilises LERA for effective classification process.

2. Literature review

The analysis of various studies on fracture detection using different strategies and the
methodologies and problem identification for specific studies are also deliberated.

The human knee joints are the main and complex joints present in the human body
that maintain weight and offer flexible movements of the body. It bears the excess load
and is thus highly prone to injuries. So, detecting knee injuries as early as possible is
important to avoid complications and provide appropriate treatments.

The study [14] involved the prediction of Knee Osteoarthritis (KOA) using the ML-
based approach. The study has applied a multidisciplinary Osteoarthritis Initiative
(OAI) database collected through self-reported data on joint symptoms, physical activity
indexes, disability and function, physical examination data, and questionnaire data.
Initially, the data pre-processing has been done by implying data imputation to tackle
the missing values. Then, the feature selection was done by integrating the output of
six feature selection algorithms, three embedded techniques, one wrapper, and two filter
algorithms. Whereas, the ML-based techniques like Logistic Regression (LR), k-Nearest
Neighbor (KNN), Random Forest (RF), Naive Bayes (NB), Decision Tree (DT), XGBoost
and SVM have been evaluated for validating their sustainability been utilized to solve
the classification issues. The better accuracies produced by these models have been
identified and found that the SVM model has performed better, producing an accuracy
of 74.07%. Even though the model has been reliable, the predictive capacity has to be
improved predominantly.

Knee abnormalities are mostly due to hard injury or osteoarthritis that greatly impact
the patient’s health. Generally, the MRI plays a vital part in detecting the biochemical
and morphologic features that provide an in-depth understanding of patterns. So, the
suggested study [23] has MRI-based studies to conduct the identification of lesion severity
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in the ACL, meniscus, bone marrow, and cartilage. A three-dimensional CNN has been
developed to identify the Region of Interest (ROI) and then grade the abnormalities.
At first, the segmentation was performed by using two V-Net architectures under two
consecutive steps. From analysis, it has been consolidated that the study has produced
improved specificity, sensitivity, and multiclass lesion severity staging in several tissues
of the knee. In addition, the generalizability of the model has to be improved, and the
assessment of lateral and medial ligaments has to be considered. On the other hand,
the intimated study [13] has relied on the detection of abnormalities and classification
automatically using Musculo-Skeletal Disorders Network (MSDNet). These methods
have been an ensemble of CNN that integrates the features of several CNN models to
improve the performance of abnormality classification. A boundary detection algorithm
has been developed to predict the ROI to facilitate enhanced detection of anomalies. The
MSDNet is the combination of both AlexNet and ResNet18 structures. Firstly, the global
features have been produced from the AlexNet by directly feeding the original input data,
whereas the local features have been generated by the ResNet18 model. The overall
accuracy produced by the MSDNet model is 82.69%. Among aged people, the main
factor for fracture [6,24,29] is due to the reduction of bone density. A low-cost diagnostic
technology is important in identifying osteoporosis in its initial stage. So, the suggested
study [15] has analyzed osteoporosis using X-ray radiography to predict the essential
components and categorize it into osteoporosis, osteopenia, and normal. The study has
implemented three CNN architectures namely, ResNet18, Xception, and Inceptionv3
models. This ensemble method has implied a fuzzy rank-based fusion of classifiers by
considering the two different factors. A fuzzy ranking-based approach has been applied,
which has been exposed to two distinct non-linear processes. After implementation, the
study’s outcomes have shown that the study has produced a classification accuracy of
93.5%. The accuracy has been hindered due to overlapping cells or insufficient picture
quality that made complexity in classifying the images effectively.

The advancements in radiological technologies have improved the treatment of various
diseases. But, when compared with a huge number of fractural patients, the number of
radiologists is insufficient. This makes radiologists astounded by the large amount of
medical image data. Hence, the imitated study [12] has deployed a backbone network
by applying dilated convolutions to detect the fractured thigh region. The DL method
known as Dilated Convolutional Feature Pyramid Network (DCFPN) has been used, in
which stage 1 has been adopted to extract the features from the original image. It has
been insisted that the dilated convolutional kernel could gain more information from
the extended receptive field. The FPN structure has been comprised of five feature
maps. The Region Proposal Network (RPN) has been developed to generate the region
proposal that shares the convolutional feature maps. Thus, the output is an image
with a predicted bounding box. The radiologists have used the technique of Computer-
Aided Diagnosis (CAD) to diagnose the fractures [8,22] on bones, which minimizes their
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difficulties. Thus, the suggested study [16] has involved classification using a Crack
Sensitive Convolutional Neural Network (Crack-Net) to identify the sensitive fracture
lines on human bones. This paper clearly explains the two different stages of discovering
the fracture [4, 21, 26]. Initially, Faster R-CNN, which is Faster Region with CNN, was
deployed. This method has been performed to identify 20 types of bone regions and
fractures [27] using Crack-Net in the collected X-ray copies. The results have shown
that from the total of 1052 copies 526 copies are fractured copies.

Further, the study has produced an accuracy rate of 90.11% and an F-measure of
90.14% of the x-ray copies. In radiographs, the method of Guided Anchoring (GA) Faster
R-CNN has been used to identify and locate the fractures in hand [28]. This GA method
has resulted in improved, accurate, and effective anchor generation. It has eventually
increased the network’s performance and saved computing energy. In this system, the
Feature Pyramid Network (FPN) method has been used to detect small fractures [5, 9]
such as knuckles and fingertips joints and others. Additionally, the implementation of
balanced loss (L1) has been applied to adapt imbalanced learning tasks. The result of
this system has shown that among 3067 HF dataset X-ray copies, 2453 are training data
and 614 are testing data. The accuracy of the dataset has been achieved to be 97%-99%
with an Average Precision (AP) of 70.7%. This System has accomplished all the other
conventional methods for identifying HF.

Problem identification
• The study has involved the detection of fractures using X-ray images. Though the

system has produced a better detection rate, the classification accuracy can be promi-
nently improved by applying different algorithms [16].

• The risk factors accompanied by knee osteoarthritis have been involved in the study
using DL models. The accuracy produced by the study has been identified to be
74.07%. It can be further improved to support radiologists in finding the complexi-
ties [14].

• Binary classification of lower extremity fracture has been performed in the study
and produced limitation of producing generalizability in detecting the abnormalities.
Efficient methods can be applied to detect the fracture [25].

3. Proposed methodology

DM is a metabolic disorder that increases the chance of interfering with bone formation
and fracture risk. This leads to the impairment of fracture healing and several other
common features that affect the bone. DL techniques greatly impact the medical do-
main and lead to advancements in the detection of abnormalities that help in affording
early diagnosis of diseases. There is still a lack of studies investigating the association
between DM and fracture risk in patients. The possible solutions to fracture risk should
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Fig. 1. Illustrative diagram of the overall methodology

be addressed at an early stage to avoid the severity of risk in patients with diabetes.
Spontaneous calcaneal fractures without obvious trauma may occur in diabetic patients
sometimes accompanied by DFU. With this intention, the initial phase concentrated on
detecting the foot ulcer in DM patients. The study implemented a Deep Convolutional
Neural Network (DCNN) based on the Xception model to classify healthy and DFU skin
images. The DCNN-based Xception classifier was integrated with Residual Linearly
Clamped Layers (RLCL) comprising minimum detached convolution layers. Further,
the input images are optimized by using image enhancement techniques such as His-
togram equalization, Adaptive filter, and Gamma correlation. Then, the efficiency of
the proposed system is evaluated based on the performance measures, namely precision,
F1-score, recall, and accuracy, to validate the performance of the proposed model with
existing algorithms. Though the study has proclaimed improved efficiency. It is notewor-
thy that patients manifesting systematic signs of diabetic foot infection cause fractures
or dislocations of the ankle or foot. With this regard, it is also significant to address the
challenges faced by the diabetic patients with lower limb amputations. So, the present
work focussed on detecting and classifying the normal and fractured bone classes by
using the MetaMag efficiency model. This method tends to reduce the problems related
to high-risk factors and efficiently contributes towards risk reduction and management.
The overall process involved in the proposed technique is demonstrated in Figure 1.

The input from the LERA dataset (see Section 3.1) is first passed into the pre-
processing stage, where the one-hot encoding process is applied. This method tends
to handle the missing values and generates efficient features for classification. Then
the pre-processed data are fed into the train-test phase, where the train data are used
for pre-training the classifier. Further, the classification is performed by a MetaMag
efficiency classifier that involves MetaMag scaling and a unified normalization process
that supports enhancing the performance of the proposed method. The classifier classifies
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Tab. 1. Class Distribution of LERA Dataset.

Samples Hip Foot Ankle Knee

Abnormal images 3 36 36 99
Normal images 91 12 285 435
Total images 94 348 321 534

the input images into two categories: normal as 0 and abnormal as 1. Wherein the
prediction phase validates the classifier’s efficiency by using test data and analyses by
using performance measures.

Association of diabetes with fractures
• DM type 1 and type 2 affect several people worldwide and are characterized by hy-

perglycemia. The traditional impediments of DM are microvascular complications
like neuropathy, nephropathy, and retinopathy. Whereas the macrovascular compli-
cations include CVD (Cardiovascular Disease). The researchers have also found that
diabetes affects the bones of DM patients with increased chances of fracture due to
impaired bone quality. Further, the fracture risk in diabetes patients can be described
by possible cofounders, diabetes type, and fracture site.

• Type 1 DM is related to a modest reduction of bone mineral density. Type 2 DM
increases the chance of affecting bone health in its advanced phases of disease. The
biomechanical characteristics of bone and bone architecture are negatively impacted
by chronic inflammation, Advanced Glycation End products (AGE), hyperglycemia,
and insulinopenia.

• Several methods are used to evaluate bone quality in DM, including the diagnosis
based on X-ray images, MRI images, Grayscale images, Red Green Blue (RGB) im-
ages, and radiography images.

3.1. Dataset description

The dataset used in the proposed method is LERA [17], which covers the broad range
of joints and bone abnormalities of lower extremity areas of the human body. The
dataset is considered a diverse-natured dataset due to its collection over a wide range of
time, from 2003 to 2014. This LERA dataset comprises anomalous and standard image
dissemination and sample images of hip, ankle, knee, and foot bones. This dataset has
been accumulated by HIPAA complaint that compiled data from almost 182 patients
who have undergone radiographic examination at Standard University Medical Centre.
A total of 1297 normal and abnormal images of lower extremities have been presented
in the dataset. Table 1 shows the class distribution of the LERA dataset.

The LERA dataset is one of the benchmark musculoskeletal radiograph image data-
sets and has been applied in the proposed approach for producing a relatively improved
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a

b
Fig. 2. LERA Dataset – (a) normal and (b) abnormal image samples.

degree of classification accuracy. Moreover, the interpretation in binary classification is
distinguished in a way that abnormal as “1” and normal as “0”. The abnormal categoriza-
tion denotes that the radiograph consists of either fractures or any other abnormalities.
Meanwhile, in normal categorization, the radiographs represent that the image is normal.
The Figure 2 presents the sample images of the LERA dataset.

3.2. Pre-processing techniques

The image pre-processing method is applied in the input image to predominantly enhance
the radiographic image’s eminence, the edges that denote the possible fractures. This
study’s proposed method involves a one-hot encoding-based pre-processing approach to
rectify the missing data issues.

One-Hot Encoding The one-hot encoding is a type of encoding method and is
considered to be the most popular target encoding technique. The main advantage of
this strategy is that it is a sparse vector, which is used in calculating the similarities or
distances between the features for efficient classification. Here, one element is set to 1,
and all other elements are set to 0. Contradictory to the other existing algorithms, the
one-hot encoding method treats all missing values as a new class. This tends to mitigate
the interference with data structure in the simulation.
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3.3. Train and test split of data

The input LERA dataset consisting of normal and abnormal images of the lower ex-
tremities of the human body is split into train and test datasets. The splitting of data
is done with 80% of train data and 20% of test data. The splitting of input data is such
that training data gains more than two-thirds of the entire data. The training dataset is
used in training the classifier employed in classifying the normal and abnormal images.
The test data are applied to compute the performance measures.

3.4. Classification

3.4.1. EfficientNet model

The conventional EfficientNet is a kind of NN which uses the compound scaling method
to produce better system performance. These existing models target to improve the
performance and computational efficiency by subsiding the Floating Point Operations
Per Second (FLOPS) and several parameters. Scaling up mechanisms involved in Ef-
ficientNet are Neural Architecture Search (NAS) and compound scaling. Initially, the
baseline network is designed by performing NAS, a method used to automate the design
of neural networks. It efficiently optimizes both efficiency and accuracy as measured
on a FLOPS basis. The two parts present in EfficientNet are created using a baseline
with NAS and compound scaling to increase the performance. Compared with other
state-of-arts models, the EfficientNet significantly reduces the computational resources
required to train the classifier. The scaling method involved in EfficientNet has shown
uniform scaling across multiple dimensions. This could be more efficient when applied to
a highly versatile architecture to improve the effectiveness of the model. When combined
with CNN, the EfficientNet involves a scaling approach and achieves significant output
in the performance.

3.4.2. MetaMag efficiency classifier

The MetaMag efficiency classifier is deployed in the proposed method, where the network
architecture involves a new scaling model known as MetaMag scaling. The other existing
CNNs randomly scale the network dimensions like resolution, dimension, and width.
The MetaMag efficiency model uniformly scales the entire image with a fixed scaling
coefficient. This tends to enhance the efficiency and accuracy of classification. In the
classification process, the MetaMag efficiency model undergoes MetaMag scaling that
uniformly scales all the dimensions of resolution, width and depth for procuring improved
performance. It systematically analyses the model scaling and identifies the balancing
network using a simple yet highly effective compound coefficient.
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MetaMagnify scaling
The scaling factor, denoted as ϕ, allows for adjustments in the depth of the network.
When ϕ is increased, the model becomes deeper and more robust, enhancing its capabil-
ity to extract complex features. This is advantageous for tasks that demand sophisticated
feature extraction, such as intricate pattern recognition in images or nuanced language
understanding. Conversely, reducing ϕ results in a shallower model. This can be ad-
vantageous for simpler tasks or scenarios where computational resources are restricted.
Shallow models are effective for straightforward classification tasks or when rapid in-
ference speed is crucial. Furthermore, smaller values of ϕ facilitate faster training and
reduce memory requirements. This makes them particularly suitable for environments
where efficiency in model development and deployment is prioritized.

Unify normalization
The use of Unify Normalization offers a way to maintain the benefits of Batch Normal-
ization (BN) while addressing its challenges with large activation memory requirements
due to the need for sizable batch sizes. This is particularly relevant in memory-intensive
AI accelerators that rely on local memory for enhanced speed and energy efficiency,
despite tighter memory constraints. Additionally, our approach aims to preserve BN’s
normalization advantages while circumventing its regularization effects when they prove
counterproductive. To adapt the EfficientNet architecture effectively, it is essential to
adjust the initial scaling operations within the network. This ensures that scaling factors
play a significant role in shaping the overall network structure. Furthermore, modifying
batch normalization layers to accommodate variations in network width and depth is
crucial for maintaining effective normalization during training.

Besides, this work focuses on improving the practical efficiency of the traditional
EfficientNet model by using the unified normalization that reduces the computational
loss and inexpensively fine-tuning at higher resolution. It eventually increases the size of
the image and aids in obtaining finer details of the input image. This helps the classifier
distinguish the input images into two categories: normal as 0 and abnormal as 1. The
input data from the training dataset is fed into the input layer of the MetaMag efficiency
classifier and then to the MetaMag scaling layer. By using this layer, the finer details of
radiographic images are obtained that precisely classify the abnormalities found in the
bone. The process involved in the MetaMag efficiency model is shown in Figure 3.

The MetaMag efficiency model uses the MetaMag scaling method that involves a
series of fixed factors to scale the dimension of the network in a uniform manner based
on resolution, depth, and width. The building block i is defined as a function of Ai+1 =
Bi(Ai), where Bi denotes the operator and Ai represents the input tensor, and Ai+1
is the output tensor. Thus, the CNN, denoted symbolically as n, is characterized by
different layers as given in equation (1),

n = Bqm
m ⊙ · · · ⊙ Bq2

2 ⊙ Bq1
1 (A1) = ⊙i=1,...,mBi(A1) , (1)
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Fig. 3. Flow diagram of the proposed MetaMag efficiency classifier.

where ⊙ is the Hadamard product, that is, the element-wise multiplication of two ma-
trices, and the superscript qi denotes the hyperparameter vector of Bi. This epitomizes
the architecture of building block i, which is not able to be determined from training.
Further, m signifies the number of layers present in the network. Further on, the hyper-
parameter matrix q with a building block defined in CNN is shown in equation (2),

n = ⊙i=1,...,m Bqi

i (ACi,Di,Hi,Wi) . (2)

The proposed modified EfficientNet model aims to resolve the optimization problem
formulated in equation (3),

qoptimum = arg max
q

Accuracy (n(q)(ACi,Di,Hi,Wi
)) , (3)

where q is the matrix of hyperparameters of the whole network, formed by vectors
qi of the subsequent operators Bi. The denotation n(q) underlines the dependency
of the network on its parameters. Therefore, the result of a search procedure of the
modified EfficientNet model is the optimal hyperparameter matrix q. The architecture
of the proposed modified EfficientNet model is displayed in Figure 4. In this structure,
the convolution pooling layers consist of extracted features from the input radiographic
images and conv blocks that process the feature maps. Further, the unified normalization
is performed at the end of the network.

The modified conv layer i is defined by the function Yi = Bi(Xi), in which Bi is the
operator, Xi denotes the input tensor, and Yi represents the output tensor. The tensor
shape for the function is given by Xi = (Hi, Wi, Ci), where Wi and Hi are the spatial
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Fig. 4. Model architecture of the proposed MetaMag efficiency model

dimensions. Further, Ci signifies the channel dimension. Moreover, the modified conv
layer is characterized by a list of composed layers, as shown in equation (4),

n = Bk ⊙ · · · ⊙ B2 ⊙ B1(X1) = ⊙j=1,...,k Bj(Xj) . (4)

All layers in each stage of modified layers possess the same convolutional type, while
the first layer alone performs the down-sampling method, and the modified conv layer
is represented in equation (5),

n = ⊙i=1,...,m Bpi

i XHi,Wi,Ci , (5)

where ⊙i=1,...,m Bi is repeated pi times in stage i, and Hi, Wi, Ci is the shape of input
tensor X of layer i. To find the best layer architecture Bi, the model involved MetaMag
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scaling that expands the network length pi, width Ci, and resolution Hi, Wi without
altering the predefined Bi in the baseline network. Thus, by fixing the Bi, the MetaMag
scaling simplifies the design issues for new resource constraints. However, to improve the
accuracy of the proposed model for any resource constraints, an optimization problem
is formulated in equation (6),

noptimum = max
d,w,r

Accuracy (n(d, w, r)) , (6)

where
n(d, w, r) = ⊙Bd.Li

i (Xr·Hi,r.Wi,r.Ci
) ,

here, (d, w, r) denote the depth, width and resolution of the scaling network, and Li is
the layer at the stage i. Specifically, the modified conv layer captures more complex
features and gets generalized better in new tasks. But, this network faces difficulty due
to vanishing gradient issues. So, the computation is reduced by lowering the training res-
olution and thus inexpensively fine-tuning at higher resolution. This method is done by
implementing the unifying normalization mechanism to normalize activations through-
out the network. It combines statistics from LN (Layer Normalization) and BN (Batch
Normalization), adapting different batch sizes and model depths. This ensures stable
and efficient training across the proposed MetaMag efficiency model. The unified nor-
malization is applied on X, which denotes the unnormalized pre-activations to generate
normalized pre-activations Q..c before a nonlinearity Θ and an affine transform finally
produce the post-activation function P..c, as follows

Q..c = X..c − µc√
σ2

c + ϵ
, (7)

P..c = Θ(γcQ..c + αc) , (8)

where c is the index of the channel,
√

σ2
c , µc denote the standard deviation and mean of

X, and αc, γc are the unified normalization’s shift parameters and scale in each channel.
The ϵ represents the unified normalization’s numerical stability constant, and ’.’ denotes
a placeholder for an index. Thus, this foundational principle of unified normalization is
significant for successful scaling to deep and large models. Further, the proxy-normalized
activation step is applied in equation (8). This step tends to normalize Θ(γcQ..c +
αc), where Q..c ∼ N(α..c, (1 + γc)2) is the proxy variable with variance (1 + γc)2 and
mean α..c. These variables are subjected to weight decay to denote that Q is close to
normalized. Hence, the unified normalization for each element and the channel is given
by equations (9) and (10) (some index placeholders dropped for simplicity),

Q..b = X..b − µb√
σ2

b + ϵ
, (9)

Pb = Θ(γcQ..c + αc) − Eγc
[Θ(γcQ..c + αc)]√

Varγc [Θ(γcQ..c + αc)] + ϵ
, (10)
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Fig. 5. Examples of original normal images present in the data set.

where b denotes the batch element for the proxy-normalization of Pb; further, Qc ∼
N(αc, (1 + γc)2), ϵ are numerical stability constants of unified and proxy normalizations,
γc is the Gaussian proxy variable, and Eγc

represents the measures of central tendency for
the variable γc. On the other hand, the inclusion of unified normalization at the network
leads in a full-batch setting to add the following operations as shown in equation (11),

yl
a,c =

yl
a,c − µc(X l)

σc(X l) , yl
a,c = γl

cyl
a,c + αl

c , (11)

where l is the layer, σc(X l) and µc(X l) are the standard deviations and mean of X l, and
αl

c, γl
c denote the shift parameters and channel-wise scale. Finally, the output is driven

to the avg max pooling layer and then collected from the dense layer.

4. Results and discussion

The effectiveness of the proposed MetaMag efficiency model has been validated by using
four different performance measures based on different lower extremity images from the
LERA dataset. The experiment was carried out on the Google Colab Notebook Pro
version. In total 50 epochs were used in each fold. This section deliberates the results
produced by the proposed method in classifying the image samples.

4.1. Exploratory Data Analysis

The Exploratory Data Analysis (EDA) is specifically used to analyze and examine the
LERA dataset and thus summarise the main attributes of the dataset. It also visualizes
the distribution of data, discovers patterns, locates outliers, and detects correlations.
The figure 5 represents the original images present in the LERA dataset.
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4.2. Performance measures

The outcome of the proposed system is attained by evaluating the measures: accuracy,
precision, recall, specificity, and F1-score. With this output testing accuracy, the im-
provement of the system is analyzed. Below, TP, TN, FP and FN denote the numbers
of true positive, true negative, false positive, and false negative classifications. The
probabilities are estimated by the respective relative frequencies.
Accuracy The accuracy is considered as the primary evaluation index in the classi-

fication process, which refers to the proportion of input samples that are classified
correctly. The accuracy is evaluated as follows

Accuracy = TP + TN
TP + TN + FP + FN . (12)

Precision Precision denotes the probability of the sample that is truly positive among
all the samples that are identified to be positive and is given by

Precision = TP
TP + FP . (13)

Sensitivity (Also called recall; these two names are used interchangeably in the paper,
depending on the convention used in the reference sources.) It is the probability of
being identified as a positive sample within the actually positive samples. It is denoted
as

Sensitivity = TP
FN + TP . (14)

Specificity It is the probability of being identified as a negative sample within the
actually negative samples. It is denoted as

Specificity = TN
TN + FP . (15)

F1-score The F1-score is calculated as the harmonic mean of recall and precision and
is given by

F1-score = 2TP
2TP + FP + FN . (16)

The above evaluation metrics, or indexes, are used in analyzing the performance of the
proposed MetaMag efficiency model.

4.3. Performance analysis

To better verify the efficiency of the proposed model, the obtained results of abnormal-
ities in the body’s lower extremities are shown in Figure 6.

From figure 6 it is projected that the proposed model can segment the abnormal part
of the image by visualizing it through contrast enhancement. Thus, generalizability was
effectually recognized showing a lack of significant decrement in performance.
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Fig. 6. Abnormalities identified by the proposed MetaMag Efficiency model. Left: original images, right:
processed images. In the upper image, the blue color shows high intensity of the abnormality,
whereas in the lower image, the red color shows high intensity of the abnormality.

4.4. Internal results

By evaluating the internal test set, the precision, recall, F1-score, and accuracy of the
proposed MetaMag Efficiency technique and traditional EfficientNet model are gener-
ated. The outcomes are shown in Table 2 and the corresponding graphical representation
is displayed in Figure 7.

It is observed that the traditional EfficientNet model produces an accuracy rate of
85%, precision of 94%, recall of 78%, and F1-score of 85%. While, the proposed MetaMag
Efficiency model produced an accuracy of 95%, precision of 95%, recall of 97%, and F1-
score of 96%. This indicates the improved performance of the proposed method by
implementing MetaMag scaling and Unify normalization methods. Figure 8 illustrates
the graphical representation of model accuracy and loss.

From figure 8, it can be concluded that the proposed method has produced increased
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Tab. 2. Outcome of the proposed and the traditional model.

Model Precision Recall F1-score Accuracy

Proposed 0.95 0.97 0.96 0.95
EfficientNet 0.94 0.78 0.85 0.85

Fig. 7. Graphical representation of performance analysis of the proposed MetaMag Efficiency model
and the traditional EfficientNet model.

Fig. 8. Accuracy and loss prediction of the proposed MetaMag Efficiency model.
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Fig. 9. Data derived from the confusion matrix and ROC for the proposed MetaMag Efficiency model.

accuracy. Both the training curve and validation curve correlate with each other pro-
jecting that the train dataset and test dataset are most probably similar to each other.
Further, the data derived from the confusion matrix are drawn for the proposed method
to analyze effectiveness. The model loss indicates how the model’s prediction was on
the input samples. If the loss is minimal, then the efficacy of the proposed approach
will be enhanced. In Figure 8, the x-axis denotes the loss and the y-axis signifies the
number of model training epochs. It is noted that the validation accuracy is higher than
the training accuracy for some epochs. Both the training and validation curve follows a
uniformity as the number of epochs increases. This denotes that the loss decreased with
an increase in accuracy. The data derived from the confusion matrix and the ROC of
the proposed model are represented in Figure 9.

The confusion matrix, also known as the error matrix, represents the counts from
predicted and actual values. The True Positives value represents the number of positive
samples that are accurately classified, while True Negatives denotes the number of neg-
ative samples categorized correctly. False Positives value signifies the number of actual
negative samples classified as positive, and False Negatives is the number of actual pos-
itive samples classified as negative. From Figure 9 it is inferred that 144 samples were
correctly classified as normal images, and 104 abnormal samples were classified accu-
rately. Only 4 normal samples were misclassified as abnormal, and 8 abnormal samples
as normal. With minimum error, the precision of the proposed approach is improved.
Additionally, the area under the ROC curve of the proposed model is found to be 0.93,
indicating improved performance. Further, the performance of the conventional Effi-
cientNet is also analyzed. The data derived from the confusion matrix and ROC of the
traditional EfficientNet model are shown in Figure 10.

The data derived from the confusion matrix of the traditional EfficientNet model
is analyzed, and it is found that 116 normal samples are correctly classified, and 104
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Fig. 10. Data derived from the confusion matrix and ROC for the traditional EfficientNet model.

Fig. 11. Accuracy and loss prediction of the traditional EfficientNet Model.

abnormal images are classified accurately, while 33 normal images are wrongly classified
as abnormal and 7 abnormal images are classified incorrectly as normal samples. The
count of correctly classified samples is less than the count classified by the proposed
model. Further, the area under the ROC curve of the traditional model is 0.86, denoting
decreased accuracy and performance. Then, the model accuracy and loss prediction for
the conventional method is shown in Figure 11.

The training and testing curves are partially correlated in the model accuracy plot,
denoting decreased accuracy. Further, the loss plot denotes that both the loss curve
interlinks with each other, representing increased model loss. This denotes that increased
model loss leads to reduced performance of the model.
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Tab. 3. Comparison of the performance of the proposed model and the existing model from [18].

Model Recall Specificity Accuracy

DCNN Triquetral fracture (n=50) – 2-stage 0.96 0.88 0.92
DCNN Triquetral fracture (n=50) – 1-stage 0.96 0.64 0.80
Second fracture (n=24) – 2-stage 0.917 0.917 0.917
Second fracture (n=24) – 1-stage 0.917 0.917 0.917
Proposed 0.97 0.93 0.95

4.5. Comparative analysis

The comparison of the proposed method with other existing methods enumerates the
efficiency of the proposed system. Here, the study compares the existing DenseNet-161
model in terms of lower extremities’ accuracy, sensitivity, and specificity. The outcome
of the conventional model and the proposed system is exemplified in Table 3.

Table 3 indicates that the proposed model attained better values than the existing
models. It attained 95% of sensitivity, 97% of specificity and 95% of accuracy which
shows the value of the proposed efficient model. Table 4 depicts the comparative analysis
of the proposed and another existing model.

From Table 4 and Figure 12 it can be inferred that the existing DenseNet-161 model
produced an accuracy of 79%, precision of 97%, and recall of 66%. Whereas the proposed
MetaMag Efficiency model produced importantly improved overall accuracy of 95%,
precision of 95% – slightly worse, and recall of 97% – improved.

Only a few studies have focused on detecting bone fractures in DM patients. So, only
a limited comparison is provided to analyze the model’s working. Thus, from analyzing
using different evaluation indicators, it is identified that the proposed model has achieved
improved performance compared to other existing models. The basic EfficientNet model
tends to provide limited performance, whereas the proposed MetaMag efficiency model
provides improved performance due to the implementation of the MetaMag scaling and
Unify normalisation. The MetaMag scaling supports the model in enlarging the ra-
diographic image and finely detecting significant patterns of abnormalities in the bone.
Further, the unified normalization reduces the losses produced by the input samples and
thus increases the model’s efficiency.

Tab. 4. Comparison of the performance of the proposed model and the DenseNet model [30].

Model Precision Recall Accuracy

DenseNet-161 [30] 0.97 0.66 0.79
Proposed 0.95 0.97 0.95
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Fig. 12. Graphical representation of the comparison of the proposed model and the DenseNet-161
model [30].

5. Conclusion

Various deep learning methods are involved in diagnosing various diseases and have pro-
duced efficient outcomes. In that case, the previous phase concentrated on detecting
foot ulcers in diabetes mellitus (DM) patients by using the Deep Convolutional Neural
Network (DCNN) based Xception model. This approach produced improved outcomes
and aided in efficiently classifying healthy and diabetic foot ulcer (DFU) images. On
the other hand, the present phase focused on identifying fractures in diabetes patients.
DM is associated with several other factors, and delay in treatment may lead to complex
patient risks. Once a fracture occurs in diabetes patients, it is difficult to cure, and
abnormalities exploit the routine lifestyle of patients. So, early detection of fractures
can help physiologists efficiently cure the complications. Hence, the proposed approach
implemented a MetaMag efficiency model to detect and classify normal and abnormal
images from the given input radiograph images. Along with the classifier, MetaMag
scaling and Unify normalization approaches were used to effectively obtain the fine de-
tails of input samples and reduce the loss that occurred in the proposed system. The
outcomes of the proposed method produced an accuracy of 95%, compared with the
traditional EfficientNet model, which produced an accuracy of 85%. This denoted the
improved performance of the proposed MetaMag efficiency model. The study can be
further improved by using different approaches of deep learning algorithms to produce
higher classification accuracy.
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