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Abstract Falls in the elderly have become one of the major risks for the growing elderly population.
Therefore, the application of automatic fall detection system for the elderly is particularly important. In
recent years, a large number of deep learning methods (such as CNN) have been applied to such research.
This paper proposed a sparse convolution method 3D Sparse Convolutions and the corresponding 3D
Sparse Convolutional Neural Network (3D-SCNN), which can achieve faster convolution at the approx-
imate accuracy, thereby reducing computational complexity while maintaining high accuracy in video
analysis and fall detection task. Additionally, the preprocessing stage involves a dynamic key frame
selection method, using the jitter buffers to adjust frame selection based on current network conditions
and buffer state. To ensure feature continuity, overlapping cubes of selected frames are intentionally
employed, with dynamic resizing to adapt to network dynamics and buffer states. Experiments are con-
ducted on Multi-camera fall dataset and UR fall dataset, and the results show that its accuracy exceeds
the three compared methods, and outperforms the traditional 3D-CNN methods in both accuracy and
losses.
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1. Introduction

Research shows that as the global population ages, more and more elderly people choose
or have to live alone. The global population of elderly people living alone is growing,
which has become a social phenomenon that has attracted much attention. In some
developing countries, providing a care support framework system for elderly people living
alone is still a long-term project [20]. Falls in the elderly have become one of the major
risks for the growing elderly population. Due to the frailty of the elderly and some
underlying diseases, they often fall, which has a serious impact on their health. Even a
minor fall may cause fractures, broken bones or soft tissue injuries that cannot be fully
healed. According to research, falls are one of the main causes of direct and indirect
death among the elderly [11].

Monitoring systems often face the challenge of integrating advanced recognition al-
gorithms. They often systematically utilize computer vision, digital image processing,
vectorization, artificial intelligence (AI) and multithreading for tasks such as feature
recognition. In recent years, people have shown great interest in the processing of 3D
videos. People often try to make in-depth and multi-dimensional descriptions of 3D
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videos. Many existing fall detection systems rely on traditional image processing tech-
niques or deep learning methods, but most methods still have problems such as high
computational complexity, poor real-time performance, or inability to adapt to diverse
scenarios. For example, the application of traditional 3D-CNN in video data processing
often faces high computational load, especially in systems that require real-time or near
real-time response, where computational efficiency becomes a bottleneck. Reference [15]
proposed an automatic recognition system that uses gait analysis to identify individuals
at a distance and predict the possibility of matching between gait profiles. In recent
years, people have shown great interest in the processing of 3D videos. People often try
to describe 3D videos in depth and in multiple dimensions. For example, [16] proposed
a numerical analysis of stochastic differential equations describing body sway based on
3D video clips. 3D-CNN is a neural network that describes the 3D nature of videos in
general. In this article, we integrate a simplified 3D-SCNN. For action recognition and
behavior analysis, 3D-CNN can learn complex action patterns by analyzing the changes
in multiple consecutive frames in the video. This ability is particularly important in
action recognition, motion prediction and behavior analysis. It can be used to detect
the falling posture of the elderly, and compared with traditional 3D-CNN, it has less
computational complexity, so it is suitable for semi-real-time warning functions.

This paper focuses on the developed system based on SIP [26] and GB/T28181 [13]
and the method of fall detection in community elderly care. Cameras can provide very
rich information about people and the environment, and their presence is becoming more
and more important in many daily environments due to the necessity of monitoring.
Especially in community elderly care centers, the installation of cameras is particularly
important. Because, given the limited staff in community elderly care centers, reliable
fall detection systems based on video monitoring may play a very important role in
future health care and assistance systems.

As research results, the main contributions of this paper are as follows:
(1) To the best of our knowledge, this is the first time that a sparse convolution

operation is proposed, which can be applied to 2D convolution and 3D convolution. In
3D-SCNN, all convolution layers use this sparse convolution operation. In this sense, re-
ducing the computational complexity of convolution operations without losing accuracy
is crucial for accelerating video analysis and classification. Compared with traditional
3D-CNN, sparse convolution not only achieves efficient computation in the spatial do-
main, but also reduces memory usage, allowing video analysis tasks to run under low
computing resources, adapting to real-time or semi-real-time monitoring needs, espe-
cially suitable for time-sensitive scenarios such as falls of the elderly.

(2) In the preprocessing stage, we use a dynamic adjustment method to select key
frames. When using the jitter buffer to select key frames, the key frame selection strategy
is mainly dynamically adjusted according to the current network status and the state
of the buffer. In order to ensure the continuity of features, we deliberately overlap the
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cube composed of multiple frames selected each time, so as to ensure the integrity and
continuity of the convolution features. The overlapping part will also be dynamically
resized according to the network status and the state of the buffer. Through dynamic
adjustment, based on the current network status and buffer status, the selection of key
frames and the processing of overlapping areas are optimized to ensure the continuity and
integrity of feature information, avoiding the problem of too many or too few key frames
in traditional methods, thereby improving the stability and accuracy of the system.

Finally, this study has strong practical application value. The system proposed in
this paper can be applied to community nursing homes, home care and other fields to
provide more efficient safety monitoring for the elderly and improve the quality of life of
the elderly. With the continuous development of camera technology and computer vision
algorithms, the fall detection system based on video surveillance will become an impor-
tant part of future smart elderly care. In addition to fall detection, the system based
on video surveillance can also be extended to other areas of elderly health monitoring,
such as real-time monitoring of heart rate, respiratory rate, abnormal movements, etc.,
to provide comprehensive support for the health management of the elderly.

The rest of the article is structured as follows: Section 2 provides a review of the
literature, covering several CNN-based methods relevant to our work. Section 3 outlines
our video monitoring and analysis platform using the SIP protocol and GB/T28181.
Section 4 illustrates the proposed 3D-SCNN approach to solve the Fall Detection case.
Experimental validations of the proposed method are detailed in Section 5. Finally,
Section 7 concludes the article and discusses the future research.

2. Related works

Convolutional neural network (CNN) is a particularly effective deep learning model. By
simulating the processing method of biological visual systems, it can automatically ex-
tract features from data and build more complex feature representations layer by layer.
This structure makes CNN particularly outstanding in tasks such as image recogni-
tion, target detection and classification. Reference [35] proves that the ten-fold cross-
validation accuracy and recognition time of music emotion recognition under the CNN
method are better than those of support vector machine (SVM) and Bayesian model.
Reference [36] proposes a pupil and infrared spot detection method based on CNN to
overcome the poor robustness of traditional eye tracking algorithms.

Current research on human fall detection is generally divided into two approaches.
The first involves wearable sensors. Although these sensors have high accuracy and
are computationally cheaper, their limitation is that they are highly invasive and the
elderly are either unwilling to wear them or forget to wear them. The second technology
involves computer vision, including machine learning and deep learning methods, which
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have high accuracy and robustness, strong versatility, and are less invasive and suitable
for deployment.

Since video is a continuous arrangement of consecutive frames or images, it creates
a smooth and continuous impression for the viewer. In deep learning, CNN is widely
used in the video field due to its strong computing power and high accuracy. Typical
applications include video analysis and classification, human pose estimation, and human
detection. For example, Núñez-Marcos et al. [23] used optical flow images as input to
the CNN network in order to get rid of the influence of environmental features. These
optical flow images only represent the motion of consecutive video frames and ignore
any appearance-related information such as color, brightness, or contrast.

3D Convolutional Neural Networks (3D-CNN) can effectively obtain feature represen-
tations from images and can exploit temporal and spatial details in the same convolution
without being significantly affected by image processing. Due to these advantages, 3D-
CNN has also become one of the hot spots in CNN research in recent years. The following
are several common 3D-CNN networks: a) C3D (Convolutional 3D) [32] is a classic 3D
convolutional neural network, originally proposed by Tran et al. in 2014. It performs
well in tasks such as video action recognition, using 3D convolutional layers to capture
spatiotemporal features. b) I3D (Inflated 3D ConvNet) [6] is a network based on 2D
convolutional network (such as Inception architecture) extended to 3D space. It ini-
tializes the 3D model by extracting parameters from the 2D pre-trained model, making
training more efficient. c) R(2+1)D (Residual 2+1D Networks) [33] is a deep residual
network that combines 2D convolution and 1D temporal convolution. It improves ef-
ficiency and performance by decomposing space and time into 2D and 1D processing
units. d) SlowFast Networks [10] is an architecture proposed by Feichtenhofer et al. to
resolve the time scale difference between fast and slow motion in videos. It contains two
streams (Slow and Fast), each stream uses a different frame rate to process the video. e)
P3D (Pseudo-3D Networks) [24] network processes spatiotemporal information through
3D convolution, but the size and number of its convolution kernels are limited to 2D
convolution to reduce computational costs.

In recent years, the research on fall detection based on 3D-CNN has shown an upward
trend. Most of the research focuses on: the fusion of multi-stream technology, the
use of autoencoders, fusion with LSTM, and methods and practices based on skeleton
technology.

In research of multi-stream technology, Alanazi et al. [2] proposed a human fall
detection system using a fused multi-stream 3D CNN, which corresponds each stream to
one of the four stages of human fall (standing or walking, falling, falling, and stationary).
Alanazi et al. [1] used an innovative 4-stream 3D convolutional neural network (4S-
3DCNN) model to learn different but continuous spatial and temporal features. The
system processes video input or real-time surveillance, uses a fine-tuned deep learning
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model to segment the presence of human body every 32 frames, and applies three-
level image fusion to highlight motion differences. The technology generates four pre-
processed images, which are input to the 4S-3DCNN model for classification. Continuous
detection of "fall" actions triggers an alarm for immediate intervention.

In aspect of autoencoders research, Nogas et al. [21] proposed a new framework Deep-
Fall, which proposed a new use of deep spatiotemporal convolutional autoencoders to
learn spatial and temporal features from normal activities using non-intrusive percep-
tion patterns. The proposal method in [31] is based on a 3D fully convolutional neural
network, namely 3DFCNN, which automatically encodes spatiotemporal patterns in the
original depth sequence. The described 3D-CNN allows the classification of actions based
on the spatial and temporal encoding information of the depth sequence. The proposed
3DFCNN is optimized to achieve good performance in terms of accuracy while working
in real time. The paper [27] proposes a new method to improve fall detection in ther-
mal image data using stacked AutoEncoder (AE) and 3-D convolutional neural network
(3D-CNN) models, which are input into a meta-neural network that is trained to detect
falls and non-falls.

About importing with LSTM, Reference [30] proposed a convolutional neural network
long short-term memory model (1D CNN LSTM) for automatic recognition of robot
behavior. It extracts the features of the robot task from a one-dimensional convolutional
layer, followed by a recurrent layer to retrieve temporal information from the data.

Su et al. [29] proposed the three-dimensional convolutional neural network (3D-CNN)
and fully connected long short-term memory network (FC-LSTM) have been shown to
be a powerful non-invasive fall detection method. A new model combining lightweight
3D-CNN and convolutional long short-term memory (ConvLSTM) network is proposed.
Channel and spatial attention modules are adopted in each layer to improve the detection
performance. In addition, ConvLSTM is proposed to extract long-term spatiotemporal
features of 3D tensors.

Using the skeleton method, Jayaswal et al. [12] introduced a novel approach for in-
door fall detection using 3D convolutional neural networks (3D-CNNs) with temporal
attention mechanisms. The pose estimation method is to analyze the coordinates of
skeletal interest points and extract relevant features for accurate fall detection. The
fusion of deep learning-based video analysis and pose estimation promotes the improve-
ment of a powerful fall detection framework. Xiong et al. [34] proposed a skeleton-based
3D continuous low pooling neural network (S3D-CNN) for fall detection. In S3D-CNN,
an active feature clustering selector is designed to extract skeleton representations from
deep videos using a pose estimation algorithm and form optimized skeleton sequences
for fall periods. A 3D continuous low pooling (3D-CLP) neural network is proposed
to process these representation sequences by improving the number of network layers,
pooling kernel size, and single input frame number. Noor et al. [22] proposed a new en-
hanced human pose dataset to improve the accuracy of pose extraction. They proposed
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Fig. 1. Video surveillance and analysis platform system architecture.

a lightweight skeleton-based 3D-CNN behavior recognition network. Experimental re-
sults show that the proposed skeleton-based method shows high accuracy and efficiency
in real-world scenarios. Xiong et al. [34] proposed a skeleton-based three-dimensional
continuous low pooling neural network (S3D-CNN) for fall detection. In S3D-CNN, an
activity feature clustering selector is designed to extract skeleton representations from
depth videos using a posture estimation algorithm and form an optimized skeleton se-
quence of fall periods. A three-dimensional continuous low pooling (3D-CLP) neural
network is proposed to process these representation sequences by improving the number
of network layers, pooling kernel size, and single input frame number.

In summary, the research on 3D convolution operation and fall detection suitable
for fast processing of surveillance video is not sufficient. Therefore, from a practical
perspective, this paper proposes a fast sparse 3D convolution operation and forms a
corresponding 3D-SCNN to test and demonstrate the data set.

3. System architecture

We have developed a video monitoring and analysis platform using the SIP protocol
and GB/T28181. The system structure is shown in Fig. 1. The platform consists of
a coordination server, access and signaling server, storage server, codec server, video
analysis server, monitoring terminal, etc. It can realize the monitoring resources, sharing,
storage and distribution of the entire network, and can be expanded and upgraded to
have application functions such as intelligent monitoring, email SMS alarm and mobile
phone monitoring.

As shown in Fig. 1, the coordinating server implements the business management
functions of device management, user management, authority management and log man-
agement; the signaling/access server is responsible for the access of all terminal devices,
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which is specifically reflected in the registration and positioning services, heartbeat ser-
vices, message forwarding services, redirection services and proxy services of the front-
end devices. The main function of the storage server is to store historical recordings
and quickly retrieve them; the monitoring terminal is the core part of the system, which
connects various monitoring resources, decodes and stores the required video informa-
tion, and plays, retrieves and browses in real time according to authorization, obtains
video analysis results and alarm information, and uses the message service implemented
by Web Services to provide decision-making and reliable monitoring information for
departments and users at all levels.

The platform prioritizes compliance with the GB/T28181 standard. For video re-
sources that meet the GB/T28181 standard, access the video surveillance platform
through the video resources; for video resources or platforms that do not meet the
GB/T28181 standard, access the video resource integration platform through the access
gateway method (protocol conversion), and finally access the video surveillance plat-
form. If the platform is accessed through the access gateway for protocol conversion,
the front-end device must support the ONVIF protocol [8] or provide an SDK package,
access the protocol conversion server, and then access the video surveillance platform
through the protocol conversion server.

4. Proposed fall detection approach based on 3D-SCNN

A typical CNN network usually alternately stacks multiple convolutional layers and pool-
ing layers to process and compress the input signal, and finally completes the mapping
between features/targets through a fully connected layer. In 2D CNN, convolution and
pooling operations only reflect the spatial dimension, which is not very effective for
processing video streams that contain both spatial and temporal information.

4.1. 3D Convolutions

In the convolution layers of CNN, convolution is a special linear operation between input
data and multiple convolution kernel functions to generate convolution feature maps. 3D
convolution preserves and abstracts temporal and spatial information by convolving the
3D convolution kernel with a video cube consisting of multiple adjacent frames.

In general, 2D convolution is to slide the 2D convolution kernel in the spatial dimen-
sion for convolution operation; while 3D convolution is to slide the 3D convolution kernel
in both spatial and temporal dimensions for convolution operation. In video analysis,
each position of the 3D feature map is connected to multiple adjacent input frames,
thereby retaining certain temporal information of the input frames.

Similar to the convolution operation in the two-dimensional case, assuming that
the input tensor of the convolution layer L in the three-dimensional case is xL ∈
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Fig. 2. 3D Convolution kernel and convolution features.

RHL×W L×DL , the convolution kernel of this layer is fL ∈ RH×W ×DL . The 3D con-
volution is actually to expand the two-dimensional convolution to all channels of the
corresponding position (i.e., DL), and finally sum up all HWDL elements processed by
one convolution as the convolution result of this position.

As shown in the Fig. 2, the convolution kernel size is 3 × 4 × 3, and the output result
of 1 × 1 × 1 is obtained after convolution at this position. Furthermore, if there are D
convolutions like f , the convolution output of 1 × 1 × 1 × D dimensions can be obtained
at the same position, and DL+1 is the number of channels of the L + 1-th layer feature
xL+1.

4.2. 3D Sparse Convolutions

In the convolution layers of CNN, convolution is a special linear operation between input
data and multiple convolution kernel functions to generate convolution feature maps. 3D
convolution preserves and abstracts temporal and spatial information by convolving the
3D convolution kernel with a video cube consisting of multiple adjacent frames.

In view of the slow convolution speed of traditional 3D-CNN, we have proposed a
sparse convolution method 3D Sparse Convolutions and the corresponding 3D Sparse
Convolutional Neural Network (3D-SCNN), which can achieve faster convolution at the
approximate accuracy, thereby improving the operation speed of the entire convolution
network. Now take the convolution operation in two-dimensional mode as an example:

As shown in Fig. 3, the traditional convolution operation uses a 3 × 3 convolution
kernel (as shown in Fig. 3b), and directly performs sliding convolution on the 5×5 element
matrix (as shown in Fig. 3a). Each time it slides, a convolution value is obtained. It
takes 9 convolution operations to get the final convolution matrix (as shown in Fig. 3c).
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a b c
Fig. 3. The original convolution operation. (a) Element matrix; (b) convolution kernel; (c) convolution

matrix.

a b

c d

e
Fig. 4. Five convolution operations in sparse convolution. (a) Operation one; (b) Operation two; (c) Op-

eration three; (d) Operation four; (e) Operation five.

However, using the Sparse Convolution Method we proposed only requires 5 convo-
lution operations and 4 simple algebraic operations with low computational complexity.
As shown in Fig. 4, the specific steps of sparse convolution are: using a 3×3 convolution
template, in a 5 × 5 image, convolution is performed once every sliding window, so that
the numerical scale after the actual convolution is only half of the scale of the ordinary
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a b c d
Fig. 5. Four simple algebraic operations in sparse convolution. (a) Operation one; (b) Operation two;

(c) Operation three; (d) Operation four.

convolution, and then for the skipped sliding window, in the final convolution matrix,
first find the smallest convolution result unit, and then calculate the average value of it
and its direct convolution result unit,

ci,j =


Avg(ci−1,j , ci+1,j)
Avg(ci,j−1, ci,j+1)
Min(Adj(ci,j))

(1)

for other space convolution result units, use the convolution value of the smallest
neighbor as its value,

Adj(ci,j) = {ci−1,j−1, ci−1,j , ci−1,j+1, ci,j−1, ci,j+1, ci+1,j−1, ci+1,j , ci+1,j+1} (2)

As shown in Fig. 5, then for the skipped sliding window, in the final convolution
matrix, first find the smallest convolution result unit 2, that is, c3,1, and then calculate
the average of c3,1 and its two directly adjacent element points c1,1 and c3,3, and get
3 and 3, which are used as the convolution value 3 of c2,1 and the convolution value 3
of c3,2 respectively. For the other space convolution result units, c1,2 and c2,3, use the
smallest neighboring convolution value 3 as their value. This convolution method is not
limited to 3 × 3 convolution, and its deformation is also applicable to void convolution.

The three-dimensional case is relatively easy to expand. We only need to replace
the Adj function with a three-dimensional version, that is, select appropriate adjacent
elements in the three-dimensional space according to a certain rule. The elements whose
spatial distance from it is 1 are relatively easy to achieve.

4.3. 3D Sparse Convolutional Neural Network: 3D-SCNN

The overall system architecture usually includes multiple components that work together
to achieve the desired functionality. Such network architectures typically include mul-
tiple layers of 3D convolutions, pooling, normalization, and possibly recurrent layers or
attention mechanisms to improve performance. The network is trained using labeled
data and the model learns to recognize patterns and features associated with different
actions or events in the video sequence. Optimization techniques such as gradient de-
scent and regularization methods are applied to improve the accuracy and generalization
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of the model. After the network has processed the video sequence, post-processing steps
may involve temporal pooling, which aggregates features in time to make a final decision
about the presence or absence of a specific action or event. Thresholding or classifica-
tion algorithms can be used to interpret the output of the network and make predictions.
After validation, the system can be deployed to real-world applications. This may in-
volve integration with existing software or hardware systems to ensure compatibility and
performance in the operating environment.

The network input has been reshaped into a set of 36 depth images, each of size
64x64 pixels. The length of the video segments has been experimentally set to achieve a
compromise between processing time and action recognition accuracy. Since the image
size in the dataset is 640 × 480 pixels, a preprocessing stage is required to crop the
original depth input images into square images and then resize them to the required
dimensions.

The designed algorithm therefore uses a sliding window to select the frames to be
inserted into the network each time. The window size is 36 frames and the stride is 12
frames, so that there is a dynamic number of frames overlap between consecutive input
sets. Each 36-frame segment is then processed to obtain a final vector that includes its
classification probability of belonging to one of the five possible actions.

In the proposed network (see Fig. 6), the first two layers (“Sparse Conv3D 1", “Sparse
Conv3D 2" and “Sparse Conv3D 3") are convolutional layers with 32 filters each and ker-
nel size (3,3,3). To avoid dimensionality reduction in these layers, Sparse Conv3D oper-
ations are used. This is followed by a pooling layer (“Max Pooling 1") for dimensionality
reduction. The resulting output tensor is then fed into another pair of convolutional
layers “Sparse Conv3D 3" and “Sparse Conv3D 4", each with 64 filters and kernel size
(3,3,3) to extract features with a higher level of abstraction.

Several “Sparse Conv 3D" layers use ReLU (Rectified Linear Unit) activation func-
tions on their outputs. This type of activation function provides the necessary nonlinear-
ity for the classifier for action detection. The “Dropout” technique is also used during
training to randomly ignore nodes in the network at each training stage to prevent
overfitting.

4.4. Preprocessing

Preprocessing techniques include parsing the video stream, selecting key frames, applying
background subtraction, resizing frames, converting frames from RGB to grayscale mode,
and finally using the processed frames as input to the 3D-SCNN model. The data is
then normalized to scale the pixel values to between 0 and 1. In addition to this, data
labeling is performed to assign corresponding labels to the training data and validation
data based on the number of positive and negative samples read, and the labels are
one-hot encoded for comparison with the model output. Since the image size in the
dataset is 640 × 480 pixels, a preprocessing stage is required to crop the original depth
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Fig. 6. 3D Sparse Convolutional Neural Network: 3D-SCNN.

input image into a square image and then resize it to the required size. Each image is
first cropped into a square of 240 × 240 pixels and then resized to the network input size
(64 × 64 pixels).

4.4.1. Key frames selection
Generally speaking, the movements of the elderly are not as intense as those in action
movies, and considering the processing time and delay, we also optimized the selection
of key frames.

In the system, we introduced the Jitter buffer [7] in WebRTC [28] for management,
which can not only help deal with delay and jitter in the video stream, but also affect
the selection of key frames. There are usually three ways to use the jitter buffer to select
key frames.
a) Timing selection method: this method selects key frames from the jitter buffer based

on a fixed time interval. For example, a key frame is selected from the buffer at a
certain interval. This method is simple and direct, suitable for applications with low
real-time requirements, so it cannot be used directly in our system.

b) Threshold selection method: Set a threshold, and select a key frame when the amount
of data in the jitter buffer exceeds or falls below this threshold. For example, when
the amount of data in the jitter buffer is low, select a key frame to fill the buffer
to prevent data loss or maintain a smooth flow of data. However, how to choose a
suitable threshold is also not easy to determine in automated video analysis.

c) Dynamic adjustment method: This method dynamically adjusts the key frame selec-
tion strategy according to the current network conditions and the state of the buffer.
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For example, when the network jitter is large, key frames can be selected first to
ensure the continuity and quality of the video stream.

The dynamic adjustment method is mainly to dynamically adjust the key frame selection
strategy based on the current network status and the status of the buffer when selecting
key frames using the jitter buffer. The goal of this method is to effectively use the buffer
to handle network jitter and delay while ensuring video quality and continuity. The
specific operation may include the following steps: First, the network delay, jitter and
data volume in the jitter buffer must be monitored in real time. This can be achieved
by monitoring the water level in the jitter buffer and the length of the decoding buffer.
Second, set the adjustment strategy: According to the monitored network conditions and
buffer status, set the adjustment strategy for key frame selection. For example: When
the network jitter is small and there is enough data in the jitter buffer, fewer key frames
can be selected (that is, the time interval for selecting key frames can be increased)
to reduce bandwidth consumption and improve playback efficiency. When the network
jitter is large or the amount of data in the jitter buffer is insufficient, all key frames can
be selected first to ensure the continuity and quality of the video stream.

In order to ensure the continuity of features, we deliberately overlapped the cubes
composed of multiple frames each time, which ensured the integrity and continuity of
convolutional features. The network input sequence must be divided into 36-frame seg-
ments and then analyzed by 3D-CNN. The designed algorithm therefore uses a sliding
window to select the frames to be inserted into the network each time. The window size
is 36 frames and the initial stride is 12 frames, so that there is an overlap of 12 frames
between consecutive input sets. In the study, we made the jitter buffer also affect the
size of the overlap stride. When the network jitter is small and there is enough data in
the jitter buffer, the overlap stride gradually decreases from the initial value of 12 to a
minimum of 4; when the network jitter is large or the amount of data in the jitter buffer
is insufficient, the initial value of 12 gradually increases to a maximum of 18. Subsequent
experiments show that dynamic overlap control based on sliding windows will enhance
the robustness of fall detection.

4.4.2. Background segmentation

In the preprocessing stage, we algorithmically distinguish the moving area and back-
ground from the video and classify the foreground as human or non-human. Among
the many background removal algorithms, we choose ViBE [5] which is friendly to video
surveillance analysis and can also adjust the background model online. It is divided into
the following steps: initialization, foreground detection and model update. The first
frame is initialized as a background frame with 20 background samples per pixel. Then,
each pixel is labeled as foreground or background based on its historical value. The last
step is to select updateable neighboring pixels and randomly determine them as back-
ground pixels. Background samples are randomly selected to update the model, while
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a b c
Fig. 7. Background segmentation in the preprocessing. (a) Original frame image; (b) reduced square

segmented image; (c) final frame image with synthesized recognition box.

other samples are discarded. To ensure that the foreground region contains only hu-
mans, we further refine the foreground segmentation through morphological operations
to eliminate the most invalid regions. Then, the connected components are calculated
and if their size is smaller than the minimum human size, they are removed from the
foreground; otherwise, they are considered as human regions. Therefore, a foreground
region containing only human objects is obtained. Finally, the detection is verified based
on the percentage of foreground pixels within the bounding box of each detected person.
If this value is lower than the threshold, the detection result is considered a false positive.

As shown in Fig. 7, after preprocessing, the original frame image shown in Fig. 7a
is obtained as a reduced square segmented image Fig. 7b. A series of segmented images
are used as the input of 3D-SCNN. After forward propagation of the network, the result
is finally re-enlarged and composed with the original frame image with a synthesized
recognition box Fig. 7c.

In the experiment, we build a 3D-SCNN model, added multiple Conv3D layers, Max-
Pooling3D layers, Flatten layers, and fully connected layers (Dense layers), and added
Dropout layers to prevent overfitting. Finally, compile the model, specify the loss func-
tion as categorical cross entropy, the optimizer as SGD, and specify the metrics as
accuracy and mean square error (MSE). Then train the model and pass in the training
data, validation data, and callback function (for saving the best model). Save the trained
model file after training.

The pooling layer is set after the convolution layer, and the feature image output
by the convolution layer is pooled, also known as down sampling, which can reduce the
dimension of the feature and improve the generalization ability of the model. There are
two classic pooling methods – average pooling and maximum pooling. In addition to
the convolution layer, the pooling layer is also a major component of a typical CNN.
It subsamples the feature map transmitted from the convolution layer according to the
principle of local correlation. The pooling operation outputs the summary statistics of
the neighboring units at a certain position in the feature map, thereby reducing the
amount of data while retaining valuable information. Similarly, we apply 3D maximum

Machine GRAPHICS & VISION 34(1):53–74, 2025. DOI: 10.22630/MGV.2025.34.1.3.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.1.3


F. Fu 67

pooling to achieve translation invariance of cubic video patches in spatial and temporal
dimensions.

5. Experiments

5.1. Experimental setup

The experiment machine was an Intel® Core™ i3-1220P processor running at 4.40 GHz,
10 Cores, 12 MB Intel® Smart Cache, 64 GB of RAM, two NVIDIA GeForce RTX 2080Ti
graphics processing units, and a 64-bit Windows 10 operating system.

For training, we used two dataset splits: 85% and 95% of the data for training, 10%
and 3% of the data for validation, and finally 5% and 2% of the data for testing. Through
1800 rounds of training, the proposed 3D-SCNN method achieved good accuracy under
different input conditions. The stochastic gradient descent optimizer and cross entropy
loss function were used. The results were refined by dropout of 0.2, and the learning
rate was set to 0.001.

5.2. Datasets

In the test and validation phase, we use the following two datasets:
1. Multi-camera [4] In this dataset, the authors collected data of falls and normal

activities from a calibrated multi-camera system consisting of 8 inexpensive IP wide-
angle cameras that can cover the entire room. The 8 cameras captured 22 fall scenes,
including sequences of falling forward or backward while walking, falling when sitting
in an improper posture, losing balance, etc., as well as 2 normal daily activity scenes,
such as walking in different directions, doing housework, and activities with similar
characteristics to falls (sitting/standing up, squatting).

2. UR Fall dataset [14] In this dataset, the authors collected data containing
70 videos, including 30 fall videos and 40 daily life activity videos. Experiments
were conducted on the UR fall dataset, which contains 30 fall and 40 non-fall depth
videos, obtained from top view and front view, respectively. The fall action categories
include falling while walking, sudden falling, and falling from a chair. The non-falling
action categories include walking, sitting, bending over and other scenes.
The performance of the system is measured by its accuracy on the test data. Accuracy

is calculated by comparing the predicted labels for each set of 36 frames with the labels
assigned to the entire sequence. As explained before, each video sequence is processed
using a sliding window and one result (label) is obtained per window. The system then
assigns the label to the action with the highest calculated probability.

In Table 1, we report the performance of various deep neural network algorithms on
the fall detection dataset. Since fall detection is actually a binary classification problem,
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a b c
Fig. 8. Fall detection with 3D-SCNN. (a) Not fall; (b) pending; (c) fall.

we report the accuracy of 96.59% and 99.82% for the 3D-SCNN. We find that our 3D-
SCNN architecture outperforms the 3D-CNN for fall detection on the UR Fall dataset,
and is slightly inferior to the 3D-CNN for multi-camera fall detection. The overall
accuracy is stronger than the VAG [18], 3D-CNN [18], OpenPose, LSTM/GRU [19],
YOLO, OpenPose, Random Forest [19], and FPD [25] tested in our environment which
is slightly low than the data in the original papers. In addition, compared with other
methods, such as Kraft et al. [17] and Chahyati et al. [9], our accuracy is higher than
theirs. However, compared with Umar Asif [3], our accuracy is slightly lower, which may
be related to the learning of human skeletons and segmentation-based fall representations
from synthetic data in the article. These modeling may lead to improved accuracy. In
all fall sequences, the fall action is correctly detected in multiple 36-frame windows. In
addition, the system can accurately predict other actions of interest, such as walking or
running, and the accuracy of both actions exceeds the applicable level.

The model divides the elderly’s behaviors into three categories: falling, not falling,
and pending. As shown in the Fig. 8, after being tested on the UR Fall dataset, the
system can basically accurately identify these three behaviors. However, since pending

Tab. 1. Performance of various approaches on Multi-camera fall dataset and UR fall dataset

Method Multi-Camera Dataset UR Dataset
FPD [25] 96.20% -
3D-CNN [18] 99.73% -
VAG 3D-CNN] [18] 99.367% -
OpenPose, LSTM/GRU [19] - 98.2 %
YOLO, OpenPose [19] - 97.33%
Kraft et al. [17] - 95.2 %
Chahyati et al. [9] - 95.64%
Umar Asif [3] 98.60% -
Proposed 3D-SCNN 96.59% 99.82%
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a b
Fig. 9. Traditional 3D Convolutional Neural Network. (a) Accuracy of training and validation; (b) losses

of training and validation.

a b
Fig. 10. Sparse 3D Convolutional Neural Network. (a) Accuracy of training and validation; (b) losses

of training and validation.

behavior actually includes a variety of abnormal behaviors, the model is slightly lacking
in the recognition of pending. The system will give a certain warning to the caregiver
when pending, confirm the alarm notification when falling, and save the relevant video
for medical caregivers to diagnose and analyze. After testing on the UR Fall dataset, we
found that the model can basically meet the accuracy requirements of fall detection in
home scenarios after training.

Fig. 9 shows the accuracy and loss graph of the 3D-CNN model with the traditional
convolution proposed previously. We obtained a large number of parameters for the fully
connected layers and completed the learning within 100 epochs. Fig. 10 shows the accu-
racy and loss graph of the 3D-SCNN model with the addition of sparse convolution. The
accuracy of this model shows a significant improvement, and the training is completed
at the 82nd epoch. It not only reduces the number of parameters, but also reduces the
training time per epoch and the number of convolution operations during testing, and
obtains an accuracy of more than 96%.
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6. Discussion

6.1. Differences and advantages between 3D-SCNN and traditional 3D-CNN

Here, we mainly discuss the differences and advantages of 3D-SCNN over traditional
3D-CNN. Traditional 3D-CNN perform standard convolution operations on the entire
input data. Each convolution layer applies a fixed-size convolution kernel to perform
convolution operations on the entire 3D input space to process all the information in the
input data. Due to full convolution calculations, traditional 3D-CNNs usually have high
memory usage, especially when processing large-scale 3D data (such as video frames or
depth maps). In hardware-constrained environments, training and inference speeds may
be slow, especially for tasks involving a large number of frames or long time series. 3D-
SCNN (sparse convolutional neural network) uses sparse convolution, which can capture
useful features more efficiently and avoid unnecessary calculations. For the same size of
input data, 3D-SCNN is usually much faster to train than traditional 3D-CNN, and can
also save computing resources during inference. It is particularly suitable for applications
such as video surveillance that require real-time processing, and can also leave a lot of
valuable time for later analysis and early warning operations.

6.2. Limitations of 3D-SCNN

Although 3D-SCNN exhibits significant advantages over traditional 3D-CNN in terms of
computational efficiency, memory footprint, and performance, it also suffers from some
limitations. The following are the main limitations of 3D-SCNN:

(1) 3D-SCNN performs well in sparse data (for example, most areas are empty or
background), but when the input data is very dense or contains a lot of information,
the advantages of sparse convolution may be weakened. In this case, traditional 3D-
CNN may be more suitable as it can process the entire input space uniformly without
relying on the sparsity of the data. When faced with applications where every region in
the data contains important information (such as fine-grained action recognition or fine
image analysis), the advantages of sparse convolution may not be so obvious, and may
even lead to feature loss, affecting the performance of the model.

(2) Sparse convolution requires specially designed hardware or software support to ef-
ficiently handle sparse data. This makes the implementation of the model more complex
than traditional 3D-CNN, especially in the absence of specialized optimization libraries
or hardware acceleration, and the efficiency improvement of sparse convolution may not
be fully reflected. For systems without hardware acceleration (such as GPU or cus-
tom hardware), the implementation of sparse convolution may be more time-consuming
than standard convolution, and may even reduce computational efficiency and increase
development costs in some applications.
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7. Conclusions

In this paper, a fall detection system based on 3D sparse convolutional neural network
(3D-SCNN) is proposed, which uses new sparse convolution to replace the traditional
convolution operation, extracting features in spatial and temporal dimensions from depth
information to predict the fall action in the scene. Additionally, the preprocessing stage
involves a dynamic key frame selection approach, using the jitter buffers to adjust frame
selection based on current network conditions and buffer state. To ensure feature con-
tinuity, overlapping cubes of selected frames are intentionally employed, with dynamic
resizing to adapt to network dynamics and buffer states. Experiments are conducted on
Multi-camera fall dataset and UR fall dataset, and the results show that its accuracy
exceeds the three compared methods, and outperforms the traditional 3D-CNN method
in both precision and loss.

Despite the effectiveness of the system in detecting human falls from video, the
proposed method has several limitations. Firstly, it can only detect single-person falls
without specific localization of individuals in the scene. Secondly, it cannot accurately
detect falls involving complex movements, such as when an elderly person falls from a
sitting to standing position. Additionally, methods based on 3D-SCNNs suffer from high
computational demands, resulting in delays during practical applications.

In the future research, we will enhance the performance of the improved 3D-SCNN
method across various publicly available datasets to pump its generalizability and ef-
fectiveness in real-world environment. Also, we aim to investigate conditions involving
multiple cameras to provide faster and more accurate detection and alerts. Furthermore,
we will explore integration with wearable sensor-based methods to offer more intelligent
solutions.
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