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Abstract Pupillometry measures pupil size, and several open-source algorithms are available to analyse
pupillometry data. However, only a few studies compared these algorithms’ accuracy and computational
resources. This study aims to compare the accuracy of computer vision-based algorithms (Swirski,
Starburst, PuRe, ElSe, ExCuSe algorithms) and the machine learning algorithm, DeepLabCut, to the
double-blinded human examiners (gold-standard). Training of DeepLabCut with different architectures
and a variable number of markers (2-9 markers) was done on an open-source dataset. The duration of
training was statistically longer for the ResNet152 model compared to the MobileNet model. The pupil
diameters in computer vision-based software such as PuRe, Starburst, and Swirski were statistically
different from human measurements. MobileNet 2 and 3 marker models were the closest to the human
measurements. In conclusion, this work highlights the efficiency of lower marker models based on
MobileNet architecture in DeepLabCut, which consumes fewer computational resources and is more
accurate.
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1. Introduction

Pupillometry measures pupil size changes in response to external stimuli or internal
states [8, 33]. Pupil size changes with bright light, cognitive load, attention, memory,
internal state, emotional and neuromodulatory changes [15,16,19]. Pupillometry is used
both clinically and in basic science research to evaluate neurological function and in the
diagnosis of attentional disorders [10, 30]. Neuroscience research in both animal models
and humans has identified that an increase in activity at locus coeruleus and release of
norepinephrine are causal in pupil diameter changes. Some researchers even use pupil
diameter as a surrogate for locus coeruleus activity [6, 20].

Most methods of pupillometry use conventional image processing-based techniques
like segmentation, edge detection, and ellipse fitting with thresholding followed by con-
tour fitting. Recent studies, however, have employed sophisticated machine learning-
based algorithms such as convolutional neural networks or generative adversarial net-
works, as these machine learning algorithms give superior accuracy values. [2,4,14,21,28].
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Some studies have analysed the efficacy of these analytical techniques to determine the
computational demand as well [21]. Many open-source pupillometry software are avail-
able that use various mechanisms to analyse pupil diameter, such as PupilEXT, Star-
burst, ExCuSe, ElSe, PuRe, and PuReST [7,35]. A recent study validated this software
and found that the ExCuSe, ElSe, PuReST, and PuRe algorithms attained adequate
accuracy for pupil diameter measurement [35]. The Starburst algorithm detected many
false peaks and produced highly variable results. The Swirski algorithm failed to detect
the pupil in the 630nm spectrum.

Among machine learning applications, both supervised and unsupervised learning
approaches are present [13]. A recent experiment using a deep learning algorithm called
DeepLabCut garnered interest due to its applicability in a variety of experimental vari-
ables, broad user base with active software development, and ease of use due to its
graphical user interface based on Python [3]. Here, the experimenter manually places
the markers on the pupil diameter. It employs a transfer learning approach and requires
less data (30 frames) compared to other approaches requiring thousands of frames for
training, making it an attractive option for pupillometry data analyses [24]. DeepLabCut
was initially developed as a pose estimation software in biology/behavioral/neuroscience
research. It has also been used to detect animal behaviour and movement [18]. It has
been applied to pupillometry research only recently [24]. Privitera et al. developed a
low-cost (approximately 300 euros) Raspberry Pi setup and pupillometry software to
analyse pupillometry data. They trained a machine learning model (Deep LabCut with
11 markers) using ResNet to quantify pupil diameter utilizing the DeepLabCut library.
However, the reliability of DeepLabCut compared to other open-source software, the
impact of the number of markers on the accuracy of the measurements, and the usage
of computational resources are not known. Hence, this study is designed to address the
following issues.
A. To assess the computational efficiency of DeepLabCut architectures and models.
B. To evaluate the accuracy of the DeepLabCut models (ResNet, and MobileNet archi-

tecture-based models with various markers ranging from 2-9 markers) in comparison
to other open-source pupillometry software and human examiners measuring the pupil
(considered as the gold-standard).

C. To benchmark current open-source algorithms against the gold-standard.

2. Methodology

2.1. Experimental design

We have used data from an open-source dataset published in a previous publication by
Privitera et al. [24]. In brief, mice on C57 background (n = 17) of age 2-4 months
were head restrained, and changes in pupil diameter were recorded using a Raspberry Pi

Machine GRAPHICS & VISION 33(2):77–90, 2024. DOI: 10.22630/MGV.2024.33.2.4 .

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2024.33.2.4


A. Badkul, S. Mishra, S. P. Kommajosyula 79

NoIR V2 camera under dark conditions with IR and UV lights. In the current manuscript,
the DeepLabCut models were trained using 30 data frames and tested them on 20 dif-
ferent frames snipped randomly from different videos made by Privitera et al. Random
test frames were selected to avoid temporal bias and capture different phases of pupil
dilations. However, the same test frames were used to test all the models evaluated in
this study. In a previous study employing DeepLabCut, only 30 frames or 150 frames of
data were used [22, 24]. During the training phase, the computational resources being
consumed were measured using the weights and biases tool (WandB [32]). After train-
ing DeepLabCut models based on various deep convolutional neural architectures like
ResNet 50, ResNet 152, and MobileNetV2. Later, compared the pupil measurements of
these DeepLabCut models to open-source algorithms as well as human examiner mea-
surements of pupil diameter for accuracy check. The distance between two points on
the pupil was measured to calculate the diameter, followed by inference of radii, and
an average was taken in cases where multiple markers were used. Human examiners
measured the pupil diameter in the same frames used for testing DeepLabCut and other
open-source software using ImageJ version 1.53 (a National Institute of Health algo-
rithm). The distance was measured in pixels and converted to millimeters using the
ground-truth values derived by Privitera et al.

For measurement purposes, the data were measured in pixels and converted to mm.
The distance between the two tracked calibration points in pixels was calculated using
the formula:

d px =
√(

x px
Pc1

− x px
Pc2

)2 +
(
y px

Pc1
− y px

Pc2

)2
, (1)

where x px
Pci

, y px
Pci

, i = 1, 2, are x and y coordinates of the calibration points Pc1, Pc2,
respectively, in pixels. Privitera et al. advise using median values for these calculations.
The absolute dimension of the calibration object in mm (d mm) has to be divided by d px

to obtain the pixel-to-mm conversion ratio:

ratio mm/px = d mm

d px , (2)

and x and y coordinates of all tracked points Pj at each frame are multiplied by the
conversion ratio, resulting in a metric description of the tracked points:

x mm
Pj

= x px
Pj

× ratio mm/px ,

y mm
Pj

= y px
Pj

× ratio mm/px . (3)

All the data measured in pixels by human examiners, as well as the algorithms, were
individually converted to millimeters using the above formulae.
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2.2. DeepLabCut and deep convolutional neural networks (DCNNs)

DeepLabCut, a Python-based framework, was used to create the DCNN models. A vari-
able number of markers from 2 to 9 were used to generate the training dataset for the
DCNN models. The principle of this method is based on the concept of transfer learning,
that is, training pre-trained models for a different task. The following models were used
here: ResNet50, ResNet152, and MobileNet V2 [9, 12, 26]. After training, the DCNN
models render the markers and output the location of each marker on each frame, from
which the pupil radius is calculated. The hyperparameters used are mentioned below.
Markers Markers were used on the pupil to train the DCNN models, ranging from 2

markers to 9 markers. An additional two markers on the ends of the eyes were used
to establish the ground truth. The reason for the usage of different types of labeling
is to improve the accuracy while calculating the pupil radii.

Iterations The number of training iterations is 30,000.
Learning rate scheduler The learning rate used in training approach follows a multi-

step schedule. The rate is adjusted at specific iterations, a strategy that enhances the
training process’s efficacy and performance.The learning rates were 0.005 and 0.020,
while the respective iterations were 10000 and 30000.

Batch size The number of samples the model processes before each update, known as
the batch size, is set to 1. Learning rate decay gradually diminishes the learning rate,
preventing the model from overshooting the loss function’s minima. In this case, for
every 30,000 iterations, the decay is utilized.

Loss Lastly, the loss function used in this model is the Huber loss function, which
integrates the properties of mean squared error loss and mean absolute error loss.

2.3. Other open-source software

Most prominent open-source softwares, such as Swirski, Starburst, PuRe, ElSe, and
ExCuSe were used to compare their accuracy to that of the DeepLabCut models. These
algorithms use template matching, edge detection, thresholding, or best-fit approaches.
Swirski This algorithm detects the light reflection and uses template matching followed

by thresholding and edge detection techniques to estimate the size of the pupil. Read-
ers are directed to the manuscript by Zandi et al. for a more detailed review [35]. The
parameters used in this study for Swirski are mentioned here: Minimum radius: 20;
Maximum radius: 140; Canny blur: 1.6; Canny threshold 1: 15; Canny threshold 2:
45; Perc inliners: 20; Inliner iterations: 2; Image Aware RANSAC: Yes.

Starburst This algorithm first detects the edges using Canny edge detection, followed
by interpolation of the center from the detected edges. Readers are directed to the
manuscript by Zandi et al. for a more detailed review [35]. The parameters used in
this study for Starburst are mentioned here: Edge threshold: 21; Number of rays:
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32; Minimum feature candidates: 7; CR Ratio (to image height): 10; CR window
(px): 433.

PuRe This algorithm fits a model to detect pupil diameter. Readers are directed to
the manuscript by Zandi et al. for a more detailed review [35]. The parameters used
in this study for PuRe are mentioned here: Image width (downscaling): 320; Image
height (downscaling): 240; Mean Canthi distance: 27.6; Maximum pupil size: 8;
Minimum pupil size: 2; Minimum radius: 50.

ElSe This algorithm uses edge detection and thresholding techniques followed by ellipse
fitting to identify the pupil diameter. Readers are directed to the manuscript by
Zandi et al. for a more detailed review [35]. The parameters used in this study for
ElSe are mentioned here: Minimum area (%): 0.005; Maximum area(%): 0.2.

ExCuSe The algorithm uses edge detection followed by mathematical estimations to
calculate the pupil diameter. Readers are directed to the manuscript by Zandi et al.
for a more detailed review [35]. The parameters used in this study for ExCuSe are
mentioned here: Ellipse Goodness threshold: 15; Maximum radius: 50.

Non-deep learning algorithms are based on mathematical approaches and don’t need
any training. Testing time has been reported to be under 100 milliseconds per frame
previously, and is similar to our anecdotal observations. Since comparing the accuracy
of the test was the prime objective, testing times were not compared and this is a caveat
that could be addressed in the future [27, 35]. In the current study, a standard PC
was used (RAM: 8 GB DDR4-3200 MHz; CPU type AMD Ryzen™ 5 5600H.Graphics
card: NVIDIA GeForce RTX 3060, Laptop GPU with 6 GB GDDR6 VRAM, storage:
SSD/HD of 512 GB M.2 NVMe SSD).
ImageJ Examiners used ImageJ to measure the pupil diameter. Using line tool, and

functions: analyse and measure, the pupil diameters were measured.
WandB WandB has been a powerful tool in logging the hyper-parameters involved

in training a model over a dataset and storing the visualizations of a training run,
analysing the different metrics that come into play while developing a model through
training mainly when a graphics processing unit (GPU) is involved. This gives the
developer an overall and comprehensive view of the process in play during training and
also saves the training behaviour of GPU: power usage, memory allocated, time spent
accessing memory, temperature and utilization for future references and comparisons.
Training of DeepLabCut models was performed in Google Collab and recorded the
GPU parameters using WandB as in the literature [1].

Statistical analyses A comparison of the accuracy of the detection of pupil diameter
by various algorithms and human experimenters was done. A repeated measures
ANOVA test followed by post-hoc Bonferroni correction for comparisons between
the groups was used. T-tests and ANOVA were used to compare the computational
resource usage. Data are represented with mean and standard error of the mean
(SEM) values across this manuscript.
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a b c
Fig. 1. Mouse pupils with overlaid markers for different architectures in an anesthetized and head-fixed

mouse. (a) Pupil with two markers at both ends of the eye. (b) Pupil with three markers.
(c) Pupil with nine markers placed around the eye.

3. Results

The training-related use of computational resources by these DCNN models in the
DeepLabCut module was assessed. Firstly, one of the experimenters marked specific
regions in the image as the borders of the pupils using a variable number of markers
(Fig. 1).

The GPU use times, as a measure of computational resource usage, for ResNet50,
ResNet152, and MobileNetV2 models were measured during training in DeepLabCut
using WandB. In most cases, the GPU usage was within the range 80-95%; hence, this
parameter was not statistically validated. There is a significant difference in GPU usage
durations during training between all the network architectures (F -statistic = 846; p <
0.001). The post-hoc Bonferroni test showcased significant differences between all three
network architectures in the usage of GPU resources during training. The GPU power
usage duration was longer in ResNet152 models (range = ⟨147.5, 153.5⟩ min, mean =
151.3 min) vs. ResNet50 models (range = ⟨61.5, 78⟩ min, mean = 74.4 min). In com-
parison, MobileNet models were using the GPU resources for the least amount of time
(range = ⟨47, 70.5⟩ min, mean = 59.7 min) (Fig. 2).

These results show that MobileNet models, regardless of the number of markers, con-
sume GPU resources for lesser duration compared to other neural network architectures.
An individual analysis of these different network architectures across different marker
models showed similar GPU consumption in ResNet152 (147.5, 151, 150, 151.5, 152.5,
151, 153.5 and 153.5 min) and ResNet50 (61.5, 74.5, 76, 77, 75.5, 77, 78 and 75.5 min)
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a b

c d
Fig. 2. Comparison of ResNet152, ResNet50 and MobileNet on the duration of use of graphics processing

unit (GPU) during training in the DeepLabCut. (a) Three models together. MobileNet models
utilize the least time, whereas the ResNet152 models the most and ResNet50 models are in
between. (b) ResNet50 models showcase a similarity in GPU usage time across all models (2–9
markers). (c) ResNet152 models showcase a similarity in GPU usage time across all models (2–9
markers). (d) MobileNet models showcase a significant difference in GPU usage time for lower
marker models (2–5 markers) vs. higher marker models (6–9 markers). Blue arrows with stars
indicate the differences.

for different marker models (2-9 markers) (Fig. 2b and c). However, a decrease in GPU
usage duration was noted for lower marker models (2, 3, 4 and 5: 52.5, 53.5, 47 and
55 min) vs. higher marker models (6, 7, 8, and 9: 67, 68, 70.5 and 64 min) in MobileNet
architecture (Fig. 2d). The differences in GPU usage times were significantly different in
MobileNet lower and higher models (Mean±SEM values, lower vs. higher: 52±1.74 min
vs. 67.38±1.34 min, t-statistic = 5.12, df = 3, p < 0.05; df – number of degrees of free-
dom). This suggests that lower marker models of MobileNet architecture consume the
least computational resources of all the DeepLabCut models.

After training the models, the accuracy of these models was tested on a set of 20
images from different mice (Fig. 3). As the gold standard for comparisons the human
examiners’ measurements of pupils were considered. The two examiners were double-
blinded and weren’t involved in any part of the experiments. Examiners used ImageJ
software, and the values determined by the examiners were averaged to arrive at a
single value and to enable statistical comparisons. The inter-examiner variability in
measurements was less than 0.7% across all the frames. The mean value of pupil diameter
found by the human examiners was 1.01 mm.

In addition to DeepLabCut models, the PuRe, Starburst, Swirski, ElSe, and ExCuSe
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Fig. 3. Comparison of all DeepLabCut architecture models and computer vision-based models to the
human examiner measures of pupil diameter. Three DeepLabCut-based architectures, including
ResNet50, ResNet152, and MobileNet, were compared to computer vision-based models and
human measurements. This includes: ResNet50 for 2–9 markers (R50 2M to R50 9M), ResNet152
for 2–9 markers (R152 2M to R152 9M), MobileNet for 2–9 markers (MNet 2M to MNet 9M), and
human examiners (Human). Blue arrows with stars indicate significant differences between groups
MobileNet vs. ResNet50; ResNet 50 vs. ResNet152 and lower marker models (2-5) vs. higher
marker models (6-9) of MobileNet.

were also tested to compare these models’ performance. The results of these models were
significantly different from the human measurements of the pupil diameter (p < 0.001,
Bonferroni post-hoc test, repeated measures ANOVA).

The repeated measures ANOVA showcased a significant difference between all the
models (F -value = 34.857, p < 0.001). Post-hoc tests using Bonferroni corrections
were performed for individual comparisons. All the DCNN-trained models were non-
significantly different from the pupil diameter values measured by examiners. However,
there was a significant difference in the pupil diameter measured using open-source algo-
rithms such as PuRE, Starburst, and Swirski in comparison to examiners (Mean±SEM
values: 2.104±0.17, 1.599±0.232, 2.987±0.185 vs. 1.01±0.1, p < 0.001, repeated mea-
sures ANOVA followed by post-hoc Bonferroni test). ExCuSe and ElSe were not signif-
icantly different in comparison to human examiners (Mean±SEM values: 0.805±0.141,
1.165±0.169 vs. 1.01±0.1). However, the mean values of ExCuSe and ElSe compared to
the mean of examiners vary by 20.3% and 15.3%. All the machine learning models were
non-significantly different from the examiner’s measures. Among all the machine learn-
ing models, two marker models of ResNet50 (0.983±0.099), ResNet152 (0.964±0.098),
as well as the MobileNet model (0.99±0.102), showcased the least variance from the
examiners’ mean pupil diameter (1.01±0.1) and their means varied by 2.6%, 4.5%, and
1.98%, respectively, from the mean measurement of examiners. Three marker models of
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all architectures followed the two marker models closely (Mean±SEM values: ResNet152
– 3 marker: 0.966±0.099; ResNet50 – 3 marker: 0.961±0.097; MobileNet – 3 marker:
0.973±0.104). The 2 and 3 marker models were more accurate in detecting the pupil
diameter than models with a higher number of markers.

The measurements of memory consumption made with WandB indicated that the
DeepLabCut models, MobileNet models, specifically the lower marker models from 2 to
5 markers, consume less memory resources than other models.

4. Discussion

The data showcased that among the DeepLabCut models, MobileNet models, specifi-
cally the lower marker models from 2 to 5 markers, consume less memory resources.
Mainly, the accuracy of these models were compared to open-source pupil measurement
software and human observers. The accuracy of the MobileNet 2 marker model is shown
to be closest to that of human observers. All open-source pupillometry software tested
here has either overvalued or undervalued the pupil diameter compared to human ex-
perimenters. ElSe and ExCuSe were the closest in terms of performance as compared to
human observers. DeepLabCut toolbox has been used mostly in animal pose estimation,
and only recently has it been used to analyse pupil data [18, 24]. Results show that the
error in pupil diameter increases with the increase in the number of markers across all
three network architectures in the DeepLabCut. This error could be due to the intrin-
sic nature of deep learning models, where a balance between the number of markers (a
surrogate for the learnable parameters), the use of definite architectures (a surrogate for
the complexity of the models), and the number of frames used in training determine the
learning efficiency and prevent over/underfitting. Since the amount of training data was
the same in experiments for any architecture and number of markers (2 – 9), this could
have impacted the model’s ability to learn and led to over/underfitting. These may
cause a decrease in the performance of models using a higher number of markers [11].
There is a difference in the amounts of parameters used by ResNet 50 (23.5 million) vs.
ResNet 152 (58.3 million) vs. MobileNetV2 (3.4 million). The lower number of parame-
ters in MobileNetV2 decreases the training duration/computational resources compared
to other deep learning models. The depthwise convolutions with fewer parameters in Mo-
bileNetV2 increase efficiency and decrease computational costs [17, 26]. These findings
suggest that while larger models (e.g., ResNet-152) offer a theoretical advantage in com-
plex tasks due to their higher capacity and can handle vanishing gradient issues. While,
the simpler MobileNetV2 architecture performed equally well for this specific task with
much lower computational demand. This makes MobileNetV2 the most efficient choice
for real-time pupillometry or scenarios where hardware resources are limited without a
significant sacrifice in accuracy [29].

It is difficult to compare the mathematical superiority of DeepLabCut with other
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techniques because each technique uses different mathematical approaches and principles.
However, here is a comparison of some key features of DeepLabCut that make it stand
out from the other techniques.
Deep learning Learning complex patterns and features from input data is common in

DeepLabCut and other deep learning techniques. These traits increase the adaptabil-
ity of DeepLabCut to different lighting conditions, pupil sizes, and head positions.
Thus DeepLabCut is more robust and accurate than traditional computer vision al-
gorithms.

Flexibility DeepLabCut provides flexibility and automatically extracts features that are
unlike traditional computer vision algorithms, which often have fixed and predefined
features.

Small training data DeepLabCut requires only a small amount of data for training as
opposed to other machine learning algorithms, and it can also perform with better
accuracy and robustness. This is because DeepLabCut can learn from a diverse set
of examples and generalize to new conditions.

Real-time processing DeepLabCut can process images in real-time on a variety of
platforms, making it suitable for applications that require accurate pupil detec-
tion [31].

Model architecture DeepLabCut models can be designed and optimized for specific
tasks and data types. This allows for better performance and generalization compared
to traditional computer vision algorithms, which often use generic and fixed models.

Adaptability DeepLabCut models can be re-trained and fine-tuned for new datasets
or applications, making them adaptable to changing requirements and conditions.
Open source software tools tested here are based on traditional computer vision tech-

niques such as template matching, thresholding, edge detection, and curve fitting. The
pros and cons of using simple computer vision and deep learning techniques are detailed
in the review by O’Mahony et al. [23]. Briefly, there are several advantages to using
deep learning models, such as adaptability to lighting, movement artifacts, using trans-
fer learning approach to train using fewer data points where less data is available, using
lightweight architectures such as MobileNet could enable real-time calculations and mak-
ing algorithms scalable/transferable between applications. Some disadvantages to deep
learning models include high computational costs, long training times, inefficient real-
time processing in some architectures, and overfitting in some architectures that require
careful tuning of hyperparameters. Recently, a web application using novel convolutional
neural networks and AdaBelief optimizer was launched, where the user needs to upload
data on the website only and will be given the results [25]. This application was based
on newer algorithms such as U-Net and achieved accuracy rates above 70-80% [5, 34].
However, the algorithm used a semantic segmentation method that takes into consider-
ation the grayscale values to segment and falls short if the grayscale values are not very
different [25].
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In conclusion, results show that DeepLabCut, based on MobileNet architecture with
a lower number of markers, consumes fewer computational resources during training.
Also, the same DeepLabCut architecture with a lower number of markers (2 markers)
is more accurate and closer to the values measured by humans than other architectures.
This study establishes that with the least amount of training, which spans only an hour,
using only a few frames, DeepLabCut can outperform current open-source software and
its results are close to the values achieved by a human examiner.
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