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Abstract Deep learning significantly supports key tasks in science, engineering, and precision agri-
culture. In this study, we propose a method for automatically determining maize developmental stages
on the BBCH scale (phases 10-19) using RGB and multispectral images, deep neural networks, and a
voting classifier. The method was evaluated using RGB images and multispectral data from the Mi-
caSense RedEdge MX-Dual camera, with training conducted on HTC_r50, HTC_r101, HTC_x101,
and Mask2Former architectures. The models were trained on RGB images and separately on individual
spectral channels from the multispectral camera, and their effectiveness was evaluated based on clas-
sification performance. For multispectral images, a voting classifier was employed because the varying
perspectives of individual spectral channels made it impossible to align and merge them into a sin-
gle coherent image. Results indicate that HTC_r50, HTC_r101, and HTC_x101 trained on spectral
channels with a voting classifier outperformed their RGB-trained counterparts in precision, recall, and
F1-score, while Mask2Former demonstrated higher precision with a voting classifier but achieved better
accuracy, recall, and F1-score when trained on RGB images. Mask2Former trained on RGB images
yielded the highest accuracy, whereas HTC_r50 trained on spectral channels with a voting classifier
achieved superior precision, recall, and F1-score. This approach facilitates automated monitoring of
maize growth stages and supports result aggregation for precision agriculture applications. It offers a
scalable framework that can be adapted for other crops with appropriate labeled datasets, highlighting
the potential of deep learning for crop condition assessment in precision agriculture and beyond.

Keywords: AI, deep learning, image recognition, RGB imaging, multispectral imaging, voting classifier,
precision farming, determining growth stages of maize, BBCH scale.

1. Introduction

Knowledge of the developmental phases of plants and their precise determination for
individual locations are crucial for calculating plant condition parameters within larger
areas of semi-cultivated fields, in line with the concept of precision agriculture [12,21,22].
A measure commonly used by scientists to quantify the developmental phase of a plant is
in is the international plant development scale BBCH [17,21]. The BBCH scale (Biologis-
che Bundesanstalt, Bundessortenamt und Chemische Industrie) is a standardized system
for identifying the phenological development stages of plants. It uses a two-digit coding
system where the first digit represents the principal growth stage (e.g., germination, leaf
development, flowering), and the second digit provides a more detailed subdivision of
each stage (e.g., the number of leaves developed) [17]. This scale allows for consistent
documentation and comparison of growth stages across different plant species and has

Machine GRAPHICS & VISION 33(3-4):29–53, 2024. DOI: 10.22630/MGV.2024.33.3.2 .

https://orcid.org/0000-0002-8601-4483
https://orcid.org/0000-0002-4433-2133
mailto:justyna.stypulkowska[at]ilot.lukasiewicz.gov.pl
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.3.2


30 Classification of maize growth stages using deep neural networks. . .

been widely adopted by researchers, agronomists, and farmers for crop monitoring and
management [17,21].

The BBCH scale is widely utilized by agronomists, researchers, and farmers to mon-
itor and document the growth stages of crops. It aids in standardizing the timing for
agricultural practices such as fertilizing, and pesticide application, ensuring optimal crop
management and productivity [16,21,22]. Until now, the determination of developmen-
tal phases of specific plant species has only been done manually by visually analyzing
the plants [17]. Automating this process allows faster analysis, which will have a directly
impacts on timely human intervention and help provide plants with the right conditions
for development. These facts underline the need to develop a robust and rapid method
of assessing developmental phases, which can be carried out in an automated manner.

Artificial intelligence comes to the aid of this process [16, 21, 24]. The use of deep
learning techniques and the appropriate preparation of new training datasets make it
possible to develop trained models capable of detecting the indicated plants and deter-
mining their developmental phases based on image analysis [12]. The automatic detection
and classification of the BBCH phases of plant development using artificial intelligence
is still something of a novelty at present, but it is certainly the direction of the future
in precision agriculture [22]. The automation of this process with a defined accuracy
and speed, using deep learning algorithms, is therefore a very valuable and desirable
advancement compared to the current method of manually determining these parame-
ters. The development of this issue is heavily dependent on the creation of a dedicated
dataset [24]. We were the first to create datasets composed of images representing maize
plants growing in a real crop field. One dataset consists of RGB images, and the other
consists of images acquired in 10 spectral channels. In these datasets, we assigned each
plant a corresponding BBCH scale value (from stage 10 to stage 19). This enabled us to
develop a method to train AI algorithms to create a model capable of analyzing the im-
ages and automatically determining the developmental phases of the plants under study,
in this case maize, from the images. Without the use of a similar solution, assessing the
quality of plant development parameters on a large scale in a controlled environment is
unattainable, given the enormous time and effort required from participants. Our solu-
tion supports crop management from its initial stage and can support yield early enough
so that the amount of food produced can be easily and efficiently increased. Our method
is the start of research into accurately determining the early stages of plant development
(in this case maize) from close range and is far superior to existing manual methods in
terms of efficiency.

In this paper, we focus on the replication of results using the following deep learn-
ing architectures: HTC_r101, HTC_r50, HTC_x101, and Mask2Former [20,30,32,33].
These architectures demonstrate optimal performance in terms of the training process
and do not require excessive computational resources for training. We investigate their
efficiency and effectiveness when trained on a set of RGB and multispectral images.
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In addition, we conducted tests by dividing the multispectral dataset into individual
single spectral channels, which provided an answer as to which of the tested algorithms
performs best on the indicated datasets and which dataset to use for the detection
and classification of developmental phases to achieve the best results. We have also
introduced an additional method using a voting classifier, in which models trained on
individual spectral channels vote on the final result of selecting a class denoting a specific
developmental phase on the BBCH scale. This novel research expands our scope of data
analysis to other spectra beyond the previously popular RGB imaging. Our work opens
up a new avenue to explore new questions and inspires us to continue our research with
a new dataset combining spectral channels and to use another multispectral camera for
this purpose as well.

2. Related works

Assessing plant growth stages is crucial for determining their condition parameters [21].
In precision agriculture, an additional requirement is the automation of this process and
its accuracy, even at the level of individual plants or small areas within large fields [21].
This ensures proper control over plant development conditions and helps maintain high
food quality.

Automatic determination of plant growth stages and conditions has significantly ad-
vanced thanks to deep learning and image analysis [22]. Traditional methods rely on
manually inspecting plants to document their growth stages, while modern approaches
use automated representation learning from images to predict outcomes and assign
growth stage values to plants, typically using the BBCH scale [12].

Several studies have explored the use of deep learning models to determine plant
condition parameters, including the classification of maize growth stages. This addresses
the increasing demand for such solutions in agriculture, particularly in precision farming.
These solutions are being developed to meet the need for effective crop management and
the monitoring of condition parameters.

For example, Xu et al. [30] proposed a deep learning approach for determining maize
growth stages by counting leaves. They developed a two-step method combining instance
segmentation and object detection, employing Mask R-CNN and YOLOv5 architectures.
This method effectively detected and counted leaves, overcoming challenges related to
background and weeds. Using RGB images captured by UAVs, their approach represents
a significant advancement in precision agriculture.

Liu et al. [20] developed a system to measure maize seedling emergence by evaluating
count, size, uniformity, and distribution. Using deep learning with UAV-captured RGB
images, they overcame challenges like shadows and planting density. The system, based
on the YOLO architecture and TOPSIS method, accurately assessed seedling quality
and identified areas with poor emergence in experimental fields.
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Yu et al. [32] used deep convolutional neural networks (DCNNs) to estimate maize
aboveground biomass (AGB) from multisource UAV imagery. They showed that AGB
estimation, essential for crop growth assessment, can be effectively modeled using re-
gression between AGB and agronomic traits from UAV data. DCNNs provided superior
results, especially during the vegetative phase.

Zhang et al. [33] developed a method for detecting maize tassels in UAV-captured
RGB images. They highlighted that tassel developmental stage and branch number are
key phenotypic traits for assessing growth, pollen quantity, and planning tassel pruning
in seed fields. Using a Random Forest classifier and the VGG16 network, their algorithm
effectively detected tassels in complex field conditions, improving crop management and
yield quality assessment.

Yao et al. [31] proposed a method for classifying maize growth stages using phenotypic
traits and UAV-captured data. They combined vegetation indices (VI), textural features
(TF), and phenotypic parameters like leaf chlorophyll content (LCC), leaf area index
(LAI), fractional vegetation cover (FVC), and canopy height (CH). The highest accuracy
(95.1%) was achieved with a Random Forest classifier using LCC, LAI, FVC, and CH.
The study showed phenotypic features outperform vegetation indices, and integrating
UAV data with machine learning enables accurate maize growth stage monitoring.

Bera et al. [3] proposed PND-Net, a system combining graph convolutional net-
works (GCN) with traditional CNNs to classify plant nutrient deficiencies and diseases.
The model integrates local leaf image features (Xception, ResNet-50, Inception-V3,
MobileNet-V2) with spatial relationships captured by GCN, using spatial pyramid pool-
ing (SPP) for multi-scale feature aggregation. Tests on datasets (banana, coffee, potato,
PlantDoc) showed high performance: 90.00%, 90.54%, 96.18%, and 84.30%, respectively.
PND-Net also achieved state-of-the-art results in medical image classification (BreakHis,
SIPaKMeD), making it valuable for precision agriculture and medicine.

Bera et al. [4] proposed RAFA-Net, a method combining CNNs with a regional atten-
tion mechanism for food classification and plant stress recognition. The model captures
contextual information and long-range dependencies using spatial pyramid pooling (SPP)
and average pooling. Tested on food datasets (UECFood-100, UECFood-256, MAFood-
121) and plant stress datasets (IP-102, PlantDoc-27), RAFA-Net achieved top accuracies
of 91.69%, 91.56%, 96.97%, 92.36%, and 85.54%. The results highlight RAFA-Net’s ef-
fectiveness in precision agriculture and food processing.

Wu et al. [28] proposed an innovative approach for identifying strawberry diseases
using a deep learning model based on the Squeeze-and-Excitation (SE) mechanism. The
system integrates sensor data acquisition and plant imaging, transmitting images to the
cloud via a dedicated gateway for analysis. This solution enables efficient monitoring of
strawberry health, improving crop management and yields.

Bompani et al. [5] explore the implementation of computer vision algorithms on a
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heterogeneous multicore microcontroller to accelerate pest detection, specifically target-
ing the codling moth in apple orchards. Sensor nodes with cameras capture and process
images locally, thereby reducing transmission delays. This approach improves real-time
pest monitoring, which is crucial for protecting crops and minimizing losses.

Bansal et al. [1] proposed PA-RDFKNet, a deep learning model integrating RGB
and hyperspectral imaging for plant age estimation. By combining features from both
modalities, PA-RDFKNet significantly improves accuracy over single-modality methods.
This approach supports precision agriculture by enhancing plant growth monitoring and
optimizing agronomic practices.

Bera et al. [2] introduced APDC (Attention-based Plant Disease Classification), a
method using CNNs with an attention mechanism to identify plant diseases from leaf
images. The model extracts features, highlights key regions, and classifies them with a
softmax layer. Tested on PlantPathology, PaddyCrop, PaddyDoctor, and PlantVillage
datasets, APDC achieved accuracies of 97.74%, 99.16%, 99.62%, and 99.97%. This end-
to-end trainable model, using lightweight CNNs like MobileNet-v2 and DenseNet-169, is
efficient for precision agriculture.

Based on the reviewed articles, most researchers successfully use deep learning models
to determine growth stages and other plant condition parameters. They primarily em-
ploy RGB imaging techniques captured by UAVs for this purpose. As we have observed,
some of the most powerful deep learning models, such as HTC and Mask2Former, have
not yet been explored for this specific task. The literature review also revealed that RGB
imaging is typically used for determining plant growth stages, including maize, rather
than multispectral imaging. This has led to gaps in knowledge regarding whether HTC
and Mask2Former can be effectively applied and implemented for maize growth stage
classification. Another research gap is the limited use of multispectral imaging for de-
termining plant growth stages, particularly for maize. This article aims to address these
research gaps. We intend to investigate which type of imaging (RGB or multispectral) is
more suitable for this task and which of the examined algorithms proves to be the most
effective. The goal of the research is to select the most effective configuration in the
form of: imaging type plus the chosen algorithm from the following options: HTC_r50,
HTC_r101, HTC_x101, and Mask2Former.

3. Data and methods

3.1. Datasets

In order to carry out the research, the results of which we present in this article, we used
specially prepared datasets of tagged images of maize at different stages of development,
divided into RGB and multispectral sets. Data were collected from the same test plots,
during the 2021–2022 growing seasons. We collected the data using an RGB camera
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Tab. 1. Parameters of RGB and Multispectral Datasets

Dataset Type Camera Image Count Resolution Total Labeled Objects per Class
Objects (BBCH 10–19)

RGB RGB Camera 396 12 MP 884 83, 83, 137, 83, 83
83, 83, 83, 83, 83

Multispectral Micasense 556 per channel 5 MP 9070 82, 86, 162, 82, 82
RedEdge-MX DUAL (907 per channel) 83, 84, 83, 83, 80
(10 spectral channels) (per channel)

and a MicaSense RedEdge-MX DUAL multispectral camera, which captures 10 spectral
channels covering the 400 to 900 nm range.

The RGB camera used automatic white balance and exposure settings, eliminating
the need for additional manual calibration. For the multispectral camera, we used stan-
dard calibration procedures involving reference panels with known reflectance values.
This ensured consistency and accuracy of the spectral data captured across different
channels.

The datasets include images captured under varying weather conditions, different
levels of sunlight, and at various times of the day to maximize diversity. The images
were labeled according to the international BBCH plant development scale, adapted for
maize, as shown in Figure 1. This scale reflects the number of leaves developed by a
plant, with values ranging from 10 to 19, where the tens digit represents the leaf stage,
and the ones digit indicates the number of leaves.

Table 1 summarizes the detailed parameters of both datasets, including image count,
resolution, total labeled objects, and distribution of objects across BBCH phases.

After labeling the images using the Label Studio environment with the polygon
method, the datasets were divided into training and validation sets. The training sets
comprised 70% of the data, while the validation sets comprised 30%, with stratification
ensuring an even distribution of BBCH phases across the sets.

Examples from each dataset are shown in Figure 2, which displays RGB images of
maize at different stages of development, captured under various weather conditions and
at different times of the day. Figure 3 presents images taken by the individual lenses
of the MicaSense RedEdge-MX DUAL multispectral camera, alongside a comparative
image captured by the RGB camera.

3.2. Methods

In this section, we provide a detailed description of the methods used in our study.
Figure 4 illustrates the general scheme of the proposed maize growth stage classification
system.

Our system employs three primary classification approaches: classification on RGB
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(a) (b) (c)

Fig. 1. Examples of determining BBCH scale values for maize and labelling them on images using ’the
polygon method’, (a) maize at stage 14 of the BBCH scale, (b) maize at stage 18 of the BBCH
scale, (c) maize at stage 19 of the BBCH scale.

(a) (b)

(c) (d)

Fig. 2. Examples of RGB images showing maize at various stages of development, captured under
different weather conditions and times of day.

images, classification on individual spectral channels, and classification using a voting
classifier. Each approach uses deep learning models, including HTC_x101, HTC_r101,
HTC_r50, and Mask2Former, trained on corresponding datasets consisting of RGB or
individual spectral channels. The best-performing algorithm was selected based on the
highest accuracy achieved during the training process.

The first approach involves the classification of RGB images using the best algorithm
identified through model evaluation. In the second approach, classification is performed
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Fig. 3. Examples of images captured from individual spectral channels and an RGB camera, demon-
strating various bands and perspectives.

using 10 different models, each trained on a separate spectral channel, with the best-
performing algorithm applied to each channel. The third approach utilizes a voting
classifier, which combines the results from the 10 models trained on individual spectral
channels. The final maize growth stage is determined based on the consensus of these
models. A more detailed explanation of each method is provided in the subsequent
sections of the article.

3.2.1. Models architectures
During our research, we used the following deep artificial neural network architectures
for image analysis: HTC_x101, HTC_r101, HTC_r50, Mask2Former [8,10,15,29]. The
highlights of these architectures we describe below.

HTC_x101, HTC_r101 and HTC_r50
HTC, or Hybrid Task Cascade, is an advanced model architecture used for simultaneous
object detection and instance segmentation tasks. Proposed by SenseTime Research,
HTC is renowned for its high accuracy in benchmarks like COCO [7]. The HTC ar-
chitecture includes configurations like HTC_x101, HTC_r101, and HTC_r50, varying
by the backbone used. HTC_x101 employs the ResNeXt-101 backbone, featuring 101
layers and grouped convolutions to enhance efficiency and accuracy [29]. HTC_r101 uti-
lizes the ResNet-101 backbone, which includes a residual mechanism to improve gradient
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Fig. 4. Scheme of the proposed maize development stage classification system.

propagation and training [15]. HTC_r50, on the other hand, uses the ResNet-50 back-
bone, incorporating 50 layers with a residual mechanism that strikes a balance between
performance and computational efficiency [18]. All three configurations use the Feature
Pyramid Network (FPN) as the ‘neck’, which generates feature maps at different scales
and enables efficient detection of objects across various sizes [18].

Regarding the ‘heads’, each model features similar components. The RPN (Region
Proposal Network) head generates Region of Interest (ROI) proposals for further pro-
cessing [23]. The ROI head conducts multi-stage bounding box regression and object
classification to enhance detection accuracy [13]. The Mask head is responsible for
instance segmentation, accurately delineating object contours within an image [14]. Fi-
nally, the Semantic head incorporates contextual information to improve performance in
semantic segmentation tasks [35].
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The HTC_x101, HTC_r101, and HTC_r50 models are trained using Stochastic
Gradient Descent (SGD) optimization, with key hyperparameters including learning
rate, momentum, and weight decay [6]. They incorporate advanced techniques such
as RoIAlign (Region of Interest Align), which enhances the accuracy of object detec-
tion and segmentation. The use of multi-stage bounding box regression and semantic
segmentation contributes to their high performance in benchmarks like COCO [14].

HTC’s various configurations offer the flexibility to choose the right architecture
depending on computational and precision requirements, making them versatile tools
for advanced computer vision applications.

Mask2Former
Mask2Former is an advanced model architecture designed for various image segmentation
tasks, including instance, semantic, and panoptic segmentation. It incorporates several
innovations that enhance its performance over previous models.

The architecture employs a transformer-based backbone, utilizing a self-attention
mechanism to efficiently process visual data and capture global dependencies within im-
ages, which is crucial for accurate segmentation [27]. Unlike traditional methods that
generate masks for predefined regions, Mask2Former features dynamic mask prediction.
This approach generates masks based on the context of each image, significantly increas-
ing the model’s flexibility and precision in mask generation [37].

Additionally, Mask2Former integrates instance, semantic, and panoptic segmentation
tasks into a unified framework, allowing it to perform multiple types of segmentation
without requiring structural modifications. The model also utilizes a query-based learn-
ing mechanism, where queries are dynamically updated during training to adapt to
various scenarios, enhancing the quality of the generated masks [37].

Furthermore, Mask2Former employs advanced loss functions, such as focal loss, to
effectively address issues with class imbalance in the training data, thereby improving
overall performance and training efficiency [19].

Mask2Former is trained with finely tuned hyperparameters such as learning rate,
weight decay, and the use of regularization techniques such as dropout and data aug-
mentation [25]. The model also uses self-attention and query mechanisms for dynamic
mask learning, which enhances its ability to accurately segment [37].

The architecture achieves high performance in benchmarks such as COCO, ADE20K,
and Cityscapes, demonstrating superiority over previous segmentation methods [11,36].
Its versatility and innovative approach to mask prediction make it a powerful tool in
the field of image segmentation, for both research and practical applications [9, 37].
Mask2Former represents a significant step forward in segmentation model architectures,
combining advanced visual data processing techniques with an efficient approach to
dynamic mask prediction [34,37].
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Tab. 2. Hyperparameters and Configuration for HTC_r50, HTC_r101, HTC_x101, and Mask2Former
Models

Model Backbone LR Momentum Weight Decay Batch Size Loss Functions
HTC_r50 ResNet-50 0.0003 0.9 0.0001 1 CrossEntropyLoss,

SmoothL1Loss
HTC_r101 ResNet-101 0.0003 0.9 0.0001 1 CrossEntropyLoss,

SmoothL1Loss
HTC_x101 ResNeXt-101 0.0003 0.9 0.0001 1 CrossEntropyLoss,

SmoothL1Loss
Mask2Former ResNet-50 0.0003 0.9 0.0001 1 CrossEntropyLoss,

DiceLoss

3.2.2. Implementation, training and evaluation procedures
In our research, we used the PyTorch library to implement various models. We de-
fined model architectures, specifying backbones, the Feature Pyramid Network (FPN)
as the neck, and heads such as RPN, ROI, Mask, and Semantic Heads. The detailed
configuration, including hyperparameters, backbones, and loss functions, is presented in
Table 2.

To initialize these models, we employed weights pre-trained on the ImageNet dataset,
leveraging knowledge embedded in large-scale datasets to enhance performance on our
smaller labeled datasets.

To further improve robustness and generalization, we applied data augmentation
techniques during training. These included resizing images to 1333x1000 pixels while
maintaining their aspect ratio, random horizontal flipping with a probability of 50%,
normalization using mean and standard deviation values for RGB channels, and padding
to ensure image dimensions were divisible by 32. For segmentation tasks, masks were
downscaled by a factor of 0.125. During testing, multi-scale augmentation was applied
with resizing to 1333×1000 pixels, and flipping was disabled to maintain consistency in
evaluation.

Models were trained using Stochastic Gradient Descent (SGD) to minimize the loss
function. We used CrossEntropyLoss and SmoothL1Loss for most models, while for
Mask2Former, we employed CrossEntropyLoss and DiceLoss.

Model performance was evaluated using the following measures: mAP (Mean Average
Precision), accuracy, precision, sensitivity (recall), and IoU (Intersection over Union).

3.2.3. Description of the algorithm voting process
For the multispectral images, we noted that objects appeared at varying distances from
the image edges due to different lens angles. This issue was particularly pronounced for
maize at higher developmental stages (BBCH 14–19), where variations in angles altered
object shapes, making it difficult to create composite images from different spectral
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channels. While one lens might capture a leaf as relatively straight, another could
record it as curved. These discrepancies complicated the superimposition of images
from different spectral channels into a single composite image.

• image_1: class_1 – [polygon_1: area, polygon_2: area], class_2 – [polygon_1:
area]

• image_2: class_3 – [polygon_1: area]

The final results obtained take the following form:

• image_1: class_6
• image_2: class_5

To address this issue and fully utilize all spectral channels of the RedEdge-MX cam-
era, we employed a voting classifier composed of 10 individual models. Each model
was trained on images from a specific spectral channel using the HTC algorithm with a
ResNeXt101 backbone, as this configuration consistently provided the best performance.
After training, the predictions from these models were aggregated by plant identifier
(file_id). For each plant, the final class was determined by majority voting. In cases
where there was a tie, the class with the highest average polygon score was selected.
The aggregated predictions yield results in the following format:

• image_1: class_1 – [polygon_1: score, polygon_2: score], class_2 – [polygon_1:
score]

• image_2: class_3 – [polygon_1: score]

The voting classifier aggregates these results and assigns the class with the highest score
to an image. The final results are presented as:

• image_1: class_6
• image_2: class_5

During validation, the markings are aggregated into classes using defined polygons
for each spectral channel. An image may contain multiple polygons for various classes.
To determine a single class per image, we selected the polygon with the largest area.
The initial data structure for each spectral channel is as follows:

The voting classifier predicts the class for each plant based on images taken from dif-
ferent angles by separate cameras. By aggregating predictions from all spectral channels,
we can achieve more robust and accurate classifications, even when individual models
produce inconsistent results due to variations in object appearance.

Figure 5 illustrates the workflow of the voting classifier, from training individual
models on spectral channels to aggregating predictions and selecting the final class.
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Fig. 5. Workflow of the voting classifier: training models on spectral channels, making predictions, and
aggregating results through majority voting.

4. Experimental results

In this chapter, we present the experimental results for BBCH scale classification of
developmental stages. We compare results obtained from RGB data, multispectral data,
and the voting method developed using multispectral data.

4.1. Algorithms results on multispectral data

During the experimental study, we noticed differences in classification performance be-
tween the different algorithms used for the training process of deep neural networks and
between the different spectral channels on which the algorithms were trained.

In Table 3 we present the classification results for the spectral channels recorded
for each of the algorithms tested. The model trained on the data from channel 10
clearly differs in classification efficiency from the models trained on the other spectral
channels. The table presented illustrates the effectiveness of each classification method
on multispectral data.

From the analysis, we conclude that for the HTC algorithm with ResNet101, spectral
channel 07 (red edge 705 (10)) yielded the best results (in the notation of channels
in the optical specifications of cameras and multispectral sensors, in the description,
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Tab. 3. Classification results for each of the spectral channels analysed using individual deep learning
algorithms.

channel accuracy precision
HTC_r101 HTC_r50 HTC_x101 Mask2Former HTC_r101 HTC_r50 HTC_x101 Mask2Former

01 0.486957 0.552174 0.547826 0.539130 0.486508 0.592528 0.582530 0.550819
02 0.568282 0.559471 0.559471 0.555066 0.594116 0.563848 0.586652 0.611719
03 0.548246 0.550661 0.530702 0.508772 0.587350 0.573304 0.570517 0.567900
04 0.567100 0.549784 0.541126 0.510823 0.603094 0.587433 0.563036 0.502541
05 0.575893 0.580357 0.558036 0.531250 0.596516 0.605068 0.578664 0.545954
06 0.547085 0.551570 0.581081 0.520179 0.570063 0.577274 0.591761 0.545100
07 0.582609 0.565217 0.569565 0.495652 0.606866 0.581716 0.593181 0.566532
08 0.538117 0.522321 0.540179 0.486607 0.575040 0.556559 0.572584 0.504101
09 0.551570 0.569507 0.549550 0.524664 0.586433 0.584708 0.561682 0.540334
10 0.219298 0.223684 0.214912 0.232456 0.161993 0.175143 0.162701 0.174677

channel recall F1-score
HTC_r101 HTC_r50 HTC_x101 Mask2Former HTC_r101 HTC_r50 HTC_x101 Mask2Former

01 0.546268 0.608676 0.582942 0.547557 0.482994 0.558260 0.543616 0.506817
02 0.611719 0.619491 0.589024 0.599922 0.563584 0.554428 0.564948 0.543282
03 0.593651 0.591402 0.566799 0.549762 0.552418 0.557723 0.521853 0.509900
04 0.626295 0.600151 0.566362 0.557919 0.566393 0.555305 0.539768 0.494669
05 0.621161 0.630494 0.587758 0.571906 0.585859 0.589184 0.552485 0.523784
06 0.571536 0.585762 0.610729 0.558193 0.546741 0.556209 0.591596 0.521969
07 0.627316 0.587195 0.602076 0.541441 0.587952 0.560104 0.570215 0.474963
08 0.561341 0.553343 0.555533 0.498973 0.542855 0.529349 0.552871 0.476158
09 0.611539 0.596285 0.565288 0.541253 0.557820 0.570818 0.544688 0.527224
10 0.215904 0.228801 0.217906 0.257787 0.175971 0.187777 0.176843 0.185934

Tab. 4. Best classification results for each spectral channel.

Spectral channel Wavelength [nm] Best algorithm Metrics

01 (coastal blue) 444 (28) HTC (ResNet50) accuracy, precision, recall, F1-score
02 (blue) 475 (32) HTC (ResNet101) accuracy, recall

Mask2Former precision
HTC (ResNeXt101) F1-score

03 (green) 531 (14) HTC (ResNet50) accuracy, F1-score
HTC (ResNet101) precision, recall

04 (green) 560 (27) HTC (ResNet101) accuracy, precision, recall, F1-score
05 (red) 650 (16) HTC (ResNet50) accuracy, precision, recall, F1-score
06 (red) 668 (14) HTC (ResNeXt101) accuracy, precision, recall, F1-score

07 (red edge) 705 (10) HTC (ResNet101) accuracy, precision, recall, F1-score
08 (red edge) 717 (12) HTC (ResNet101) precision, recall

HTC (ResNeXt101) accuracy, F1-score
09 (red edge) 740 (18) HTC (ResNet50) accuracy, F1-score

HTC (ResNet101) precision, recall
10 (NIR) 842 (57) Mask2Former accuracy, recall

HTC (ResNet50) precision, F1-score

e.g. 444 (28), the first value (444 nm) refers to the central wavelength, and the value in
parentheses (28 nm) represents the bandwidth; so, in this example, the spectral range
is 430 ± (28/2) nm). With ResNet50, channel 05 (red 650 (16)) performed best, and
with ResNeXt101, channel 06 (red 668 (14)) was optimal. For Mask2Former, channel
02 (blue 475 (32)) provided the best results. Different algorithms thus achieve optimal
performance with different spectral channels. Table 4 summarizes the best-performing
algorithm for each spectral channel.

The classification results for spectral channel 10 (NIR 842 (57)) show a significant
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Tab. 5. Comparison of the classification results across different algorithms on RGB images with those
obtained using multispectral images and voting classifier approach. The analysis uses accuracy,
precision, recall, and F1-score measures.

Model Approach accuracy precision recall F1-score

HTC_r101 voting classifier 0.651466 0.684678 0.686132 0.643477
RGB 0.706667 0.460286 0.496550 0.465737

HTC_r50 voting classifier 0.661238 0.690290 0.699036 0.659793
RGB 0.680000 0.424074 0.404996 0.406152

HTC_x101 voting classifier 0.657980 0.663664 0.676181 0.652508
RGB 0.760000 0.525599 0.580694 0.524339

Mask2Former voting classifier 0.625407 0.615539 0.630647 0.592380
RGB 0.800000 0.596212 0.660516 0.600132

deviation in accuracy compared to other channels. This indicates that classification
using only this spectral channel has the lowest object classification efficiency among the
analyzed bands.

4.2. Algorithms results on RGB data

In addition to the multispectral studies, we conducted experiments with RGB images.
We observed variations in classification performance among different algorithms when
trained on RGB images.

The Mask2Former algorithm achieved the best RGB image classification results in
terms of accuracy, precision, recall, and F1-score, making it the most effective model for
RGB among those studied. However, the HTC algorithm with a ResNeXt101 backbone
ranked second, followed by HTC with a ResNet101 backbone in third place and HTC
with a ResNet50 backbone in fourth place.

4.3. Results obtained in the voting process

Table 5 summarizes the classification accuracy results for all tested algorithms, com-
paring RGB models with those using our voting method based on individual spectral
channels. The evaluation measures used are accuracy, precision, recall, and F1-score.

The results show that the HTC algorithm with a ResNet101 backbone, trained on
RGB data, achieves a higher accuracy measure than the voting classifier based on all
spectral channels. However, for the precision, recall, and F1-score measures, the voting
classifier achieves better results.

For the HTC algorithm with a ResNet50 backbone, the model trained on RGB data
outperforms our voting method based on single spectral channel models in terms of
accuracy. However, the voting method performs better in precision, recall and F1-score
measures.
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Fig. 6. Visualisation comparing the classification results between algorithms trained on RGB images
and those using multispectral images with a voting classifier approach.

The HTC algorithm with a ResNeXt101 backbone, trained on RGB data, achieves
a higher accuracy measure than the voting classifier based on all spectral channels.
However, for the precision, recall, and F1-score measures, the voting classifier achieves
better results.

For the Mask2Former algorithm, the model trained on RGB data outperforms our
voting method based on single spectral channel models in terms of accuracy, recall, and
F1-score. However, the voting method performs better in the precision measure.

In turn, in Figure 6, we present a graphical summary of the comparative data for the
model trained on RGB images and the method using a voting classifier. We used the
F1-score measure for comparison.

For HTC with ResNet101, ResNet50 and ResNeXt101, the voting classifier outper-
forms the RGB-trained model. In contrast, for the Mask2Former algorithm, the RGB-
trained model outperforms the voting classifier.

Key conclusions include that the voting classifier based on single spectral channels
performed better than the RGB classifier. Single-channel models generally show lower
quality compared to the RGB classifier trained on three-channel images; however, the
potential of voting techniques to enhance predictions improved the overall performance.

4.4. Learning curves

In this chapter, we present the learning curves recorded during the training of each model
(the complete set of curves is available in the repository [26]). Below are the curves for
each algorithm, illustrating training performance across different spectral channels.

Figure 7 compares the performance of the HTC_r101 model trained on individual
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Fig. 7. Comparison of the training curves of the HTC_r101 model trained on individual spectral chan-
nels.

Fig. 8. Comparison of the training curves of the HTC_x101 model trained on individual spectral chan-
nels.

spectral channels over 100 epochs. The horizontal axis shows epochs, and the vertical
axis displays object detection performance expressed by the measure bbox_mAP_50.
This measure denotes the Bounding Box Mean Average Precision at IoU 50%. It con-
siders detections as correct if the Intersection over Union (IoU) between the predicted
and ground truth bounding boxes is at least 50%. Channel 10 exhibits the lowest per-
formance, with bbox_mAP_50 values around 0.1 after 20 epochs. In contrast, other
channels show better results, with bbox_mAP_50 values around 0.4 and minor fluctu-
ations. Channel 7 achieves the highest efficiency, with a maximum bbox_mAP_50 of
about 0.47, maintaining the best performance among all individual spectral channels.

Figure 8 presents the learning curves for the HTC_x101 model across spectral chan-
nels. Channel 10 shows the lowest performance, with bbox_mAP_50 around 0.4 initially,
dropping to 0.35 between 40-60 epochs, and stabilizing above 0.3 afterward. Channels
05 and 07 perform best, with very similar results.
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Fig. 9. Comparison of the training curves of the HTC_r50 model trained on individual spectral channels.

Fig. 10. Comparison of the training curves of the Mask2Former model trained on individual spectral
channels.

For the HTC_r50 algorithm (Figure 9), the learning curves are similar to those of
HTC_r101. Channel 10 shows the lowest performance, with bbox_mAP_50 values
around 0.4 after 10 epochs, remaining stable with slight fluctuations up to 100 epochs.
The values for channels 01-09 are more stable after reaching a maximum, indicating their
better performance in detecting objects with the HTC_r50 model.

For the Mask2Former algorithm (Figure 10), the lowest results can also be observed
for channel 10, where bbox_mAP_50 oscillates around 0.125 after the first 20 epochs
and remains at this level until the end of the observation, i.e. the end of 100 epochs.
The remaining channels reach higher bbox_mAP_50 values, but are no longer such a
compact group as in the previous algorithms. Of all the channels, the highest bbox_mAP
values are reached by channel 02.

The results show that different algorithms reach peak bbox_mAP_50 values for vari-
ous spectral channels, with most channels stabilizing after 20 epochs (except HTC_x10,
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Fig. 11. Comparison of the training curves of different models on the dataset from the first spectral
channel.

Fig. 12. Comparison of the training curves of different models on the dataset from the second spectral
channel.

stabilizing after 60 epochs). Channel no. 10 consistently yields the poorest learning
results.

We now examine models trained on individual spectral channels. Figures 11 and 12
compare the performance of four models on datasets from two spectral channels over 100
epochs. Additional graphs for other channels are available in the repository [26]. The
horizontal axis represents epochs, and the vertical axis shows bbox_mAP_50, indicating
detection accuracy.

Figure 11 shows results for spectral channel 01. The Mask2Former model achieves the
highest and most stable bbox_mAP_50 of around 0.4 after 20 epochs. HTC_r101 and
HTC_r50 models also stabilize around 0.4 but perform slightly worse. HTC_x101 starts
strong but declines after 20 epochs, stabilizing around 0.3, indicating lower performance.

Analyzing spectral channel 02 (Figure 12), HTC_r101 and HTC_r50 rapidly increase
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bbox_mAP_50 to around 0.4 and stabilize. Mask2Former also rises to about 0.4 within
20 epochs. HTC_x101 initially increases to 0.4 but then drops to around 0.3. HTC_r101
achieves the highest performance, while HTC_x101 shows the lowest one.

For spectral channel 03 (see the repository [26]), HTC_r101 and HTC_r50 rapidly in-
crease in bbox_mAP_50 during the first 10 epochs, stabilizing around 0.4. Mask2Former
rises swiftly in the first 20 epochs, then stabilizes at about 0.3. HTC_x101 initially in-
creases to 0.4, but then declines and stabilizes around 0.3. The highest performance is
achieved by the HTC_r50 model, while the Mask2Former model performs the worst.

For spectral channel 04 (see the repository [26]), HTC_r101 and HTC_r50 rapidly
increase bbox_mAP_50 to around 0.4 and stabilize. Mask2Former rises to 0.3 within
20 epochs. HTC_x101 also reaches 0.4 initially but declines to around 0.3. HTC_r50
shows the highest performance, while Mask2Former performs the worst.

By analysing the results for spectral channel 05 (see the repository [26]) it can be
discovered that HTC_r101 and HTC_r50 rapidly increase bbox_mAP_50 to around
0.4 and stabilize. Mask2Former also stabilizes at about 0.4 after 20 epochs. HTC_x101
rises to 0.4 initially but declines to around 0.3. HTC_r101 achieves the highest results,
followed by HTC_r50, while HTC_x101 shows the lowest performance.

For spectral channel 06 (see the repository [26]), the HTC_r101 and HTC_r50 algo-
rithms quickly increase bbox_mAP_50 to around 0.4 and then stabilize. Mask2Former
rises swiftly in the first 20 epochs and stabilizes at about 0.3. HTC_x101 reaches 0.38
initially but declines to around 0.3. HTC_r101 achieves the highest results, followed by
HTC_r50, with HTC_x101 performing the worst.

For spectral channel 07 (see the repository [26]), the HTC_r101 and HTC_r50 al-
gorithms quickly increase bbox_mAP_50 to 0.45 and 0.4, respectively, and stabilize.
Mask2Former rises rapidly in the first 20 epochs and stabilizes at around 0.4. HTC_x101
reaches 0.45 initially but declines to 0.3. HTC_r101 performs the best, followed by
HTC_r50, with HTC_x101 showing the lowest results.

For spectral channel 08 (see the repository [26]), the HTC_r101 and HTC_r50 algo-
rithms quickly increase bbox_mAP_50 to around 0.4 and stabilize. Mask2Former also
rises rapidly and stabilizes at about 0.4. HTC_x101 reaches 0.4 initially but declines to
0.3. HTC_r50 performs the best, while HTC_x101 shows the lowest results.

For spectral channel 09 (see the repository [26]), the HTC_r101 and HTC_r50 al-
gorithms show a rapid rise in bbox_mAP_50 to around 0.4, stabilizing at this level.
Mask2Former also reaches about 0.4 after 20 epochs. The HTC_x101 model initially
increases to 0.4 but declines to 0.3. HTC_r50 achieves the highest performance, followed
by HTC_r101 and Mask2Former, with HTC_x101 showing the lowest results.

For spectral channel 10 (see the repository [26]), the HTC_r101 and HTC_r50 algo-
rithms quickly rise in bbox_mAP_50 to about 0.15, stabilizing there. The Mask2Former
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also increases to around 0.125. The HTC_x101 model initially reaches 0.4 but de-
clines to 0.125. HTC_r101 achieves the highest performance, followed by HTC_r50 and
Mask2Former, with HTC_x101 showing the lowest results.

5. Conclusions

We have presented an innovative approach for automating maize growth monitoring
using image analysis and artificial intelligence techniques. Our method employs deep
neural networks to analyze RGB and multispectral images, along with an additional
voting classifier. The goal was to efficiently detect and classify maize developmental
stages based on the BBCH scale, enabling automatic monitoring of plant development
phases and presenting the results on large scale, e.g., in the form of a map.

Our results demonstrate a highly automated method for detecting and classifying
maize developmental stages with plant-level accuracy. Compared to manual methods,
our solution significantly accelerates the classification process through real-time image
analysis on a field robot, allowing for efficient maize growth stage monitoring. While
UAV-based approaches cover larger field areas per image, our method offers greater
precision at the individual plant level. By integrating advanced image analysis and deep
learning algorithms, our solution achieves high automation and accuracy. A literature
review confirms the novelty of our method.

The models in our study were trained on proprietary datasets of labeled maize images
at various BBCH developmental stages (10–19), captured in both RGB and multispectral
spectra. This allowed comprehensive training separately on RGB and each spectral chan-
nel. Furthermore, we evaluated various deep learning architectures to assess detection
and classification performance across different training datasets and algorithms.

To improve the performance of the model we employed pre-trained backbones such
as ResNeXt-101, ResNet-101, and ResNet-50, initialized with ImageNet weights. Fine-
tuning these models on our labeled datasets leveraged the rich feature representations
learned from large-scale datasets, improving accuracy and robustness. Additionally,
we applied data augmentation techniques such as resizing, random horizontal flipping,
normalization, padding, and mask downscaling, further enhancing model performance.

Single-channel models generally performed worse than RGB models due to their
limited spectral information. However, the voting classifier improved prediction quality.

Comparing the results of different algorithms and training sets, we observed that
HTC_r50, HTC_r101, and HTC_x101 achieved higher precision, recall, and F1-score
when trained on single spectral channels with a voting classifier than on RGB data. For
Mask2Former, precision was slightly higher with the voting classifier, while accuracy,
recall, and F1-score were better for RGB data.

For RGB images, the best overall performance across all measures was achieved by
Mask2Former, followed by HTC_x101, HTC_r101, and HTC_r50. For single spectral
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channels with the voting classifier, HTC_r50 achieved the highest accuracy and F1-score,
followed by HTC_x101, HTC_r101, and Mask2Former. Regarding precision and recall,
HTC_r50 performed best, followed by HTC_r101, HTC_x101, and Mask2Former.

According to the accuracy measure, the best performance was achieved by the model
Mask2Former trained on RGB data, while in terms of precision, recall, and F1-score,
HTC_r50 trained on individual spectral channels with a voting classifier performed best.

Another key finding was the identification of optimal spectral channels for maize
growth stage classification. For HTC_r101, channel 07 yielded the best results. For
HTC_x101, channels 05 and 07 were optimal. HTC_r50 performed best on channel 05,
while Mask2Former achieved the best results on channel 02.

Our solution enables precise plant condition tracking, supporting decision-making in
precision agriculture. Moreover, our method can be adapted to other crops by developing
appropriate datasets and retraining deep neural networks.

6. Discussion of limitations

A multispectral camera with multiple lenses captures spectral channels from different
angles, causing variability in plant shapes across the channels. To mitigate this, a single-
lens system should be used. We explored this approach in our other research.

The models were trained on proprietary datasets with labeled maize images at var-
ious growth stages. The limited diversity of the dataset may affect the models’ ability
to generalize to real-world field conditions. Expanding the dataset with images from
different locations and conditions can improve model performance and robustness.

Our solution was developed specifically for monitoring the developmental stages of
maize. Adapting the method to other crops requires creating new datasets and retraining
the models. However, validating the effectiveness of the developed solution for maize
offers promising prospects for successful application to other crops as well.
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