
Vol. 27, No. 1/4, 2018

Machine
GRAPHICS &VISION

International Journal

Published by
The Faculty of Applied Informatics and Mathematics – WZIM

Warsaw University of Life Sciences – SGGW

Nowoursynowska 159, 02-776 Warsaw, Poland

in cooperation with

The Association for Image Processing, Poland – TPO

Interpreted Graphs and ETPR(k) Graph Grammar Parsing
for Syntactic Pattern Recognition

Mariusz Flasiński
IT Systems Department, Jagiellonian University

ul. St. Lojasiewicza 4, 30-384 Cracow, Poland

Abstract. Further results of research into graph grammar parsing for syntactic pattern recognition

(Pattern Recognit. 21:623–629, 1988; 23:765–774, 1990; 24:1223–1224, 1991; 26:1–16, 1993; 43:249–2264,

2010; Comput. Vision Graph. Image Process. 47:1–21, 1989; Fundam. Inform. 80:379–413, 2007;

Theoret. Comp. Sci. 201:189–231, 1998) are presented in the paper. The notion of interpreted graphs

based on Tarski’s model theory is introduced. The bottom-up parsing algorithm for ETPR(k) graph

grammars is defined.

Key words: syntactic pattern recognition, graph grammar, parsing, interpreted graph, model

theory

1. Introduction

Syntactic pattern recognition consists in representing patterns with string, tree or graph
structures, defining generative grammars for sets of such structures, and using cor-
responding automata/syntax analyzers for classifying unknown structural patterns [1,
2, 3, 4]. Graph grammars are the strongest formalism generating structural patterns
and they are used in machine graphics and vision for this purpose for more than 40
years [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Although the extensive research into parsing of graph languages for syntactic pattern
recognition has been carried out, only a few syntax analyzers for graph-based patterns
have been developed. The efficient parser for expansive graph grammars was defined by
Fu and Shi in 1983 [20]. In 1990 parsing algorithms for plex grammars were constructed
by Bunke and Haller [21], and Peng, Yamamoto and Aoki [22]. Then, syntax analyzers for
relational grammars were proposed by: Wittenburg, Weitzman and Talley in 1991 [23],
and Ferruci, Tortora, Tucci and Vitiello in 1994 [24]. The parsing algorithm for context-
sensitive layered grammars was presented by Rekers and Schürr in [25]. The parsing
method for reserved graph grammars was defined by Zhang, Zhang and Cao in 2001 [26].

Till the first half of 1990s three efficient parsing algorithms, O(n2), were defined
for subclasses of classical Node Label Controlled (NLC) graph grammars introduced
in [27]. Firstly, the syntax analyzer for the regular ETL(1) subclass of edNLC lan-
guages was proposed in [28, 29], then its error-correcting extension was defined [30, 31],
and finally the parser for the context-free ETPL(k) subclass of edNLC languages was

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

4 Interpreted graphs and ETPR(k) graph grammar parsing. . .

constructed [32]. Moreover, formal power properties of ETPL(k) graph languages were
characterized in [33] and the inference algorithm for these languages was defined [34]. The
ETPL(k) parser was successfully used in a variety of practical applications like: scene
analysis in robotics [28], software allocation in distributed systems [35], CAD/CAM
integration [36, 37], reasoning in real-time expert system [38], mesh refinement (finite
element method, FEM) in CAE system [39], reasoning with semantic networks in AI
systems [40], sign language recognition [41, 42].

The successful use of the ETPL(k) model in aforementioned applications results,
among others, from the linear ordering of graphs representing visual objects, compo-
nents of networks, etc. In turn, the effective definition of this ordering is the result
of constructing the graphs on the basis of semantic features of represented phenom-
ena. Formulating general preconditions allowing one to construct such graphs, called
here interpreted graphs is the first goal of the paper. The complete formalization of
the bottom-up parsable version of the deterministic subclass of edNLC graph gram-
mars analogous to ETPL(k) grammars1 and presenting the ETPR(k) parsing algorithm
analogous to the one introduced in [32] is the second goal of the paper.

Definitions relating to edNLC graph grammars are presented in Section 2. Notions
of interpreted graphs and (reversely) indexed edge-unambiguous graphs that allow us
to introduce linear ordering on graphs used for representing patterns are included in
Section 3. Definitions of bottom-up parsable ETPR(k) graph grammars are contained
in Section 4, whereas in Section 5 the ETPR(k) parsing algorithm is presented. The
concluding remarks are included in the last section.

2. Preliminaries

In this section we present basic definitions of: EDG graph, edNLC graph grammar and
edNLC graph language [27].

Definition 2.1. A directed node- and edge-labelled graph, EDG graph, over Σ and
Γ is a quintuple

H = (V,E,Σ,Γ, ϕ) ,where

V is a finite, non-empty set of nodes,
Σ is a finite, non-empty set of node labels,
Γ is a finite, non-empty set of edge labels,
E is a set of edges of the form (v, λ, w), where v, w ∈ V, λ ∈ Γ,
ϕ : V −→ Σ is a node-labelling function.

The family of all the EDG graphs over Σ and Γ is denoted by EDGΣ,Γ. The compo-
nents V,E, ϕ of a graph H are sometimes denoted with VH , EH , ϕH .

1The preliminary formalization was presented in [37].

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

M. Flasiński 5

Let A = (VA, EA,Σ,Γ, ϕA), B = (VB , EB ,Σ,Γ, ϕB) and C = (VC , EC ,Σ, Γ, ϕC) be
EDG graphs. An isomorphism from A onto B is a bijective function h from VA onto VB

such that

ϕB ◦ h = ϕA and EB = {(h(v), λ, h(w)) : (v, λ, w) ∈ EA} .

We say that A is isomorphic to B, and denote it with A
isom
= B.

A graph C is a (full) subgraph of B iff VC ⊆ VB , EC = {(v, λ, w) ∈ EB : v, w ∈ VC} and
ϕC is the restriction to VC of ϕB .

Definition 2.2. An edge-labelled directed Node Label Controlled, edNLC , graph
grammar is a quintuple

G = (Σ,∆,Γ, P, Z),where

Σ is a finite, non-empty set of node labels,
∆ ⊆ Σ is a set of terminal node labels,
Γ is a finite, non-empty set of edge labels,
P is a finite set of productions of the form (l,D,C), in which
l ∈ Σ\∆, D ∈ EDGΣ,Γ, C : Γ× {in, out} −→ 2Σ×Σ×Γ×{in,out} is the embedding transfor-
mation,
Z ∈ EDGΣ,Γ is the starting graph called the axiom.

Definition 2.3. Let G = (Σ,∆,Γ, P, Z) be an edNLC graph grammar.

1. Let H,H ∈ EDGΣ,Γ. Then H directly derives H in G, denoted by H =⇒
G

H, if there
exists a node v ∈ VH and a production (l,D,C) in P such that the following holds.

(a) l = ϕH(v).

(b) There exists an isomorphism from H onto the graph X in EDGΣ,Γ constructed as
follows. Let D be a graph isomorphic to D such that VH ∩ VD = ∅ and let h be an
isomorphism from D onto D. Then

X = (VX , EX ,Σ,Γ, ϕX) ,

where

VX = (VH \ {v}) ∪ VD ,

ϕX(y) =

{
ϕH(y) if y ∈ VH \ {v} ,
ϕD(y) if y ∈ VD ,

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

6 Interpreted graphs and ETPR(k) graph grammar parsing. . .

EX = (EH \ {(n, γ,m) : n = v or m = v}) ∪ ED ∪
{ (n, γ,m) : n ∈ VD ,m ∈ VX\D and there exists an edge (m,λ, v) ∈ EH

such that(ϕX(n), ϕX(m), γ, out) ∈ C(λ, in) } ∪
{ (m, γ, n) : n ∈ VD ,m ∈ VX\D and there exists an edge (m,λ, v) ∈ EH

such that(ϕX(n), ϕX(m), γ, in) ∈ C(λ, in) } ∪
{ (n, γ,m) : n ∈ VD ,m ∈ VX\D and there exists an edge (v, λ,m) ∈ EH

such that(ϕX(n), ϕX(m), γ, out) ∈ C(λ, out) } ∪
{ (m, γ, n) : n ∈ VD ,m ∈ VX\D and there exists an edge (v, λ,m) ∈ EH

such that(ϕX(n), ϕX(m), γ, in) ∈ C(λ, out) } .

2. By *=⇒
G

we denote the transitive and reflexive closure of =⇒
G

.

3. The language of G, denoted L(G), is the set

L(G) = {H : Z *=⇒
G

H and H ∈ EDG∆,Γ} .

An example of a derivation step is shown in Fig. 1. The graph h which will be
transformed is shown in Fig. 1a. The left-hand side l = A and the right-hand side D of
a production are shown in Fig. 1b. Let us assume that the embedding transformation is
defined in the following way.

(i) C(p, in) = {(D,B, v, out)} ,

(ii) C(v, out) = {(b, a, v, out)} .

The derivation step is performed in two stages. Firstly, the node labelled with A of
the graph h is removed and the graph of the right-hand side D is placed instead of this
node. The transformed graph after removing the node is called the rest graph. During
the second stage the embedding transformation is used in order to connect certain nodes
of the graph D with the rest graph. The item 2 is interpreted in the following way.

1. Each edge labelled with p and coming in the node corresponding to the left-hand side
of a production, i.e. A, should be replaced by

2. the edge:

(a) connecting the node of the graph of the right-hand side of the production and
labelled with D with the node of the rest graph and labelled with B,

(b) labelled with v,

(c) and going out from the node D.

So, the item 2 generates the edge of the graph h, shown in Fig. 1c, which is labelled
with v and connects nodes labelled with D and B on the basis of the edge of the graph
h labelled with p and connecting nodes labelled with A and B. Let us notice that the
application of the item 2 preserves the edge labelled with v of the graph h.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

M. Flasiński 7

3. Interpreted graphs and indexed edge-unambiguous graphs

As it has been discussed in [33], there are two main reasons of difficulties with construct-
ing efficient parsing algorithms for graph languages (comparing with such algorithms for
string and tree languages): the lack of ordering of graph structure and the complexity
of embedding transformation. In this section we consider the first problem.

Let is notice that the main idea of any syntax analysis algorithm consists in repet-
itive tearing off succeeding subphrases/substructures (handles) from an analyzed sen-
tence/structure and matching them against phrases/structures which are defined on the
basis of right-hand sides of productions. In case of a graph structure it means look-
ing for a subgraph (a handle) which is isomorphic to a given graph, i.e. resolving the
subgraph isomorphism problem known to be NP-complete. To resolve this problem we
have introduced the subclass of EDG graphs called indexed edge-unambiguous graphs,
IE graphs [28, 33] in which the linear order has been defined. In spite of the fact that

h =

B

a

v

p

y

A

v

C

B

D a

b
v u

s

t

y

h =

a)

b)

c)

l = A

C

D

b

u

s

t
= D

Fig. 1. An example of a derivation step in an edNLC graph grammar.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

8 Interpreted graphs and ETPR(k) graph grammar parsing. . .

formal restrictions have been imposed on the class of IE graphs, it has turned out that
they do not limit its descriptive power in practice. The IE graphs have been used as
a descriptive formalism for representing: combinations of objects of scenes analyzed by
industrial robots [28], configurations of hardware/software components analyzed by dis-
tributed software allocators [35], structures consisting of geometrical/topological features
of machined parts in CAD/CAM integration systems [36, 37], frames in real-time expert
systems [38], grids analyzed with FEA methods in CAE systems [39], semantic networks
in AI systems [40] hand postures analyzed by sign language recognition systems [41, 42].

Although specific preconditions which have to be fulfilled for the effective use of IE
graphs have been determined and discussed for each of these applications, they have not
been defined formally in a general case till now. Only in [28, 33] it has been pointed out
intuitively that one has to refer to a semantic aspect of a graph representation. Indeed,
in order to formulate general conditions for the effective use of the class of IE graphs
we have to refer to Tarski’s (semantic) model theory. We will use the model theory
approach to define the class of interpreted EDG graphs.

Graphs are used in computer science for representing structures which consist of ob-
jects and relations among them. These objects, corresponding to individual objects in
logic, can represent physical entities/phenomena (e.g. Albert Einstein, Hurricane Kat-
rina), sets (groups) of entities (e.g. my family), social/cultural/political constructs (e.g.
UNESCO, USA), (theoretical) concepts (e.g. the set of natural numbers, triangle, an-
imal). Individual objects are represented with graph nodes, whereas relations among
these objects are represented with graph edges. Hereinafter structures represented with
graphs will be called relational structures (in order to distinguish them from (abstract)
structures defined in model theory)2 Then we will assume that a graph node is charac-
terized with node attributes and a node label (which in fact is a kind of the distinguished
attribute). Usually for a graph node representing a unique object (e.g. (this) Albert Ein-
stein) the node label corresponds to the unique “identifier” of the object, and for a graph
node representing a concept object (class, category) (e.g. tree) the node label corresponds
to the name of the concept. A graph edge between nodes v and w is characterized with
an edge label which defines the kind of the relation between objects (of a relational struc-
ture) which are represented with the nodes v and w. Since we construct our formalism
for EDG graphs we assume that relations are binary and there are no multiple relations
between objects (cf. [27]). For graph edges, similarly as for nodes, attributes can be also
defined.

Let us formalize our considerations. Firstly, we introduce the definition of relational
structure.

Definition 3.1. Let U be a finite set of individual objects called universe, NU be
a set of their names, AU be a set of their attributes.

2That is, in our terminology graphs (treated as a representative formalism) represent relational
structures that are constituted by objects and relations among them.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

M. Flasiński 9

Let each object ok, k = 1, . . .K of U be represented by its name nk
u ∈ NU and the set of

its attributes3 aku ∈ 2AU .
Let R ⊂ 2U×U be a set of binary relations such that for a pair of objects at most one
relation is established, NR be a set of their names, AR be a set of their attributes,
R = {(nr, ar) | nr ∈ NR, ar ∈ 2AR}.
A relational structure is a sextuple S = (U ,R,NU ,NR,AU ,AR).

Now we can define the interpretation of EDG graph over relational structure and the
interpreted EDG graph.

Definition 3.2. Let H = (V,E,Σ,Γ, ϕ) be an EDG graph over Σ and Γ, S be
a relational structure defined as in Definition 3.1, Σ ⊂ NU ,Γ ⊂ NR.
An interpretation I of the graph H over the structure S is a pair

I = (S,F) , where

F = (F1,F2) is the denotation function defined in the following way.

• F1 assigns an object u ∈ U having a name a ∈ NU to each graph node v ∈ V, ϕ(v) =
a, a ∈ Σ,

• F2 assigns a pair of objects (u
′, u′′) ∈ r, r ∈ R to each graph edge (v, λ, w) ∈ E, v, w ∈

V, λ ∈ Γ such that F1(v) = u′, F1(w) = u′′ and r has the name λ.

Definition 3.3. Let H be an EDG graph over Σ and Γ, S be a relational structure,
I be the interpretation of H over S defined as in Definition 3.2. An interpreted EDG
graph is a triple HI = (S, H, I).

The family of all the EDG graphs over Σ and Γ interpreted by I, shortly interpreted
EDG graphs, is denoted by EDGI

Σ,Γ.

The examples of defining interpreted graphs for representing machined parts in the
vision subsystem of the CAD/CAM system [36] and hand gestures in the Polish Sign
Languages recognition system [41] are shown in Figs. 2a and 2b, respectively.

As we have mentioned above, we have been able to define the linear order for EDG
graphs in various application areas because, in fact, we have considered interpreted EDG
graphs. In all mentioned applications of edNLC grammars, the linear order has been
introduced on the basis of semantics (i.e. attributes) of graphs representing relational
structures.

Before we introduce the family of indexed edge-unambiguous graphs (defined for top-
down parsable edNLC languages) and the family of reversely indexed edge-unambiguous
graphs (defined for bottom-up parsable edNLC languages), let us define the string-like
graph representation of EDG graphs as in [28, 32]. (This kind of the representation was
originally defined for Ω graphs in [20].)

Definition 3.4. Let k ∈ V be the node having the index k of the EDG graph
H = (V,E,Σ,Γ, ϕ). A characteristic description of the node k is the quadruple

3The set of attributes for an object can be the empty set.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

10 Interpreted graphs and ETPR(k) graph grammar parsing. . .

n(k), r, (e1 . . . er), (i1 . . . ir) , where

n is the label of the node k, i.e. ϕ(k) = n,
r is the out-degree of k (out-degree of the node designates the number of edges going
out from this node),
(i1 . . . ir) is the string of node indices to which edges going out from k come (in increasing
order),
(e1 . . . er) is the string of edge labels ordered in such a way that the edge having the
label ex comes into the node having the index ix.

If nodes of the graph h from Fig. 1a labelled with: a,B,A are indexed with: 1, 2, 3,
respectively, then:

B(2), 2, (y p), (1 3)

is the characteristic description of the node indexed with 2.

Definition 3.5. Let H = (V,E,Σ,Γ, ϕ) be an IE graph, where V = {1, . . . , k} is
the set of its nodes, I(i), i = 1, . . . , k is the characteristic description of the form of the
node i. A string I(1) . . . I(k) is called a characteristic description of the graph H.

Assuming a way of indexing of the graph h from Fig. 1a as it has been defined above,
we receive the following characteristic description of this graph

a(1) B(2) A(3)
0 2 1
− y p v
− 1 3 1

.

a) b)

a a
P

s

h h

5.1.6

1.2 1.2
s

a

s

k k

h

i

i

g e

e

Fig. 2. The application of interpreted graphs for representing (a) machined parts in the
vision subsystem of the CAD/CAM system [36] and (b) hand gestures in the
Polish Sign Language recognition system [41].

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

M. Flasiński 11

b) b

f

r

1
s

t p

h2 =

a

e

h f

b

d

c

r

r

s

s

t

p

p

2

3

4

9

7

8

5

6

a) b

f

r

1
s

t p

h1 =

a

e

h f

b

d

c

r

r

s

s

t

p

p

2

3

4

5

6

7

8

9

Fig. 3. An example of an IE graph (a) and an rIE graph (b).

On the basis of semantic features of EDG graphs we have constructed the so-called IE
graphs used in the top-down ETPL(k) parsing scheme [28, 32]. Let us define them for-
mally on the basis of the concept of interpreted graphs introduced above in Definition 3.3.

Definition 3.6. Let HI = (S, H, I) be an interpreted EDG graph over Σ and Γ.
An indexed edge-unambiguous graph, IE graph, over Σ and Γ defined on the basis of the
graph HI is an EDG graph G = (V,E,Σ,Γ, ϕ) which is isomorphic to H up to direction
of edges4, such that the following conditions are fulfilled.

1.G contains a directed spanning tree T such that nodes of T have been indexed due
to the Level Order Tree Traversal (LOTT)5.

2. Nodes of G are indexed in the same way as nodes of T .

4That is, (some) edges of G can be re-directed with respect to their counterparts in H.
5Let us recall that LOTT means that for each node firstly the node is visited, then its child nodes

are put into the FIFO queue. This type of a tree traversal is also known as the Breadth First Search
(BFS) scheme.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

12 Interpreted graphs and ETPR(k) graph grammar parsing. . .

3. Every edge in G is directed from the node having a smaller index to the node having
a greater index.

The family of all the IE graphs over Σ and Γ is denoted by IEΣ,Γ.

The exemplary IE graph h1 is shown in Fig. 3a. The indices are ascribed to the graph
nodes according to LOTT. The edges of the spanning tree T are thickened.

Since in the paper we characterize formally bottom-up parsable ETPR(k) graph
grammars, we will introduce the class of graphs which are generated by these grammars.
These graphs should be indexed according to the scheme allowing us to apply a reductive
parsing. During such a parsing a syntax analyzer produces the rightmost derivation in
reverse. (As it is performed for Knuth’s (string) LR(k) parsers [43].) The class of
such graphs has been introduced informally in [37]. We define them on the basis of
interpreted graphs using the new traversal scheme called the Reverse Level Order Tree
Traversal (RLOTT). This scheme is analogous to the LOTT scheme used above for IE
graphs, however it uses the LIFO queue, i.e. the stack, instead of the FIFO queue.

Definition 3.7. Let HI = (S, H, I) be an interpreted EDG graph over Σ and Γ.
A reversely indexed edge-unambiguous graph, rIE graph, over Σ and Γ defined on the
basis of the graph HI is an EDG graph G = (V,E,Σ,Γ, ϕ) which is isomorphic to H up
to direction of edges, such that the following conditions are fulfilled.

1.G contains a directed spanning tree T such that nodes of T have been indexed due
to the Reverse Level Order Tree Traversal (RLOTT).

2. Nodes of G are indexed in the same way as nodes of T .

3. Every edge in G is directed from the node having a smaller index to the node having
a greater index.

The family of all the rIE graphs over Σ and Γ is denoted by rIEΣ,Γ.

The exemplary IE graph h2 is shown in Fig. 3b.

At the end of this section we introduce the notion of node level. We say that the
node v of the IE (rIE) graph is of the n level, if v is at the n level of the spanned tree
T constructed as in Definition 3.6 (Definition 3.7).

4. Formal properties of ETPR(k) graph grammars

The formal properties of the ETPR(k) bottom-up parsable subclass of edNLC graph
grammars are presented in this section. Some of them are analogous to those imposed
of the ETPL(k) top-down parsable graph grammars [28, 29, 32].

Firstly, let us impose the constraint on the form of the right-hand side graphs in
order to reduce the computational complexity of a single derivation step.

Definition 4.1. Let G = (Σ,∆,Γ, P, Z) be an edNLC graph grammar. The gram-
mar G is called a TLP graph grammar, abbrev. from Two-Level Production, if the fol-
lowing conditions are fulfilled.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

M. Flasiński 13

1. P is a finite set of productions of the form (l,D,C), where:

(a) l ∈ Σ,
(b)D is the rIE graph having the characteristic description:

n1(1) n2(2) . . . nm(m) or n1(1), where ni(i)
r1 r2 . . . rm 0 ri
E1 E2 . . . Em − Ei

I1 I2 . . . Im − Ii

is a characteristic description of the node i, i = 1, . . . ,m, n1 ∈ ∆ (i.e. n1 is a terminal
label), i, i = 2, . . . ,m is the node of the second level,

(c)C : Γ× {in, out} −→ 2Σ×Σ×Γ×{in,out} is the embedding transformation.

2.Z is an rIE graph such that its characteristic description satisfies the condition defined
in point 1(b).

Let us require a derivation process to be performed according to the linear ordering
imposed on rIE graphs.

Definition 4.2. A TLP graph grammar G is called a closed rTLP graph grammar
G if for each derivation of this grammar

Z = g0 =⇒
G

g1 =⇒
G

. . . =⇒
G

gn

a graph gi, i = 0, . . . , n is an rIE graph.

Definition 4.3. Let there be given a derivation of a closed rTLP graph grammar G:

Z = g0 =⇒
G

g1 =⇒
G

. . . =⇒
G

gn .

This derivation is called a regular right-hand side derivation, denoted =⇒
rr(G)

if:

1. for each i = 0, . . . , n− 1 we apply a production for a node having the greatest) index
in a graph gi,

2. node indices do not change during a derivation.

A closed rTLP graph grammar rewriting graphs according to the regular right-hand
side derivation is called a closed rTLPO graph grammar, abbrev. from reverse Two-
Level Production-Ordered.

Now we introduce notions used for extracting handles in analyzed graphs which are
matched against right-hand sides of productions during graph parsing.

Definition 4.4. Let g be an rIE graph, l some node of g defined by a characteristic
description n(l), r, e1 . . . er, i1 . . . ir. A subgraph h of the graph g consisting of node
l, nodes having indices ia+1, ia+2, . . . , ia+m, a ≥ 0, a + m ≤ r, and edges connecting
the nodes: l, ia+1, ia+2, . . . , ia+m is called an m-successors two-level graph originated
in the node l and beginning with the (ia+1)th successor. The subgraph h is denoted
h = m − TL(g, l, ia+1). By 0 − TL(g, l,−) we denote the subgraph of g consisting only
of node l.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

14 Interpreted graphs and ETPR(k) graph grammar parsing. . .

Definition 4.5. Let g be an rIE graph, l some node defined by a characteristic
description n(l), r, e1 . . . er, i1 . . . ir. A subgraph h of graph g consisting of node l, nodes
having indices ia+1, ia+2, . . . , ir, a ≥ 0, and edges connecting the nodes l, ia+1, ia+2, . . . , ir
is called a complete two-level graph originated in node l and beginning with the (ia+1)th
successor. The subgraph h is denoted

h = CTL(g, l, ia+1).

Let us impose the fundamental constraint which is analogous to that used in the
definition of string Knuth’s LR(k) grammars [43]. It allows us to construct the efficient
non-backtracking bottom-up parsing scheme.

Definition 4.6. Let G = (Σ,∆,Γ, P, Z) be a closed rTLPO graph grammar. The
grammar G is called a PR(k) abbrev. Production-ordered k-Right nodes unambiguous,
graph grammar if the following condition is fulfilled. Let

Z *=⇒
rr(G)

X1AX2 =⇒
rr(G)

X1gX2 ,

Z *=⇒
rr(G)

X3BX4 =⇒
rr(G)

X1gX5 ,

and

k − TL(X2, 1, 2)
isom
= k − TL(X5, 1, 2) ,

where *=⇒
rr(G)

is the transitive and reflexive closure of =⇒
rr(G)

, A, B are characteristic

descriptions of certain nodes, X1, X2, X3, X4, X5 are substrings of characteristic de-
scriptions, g is the right-hand side of a production: A −→ g.
Then:

X1 = X3, A = B, X4 = X5 .

The last restriction concerns the embedding transformation. The edNLC embedding
transformation operates at the border between the production and its context. So, we
do not have the context freeness property stated that reordering of derivation steps does
not influence the result of a derivation. The lack of the order independence property,
related to the finite Church-Rosser, fCR, property, results in the intractability of parsing.
Thus, we have to restrict the power of the embedding transformation in order to obtain
fCR and to guarantee the parsing efficiency. We make it by preserving the part of the
production context unchanged during a derivation step.

Definition 4.7. Let G = (Σ,∆,Γ, P, Z) be a PL(k) (PR(k)) graph grammar. A pair
(b, x), b ∈ ∆, x ∈ Γ, is called a potential previous context for a node label a ∈ Σ, if there
exists the rIE graph g = (V,E,Σ,Γ, ϕ) belonging to a certain regular left-hand (right-
hand) side derivation in G that: (k, x, l) ∈ E, ϕ(k) = b, and ϕ(l) = a.

Definition 4.8. A PR(k) graph grammar G is called an ETPR(k), abbrev. from
Embedding Transformation-preserving Production-ordered k-Right nodes unambiguous,
graph grammar, if: for each production of the form

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

M. Flasiński 15

X1(1) X2(2) . . . Xm(m)
r1 r2 . . . rm

(l) A −→ E1 E2 . . . Em

I1 I2 . . . Im

where Xa ̸= Xb, a, b = 1, . . . ,m .

If (b, y) is a potential previous context for A, then there exists only one (Xi, b, z, in) ∈
Cl(y, in), i ∈ {1, . . . ,m}, where Cl is the embedding transformation of the lth production.
If i = 1, then z = y, i.e. (X1, b, y, in) ∈ Cl(y, in).

Let G = (Σ,∆,Γ, P, Z) be the ETPR(k) graph grammar. The language of G denoted
L(G) is the set

L(G) = {H : Z *=⇒
rr(G)

H and H ∈ rIE∆,Γ} .

5. Parsing algorithm of ETPR(k) graph languages

The general scheme of parsing for ETPR(k) graph grammars [37] is a slight modification
of the parsing schemes for ETL(1) [28] and ETPL(k) [32] graph grammars. It consists
in a succeeding identification of a handle constructed on the basis of the property of an
unambiguous choice of a production in the regular right-hand side derivation6 according
to Definition 4.6.

Let us introduce the following denotations and functions.

•G – an rIE graph to be analyzed represented by its characteristic description.

•H – the rIE graph represented by its characteristic description, which is being con-
structed (with succeeding reductions) during parsing on the basis of the graph G.

• give index() – the function gives the succeeding index from the stack of node indices
constructed according to Definition 3.7.

• nonempty indices stack() – the Boolean function gives true if the stack of node in-
dices is nonempty.

• give handle(H, i) – the function extracts the handle (in the form of its characteristic
description) originated in the node indexed with i from the graph H according to
Definition 4.6.

• choose production(handle) – the function, on the basis of handle, identifies the proper
production to be used for a reduction according to Definition 4.6.

• reduction(H, i, k) – the function performs the reduction to the node indexed with i
in the graph H according to the production k.

We assume that the right-hand side graphs of the grammar are stored in the form of
their characteristic descriptions.

Now, we can define the parsing algorithm 5.1.

6In ETL(1) and ETPL(k) graph grammars the corresponding property concerns the regular left-hand
side derivation.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

16 Interpreted graphs and ETPR(k) graph grammar parsing. . .

Algorithm 5.1 The parsing algorithm for ETPR(k) graph grammar

H := G;
err := 0;
while err = 0 and nonempty indices stack() do
begin

i := give index();
handle := give handle(H, i);
k := choose production(handle);
if k = 0 then err := 1 else reduction(H, i, k);

end;

In order to evaluate the time complexity of Algorithm 5.1 let us analyze the running
times of its functions. Let n be the number of nodes of the graph G. The running
time of the function give index() operating on the stack of indices is ∼ n. Extracting
the handle with the help of the function give handle(H, i), if we assume that H is
represented with its characteristic description, is ∼ n, as well. The running time of the
function choose production(handle) is bounded by the constant c which depends on the
size of the grammar, i.e. the number of its productions and the maximum size of the
right-hand size graph. (Thus, c does not depend on the size of the input graph G.)
The function reduction(H, i, k) is analogous to the function production(H, i, k) of the
ETPL(k) parser introduced in [32]. Its running time is ∼ n.

Now, we can formulate the following theorem.

Theorem 5.1. The running time of the parsing algorithm for ETPR(k) graph gram-
mar (Algorithm 5.1) is O(n2), where n is the number of the nodes of the analyzed rIE
graph.

Proof. The while loop of Algorithm 5.1 is performed at most n times. Since the
running times of all the functions inside the loop are bounded either by a constant or
by n, the running time of the algorithm is O(n2).

6. Concluding remarks

The deterministic subclasses of Node Label Controlled (NLC) graph grammars for syn-
tactic pattern recognition and computer vision have been studied for thirty years. They
have been used in a variety of the real-world applications. The possibility of imposing the
linear ordering on EDG graphs is one of two crucial factors resulting in the high efficiency
of the model. (The balanced restrictions imposed on the embedding transformation of
edNLC grammars is the second key factor.) In all the aforementioned applications of the
model the linear ordering has been defined on the basis of semantic features of patterns

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

M. Flasiński 17

considered. However, the theoretical foundations of the scheme allowing us to index
graph nodes based on pattern semantics have not been formulated till now. We have
introduced them in the paper defining concepts of: relational structure, interpretation of
EDG graphs over relational structure and interpreted EDG graph. These notions allow
us to introduce the concept of (reverse) indexed edge-unambiguous graphs (IE and rIE
graphs) in a formalized way.

The presentation of formal properties of ETPR(k) graph grammars introduced pre-
liminarily in [37] and their parsing algorithm has been the second goal of the paper. The
ETPR(k) parsing scheme is analogous to the ETPL(k) one [32]. However, our experi-
ence with practical applications has revealed that there are some graph languages that
cannot be generated by ETPL(k) grammars and can be generated by ETPR(k). This
problem is worth further studying. Therefore, similarly as in case of ETPL(k) grammars
which are characterized from the point of view of descriptive power [33], the research
into power properties of ETPR(k) graph grammars will be carried out and the results
obtained will be the subject of further publications.

References

[1] T. Pavlidis. Structural Pattern Recognition. Springer, New York, 1977.

[2] R.C. Gonzales and M.G. Thomason. Syntactic Pattern Recognition: An Introduction. Addison-
Wesley, Reading, 1978.

[3] K.S. Fu. Syntactic Pattern Recognition and Applications. Prentice Hall, Englewood Cliffs, 1982.

[4] H. Bunke and A. Sanfeliu (eds.). Syntactic and Structural Pattern Recognition – Theory and Ap-
plications. World Scientific, Singapore, 1990.

[5] V. Claus, H. Ehrig and G. Rozenberg (eds.). Graph Grammars and Their Application to Computer
Science and Biology. Lecture Notes in Computer Science 73, 1979. doi:10.1007/BFb0025713.

[6] H. Ehrig, M. Nagl and G. Rozenberg (eds.). Graph Grammars and Their Application to Computer
Science. Lecture Notes in Computer Science 153, 1983. doi:10.1007/BFb0000094.

[7] H. Ehrig, M. Nagl and G. Rozenberg (eds.). Graph Grammars and Their Application to Computer
Science. Lecture Notes in Computer Science 291, 1987. doi:10.1007/3-540-18771-5.

[8] H. Ehrig, H.-J. Kreowski and G. Rozenberg (eds.). Graph Grammars and Their Application to
Computer Science. Lecture Notes in Computer Science 532, 1991. doi:10.1007/BFb0017372.

[9] J. Cuny, H. Ehrig, G. Engels and G. Rozenberg (eds.). Graph Grammars and Their Application to
Computer Science. Lecture Notes in Computer Science 1073, 1996. doi:10.1007/3-540-61228-9.

[10] H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg (eds.). Theory and Application of Graph
Transformations. Lecture Notes in Computer Science 1764, 2000. doi:10.1007/b75045.

[11] A. Corradini, H. Ehrig, H.-J. Kreowski and G. Rozenberg (eds.). Graph Transformations. Lecture
Notes in Computer Science 2505, 2002. doi:10.1007/3-540-45832-8.

[12] H. Ehrig, G. Engels, F. Parisi-Presicce and G. Rozenberg (eds.). Graph Transformations. Lecture
Notes in Computer Science 3256, 2004. doi:10.1007/b100934.

[13] A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro and G. Rozenberg (eds.). Graph Transformations.
Lecture Notes in Computer Science 4178, 2006. doi:10.1007/11841883.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://doi.org/10.1007/BFb0025713
https://doi.org/10.1007/BFb0000094
https://doi.org/10.1007/3-540-18771-5
https://doi.org/10.1007/BFb0017372
https://doi.org/10.1007/3-540-61228-9
https://doi.org/10.1007/b75045
https://doi.org/10.1007/3-540-45832-8
https://doi.org/10.1007/b100934
https://doi.org/10.1007/11841883
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

18 Interpreted graphs and ETPR(k) graph grammar parsing. . .

[14] H. Ehrig, R. Heckel, G. Rozenberg and G. Taentzer (eds.). Graph Transformations. Lecture Notes
in Computer Science 5214, 2008. doi:10.1007/978-3-540-87405-8.

[15] H. Ehrig, A. Rensink, G. Rozenberg and A. Schürr (eds.). Graph Transformations. Lecture Notes
in Computer Science 6372, 2010. doi:10.1007/978-3-642-15928-2.

[16] H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg (eds.). Graph Transformations. Lecture
Notes in Computer Science 7562, 2012. doi:10.1007/978-3-642-33654-6.

[17] H. Giese and B. König (eds.). Graph Transformations. Lecture Notes in Computer Science 8571,
2014. doi:10.1007/978-3-319-09108-2.

[18] F. Parisi-Presicce and B. Westfechtel (eds.). Graph Transformations. Lecture Notes in Computer
Science 9151, 2015. doi:10.1007/978-3-319-21145-9.

[19] R. Echahed and M. Minas (eds.). Graph Transformations. Lecture Notes in Computer Science 9761,
2016. doi:10.1007/978-3-319-40530-8.

[20] Q.Y. Shi and K.S. Fu. Parsing and translation of attributed expansive graph lan-
guages for scene analysis. IEEE Trans. Pattern Analysis Mach. Intell., 5:472–485, 1983.
doi:10.1109/TPAMI.1983.4767426.

[21] H.O. Bunke and B. Haller. A parser for context free plex grammars. Lecture Notes in Computer
Science, 411:136–150, 1990. doi:10.1007/3-540-52292-1 10.

[22] K.J. Peng, T. Yamamoto and Y. Aoki. A new parsing scheme for plex grammars. Pattern Recog-
nition, 23:393–402, 1990. doi:10.1016/0031-3203(90)90026-H.

[23] K. Wittenburg, L. Weitzman and J. Talley J. Unification-based grammars and tabu-
lar parsing for graphical languages. Journal Visual Languages Computing, 2:347–370, 1991.
doi:10.1016/S1045-926X(05)80004-7.

[24] F. Ferruci, G. Tortora, M. Tucci and G. Vitiello. A predictive parser for visual lan-
guages specified by relational grammars. In Proc. IEEE Symp. Visual Lang. VL’94, 245-252.
doi:10.1109/VL.1994.363611.

[25] J. Rekers and A. Schürr. Defining and parsing visual languages with layered graph grammars.
Journal Visual Languages Computing, 8:27–55, 1997. doi:10.1006/jvlc.1996.0027.

[26] D.Q. Zhang, K. Zhang and J. Cao. A context-sensitive graph grammar formalism for the specifica-
tion of visual languages. The Computer Jornal, 44:186–200, 2001. doi:10.1093/comjnl/44.3.186.

[27] D. Janssens and G. Rozenberg. On the structure of node-label-controlled graph languages. Infor-
mation Sciences, 20:191–216, 1980. doi:10.1016/0020-0255(80)90038-9.

[28] M. Flasiński. Parsing of edNLC-graph grammars for scene analysis. Pattern Recognition, 21:623–
629, 1988. doi:10.1016/0031-3203(88)90034-9.

[29] M. Flasiński. Characteristics of edNLC-graph grammars for syntactic pattern recognition. Computer
Vision Graphics Image Processing, 47:1–21, 1989. doi:10.1016/0734-189X(89)90050-9.

[30] M. Flasiński. Distorted pattern analysis with the help of Nodel Label Controlled graph languages.
Pattern Recognition, 23:765–774, 1990. doi:10.1016/0031-3203(90)90099-7.

[31] M. Flasiński. Some notes on a problem of constructing the best matched graph. Pattern Recognition,
24:1223–1224, 1991. doi:10.1016/0031-3203(91)90147-W.

[32] M. Flasiński. On the parsing of deterministic graph languages for syntactic pattern recognition.
Pattern Recognition, 26:1–16, 1993. doi:10.1016/0031-3203(93)90083-9.

[33] M. Flasiński. Power properties of NLC graph grammars with a polynomial membership problem.
Theoretical Computer Science, 201:189–231, 1998. doi:10.1016/S0304-3975(97)00212-0.

[34] M. Flasiński. Inference of parsable graph grammars for syntactic pattern recognition. Fundamenta
Informaticae, 80:379–413, 2007.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://doi.org/10.1007/978-3-540-87405-8
https://doi.org/10.1007/978-3-642-15928-2
https://doi.org/10.1007/978-3-642-33654-6
https://doi.org/10.1007/978-3-319-09108-2
https://doi.org/10.1007/978-3-319-21145-9
https://doi.org/10.1007/978-3-319-40530-8
https://doi.org/10.1109/TPAMI.1983.4767426
https://doi.org/10.1007/3-540-52292-1_10
https://doi.org/10.1016/0031-3203(90)90026-H
https://doi.org/10.1016/S1045-926X(05)80004-7
https://doi.org/10.1109/VL.1994.363611
https://doi.org/10.1006/jvlc.1996.0027
https://doi.org/10.1093/comjnl/44.3.186
https://doi.org/10.1016/0020-0255(80)90038-9
https://doi.org/10.1016/0031-3203(88)90034-9
https://doi.org/10.1016/0734-189X(89)90050-9
https://doi.org/10.1016/0031-3203(90)90099-7
https://doi.org/10.1016/0031-3203(91)90147-W
https://doi.org/10.1016/0031-3203(93)90083-9
https://doi.org/10.1016/S0304-3975(97)00212-0
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

M. Flasiński 19

[35] M. Flasiński and L. Kotulski. On the use of graph grammars for the control of a distributed software
allocation. The Computer Journal, 35:A165–A175, 1992.

[36] M. Flasiński. Use of graph grammars for the description of mechanical parts. Computer-Aided
Design, 27:403–433, 1995. doi:10.1016/0010-4485(94)00015-6.

[37] M. Flasiński and Z. Flasińska. Characteristics of bottom-up parsable edNLC graph languages for
syntactic pattern recognition. In L.J. Chmielewski et al., editors, Computer Vision and Graphics:
Proc. Int. Conf. ICCVG 2014, volume 8671 of Lecture Notes in Computer Science, pages 195–202,
Warsaw, Poland, September 2014. Springer, Heidelberg. doi:10.1007/978-3-319-11331-9 24.

[38] U. Behrens, M. Flasiński, L. Hagge and K. Ohrenberg. ZEX – an expert system for ZEUS. IEEE
Trans. Nuclear Science, 41:152–156, 1994. doi:10.1109/23.281478.

[39] M. Flasiński, R. Schaefer and W. Toporkiewicz. Supporting CAE parallel computations with IE-
graph solid representation. J. Geometry Graphics, 1:23–29, 1997.

[40] M. Flasiński. Introduction to Artificial Intelligence. Springer International, Switzerland, 2016.
doi:10.1007/978-3-319-40022-8.

[41] M. Flasiński and S. Myśliński. On the use of graph parsing for recognition of iso-
lated hand postures of Polish Sign Language. Pattern Recognition 43:2249–2264, 2010.
doi:10.1016/j.patcog.2010.01.004.

[42] M. Flasiński. Syntactic pattern recognition: paradigm issues and open problems. In C.H. Chen (ed.),
Handbook of Pattern Recognition and Computer Vision, World Scientific, New Jersey – London –
Singapore, 2016, Chapt. 1, pp. 3-25.

[43] D.E. Knuth. On the translation of languages from left to right. Information Control 8:607–639,
1965. doi:10.1016/S0019-9958(65)90426-2.

Machine GRAPHICS & VISION 27(1/4):3–19, 2018. DOI: 10.22630/MGV.2018.27.1.1 .

https://doi.org/10.1016/0010-4485(94)00015-6
https://doi.org/10.1007/978-3-319-11331-9_24
https://doi.org/10.1109/23.281478
https://doi.org/10.1007/978-3-319-40022-8
https://doi.org/10.1016/j.patcog.2010.01.004
https://doi.org/10.1016/S0019-9958(65)90426-2
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.1

Isocontouring with Sharp Corner Features

Sui Gong, Timothy S. Newman
Department of Computer Science, University of Alabama in Huntsville, Huntsville, USA

sg0010@uah.edu , tnewman@cs.uah.edu

Abstract. A method that achieves closed boundary finding in images (including slice images) with sub-

pixel precision while enabling expression of sharp corners in that boundary is described. The method

is a new extension to the well-known Marching Squares (MS) 2D isocontouring method that recovers

sharp corner features that MS usually recovers as chamfered. The method has two major components:

(1) detection of areas in the input image likely to contain sharp corner features, and (2) examination of

image locations directly adjacent to the area with likely corners. Results of applying the new method,

as well as its performance analysis, are also shown.

Key words: marching squares, feature preservation, corner recovery, contour finding, isocontours.

1. Introduction

In this paper, we describe an improvement for a popular means to find a closed boundary
of a region of constant value (i.e., intensity or activity) in an image. This improvement
can be considered to be an extension of the popular Marching Squares (MS) isocon-
touring method for 2D scalar fields (N.B. We have previously briefly described this new
extension’s key features in a conference report [9]). An isocontour can be defined as
follows. Given a scalar field f(x, y) (for example, f may represent the abstract function
describing the densities captured in an X-ray), the isocontour is the collection of locations
in the field having a particular scalar value α (e.g. the (x, y) locations where f(x, y) = α).
The scalar value α is the isovalue associated with (i.e., giving rise to) that isocontour.
Isocontouring is a strategy often employed in processing or analyzing many types of data
organized on grids. The most prevalent class of scalar 2D grid data is probably data
arranged on rectilinear grids (such as X-ray images, slice images of CT datasets, inten-
sity images, some planar simulation outputs, etc.). Other popular grid types include
triangular and hybrid/adaptive grids [18, 29]. Here, our focus is on isocontouring for
scalar data arranged on a rectilinear grid. Isocontouring is a very valuable technique for
such data as it can, in one integrated process, define a closed boundary, with sub-pixel
precision, of an area associated with some fixed level of activity (e.g. density).

There are a number of algorithms for finding isocontours in datasets of 2, 3 and more
dimensions arranged on a grid. In determining the isocontour on these types of datasets,
the existing algorithms treat the data values as samples from an underlying scalar field;
such isocontouring algorithms form an isocontour in consideration of the samples. It is

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

22 Isocontouring with sharp corner features

often useful to find an approximate description of the boundaries of phenomena or struc-
tures in image processing and analysis applications. For example, boundary delineation
can be useful for location-finding tasks, such as defect detection and front tracking. Also,
isocontouring can be used to enable estimation of boundary or region properties (e.g.
perimeter or area). In such uses, especially where a structure boundary is desired, the
produced isocontour is sometimes said to be a reconstruction [17]. Other uses include
as components of feature extraction [27] and segmentation [15] methods. Isocontouring
can also be integrated into contour extraction frameworks [26]. Isocontours also have
other uses, including discovery in terrain data [1, 12], simulation analysis [6] and fluid
surface tracking [19].

The MS algorithm has been widely applied in 2D rectilinear grid data isocontouring.
MS produces a piecewise linear approximation of the isocontour, as described in detail in
Section 2. However, when applied in cases where the actual boundary has sharp corners,
MS instead produces mostly blunted corners. This behavior of MS creates a problem
for contour recovery when sharp corners are present. Producing a contour that recovers
sharp corner features can improve renderings as well as assist in registration and pattern
recognition. Thus, it is important for isocontouring to recover them correctly. However,
previously there has not been a 2D isocontouring method that is able to correctly recover
sharp corners. In this paper, we describe our extension to the Marching Squares that
improves on that situation; our approach allows producing an isocontour that has sharp
corner features. This extension enables better expression of actual boundary shape for
boundaries containing such features.

This paper is organized as follows. Background is discussed in Section 2. Related
work is described in Section 3. In Section 4, we present our extension to Marching
Squares that enables construction of an isocontour that includes sharp corners. In Sec-
tion 5, we provide results from applying the extended algorithm and comparisons with
standard MS. The conclusion and future work are presented in Section 6.

2. Background

Marching Squares takes a 2D rectilinear grid of scalar data as its input. Such inputs could
be X-ray images, individual slice images of volumetric datasets, infrared (IR) images, etc.
The rectilinear grid is treated as a collection of grid cells by MS. In the case of images,
each pixel value is treated as the data value at a grid point. The MS algorithm produces
an isocontour with sub-cell accuracy bymarching through the dataset in sequential order,
processing one grid cell at a time until all grid cells have been processed. In each of the
cells, the algorithm’s processing involves a series of steps that determine if any isocontour
segments need to be generated within the cell.

The first step MS follows in each cell is to compare each grid point’s data value
with the isovalue α. MS marks each data point with a value greater than or equal to α

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 23

������ ������ ������ �����	 �����
 ������ ������� �����

������ ������ �������� ������� ������� ������	� ������
 �������

Fig. 1. 16 topological cases of cells in Marching Squares.

with a “1.” It marks the others with a “0.” Grid edges marked with a “1” at one end
point and a “0” at the other are intersected by the isocontour.

There are 24 = 16 possible markings for a cell since each grid cell has four grid points.
Each unique marking type is called a topological case and defines a particular isocontour
topology. The 16 cases and the general form of the contour segment(s) produced by MS
for each case are shown in Fig. 1. In the figure, data points with a “1” marking are
indicated by filled (black) grid points. Data points with a “0” marking are indicated by
hollow (white) grid points. Typically, MS encodes the 16 possible cell cases in a look-
up table before processing the dataset. For each case, that table records the identity
of intersected edges and how the intersected edges are connected by the isocontour
segments. When a look-up table is used, the second step of processing in the cell is to
use the markings to determine the topological case for the cell.

Next, for each cell MS calculates positions of any isocontour intersections with the
cell’s grid edges. If a look-up table is used, the identities of intersected edges are retrieved
directly from the table. For each such edge, linear interpolation on the values at the end
points of the edge is used to find the intersection location.

Finally, in each cell, the isocontour is formed. In this step, MS connects each pair of
intersection locations by a line segment. If a look-up table is used, the identities of the
edges that are to be connected are found from it. The collection of such line segments
defines the isocontour.

We note that two of the MS cases (i.e., Cases 5 and 10 in Fig. 1) can be contoured in
a variant way from what is shown in Figure 1 (since there are two ways to connect each
set of four intersections such that the contour does not self-intersect). Since triangular
cells do not have this issue of variant contours (due to there being only one choice for
each cell in a triangular mesh), in some cases isocontouring of rectilinear grid data is done
by an analogue of MS that triangulates the cells before isocontouring (i.e., by dividing
each cell into two triangles and then performing isocontouring in each triangle). This
analogue can be called Marching Diagonally Divided Squares (MDDS).

One of MS’s potential problems is that when sharp corner features occur in an actual
boundary (e.g. of a structure), the isocontour that MS produces usually has chamfered
corners at the places where the actual boundary has sharp corners, unless the location

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

24 Isocontouring with sharp corner features

c c

actual MS

Fig. 2. A sharp corner of a boundary (left) that MS chamfers (right).

of the actual corner is very close to the edge of a grid cell. Fig. 2 shows an example
of the problem. In the figure, a grid cell with three grid points whose values are less
than the isovalue (i.e., denoted as hollow (white) circles in the figure) and one grid point
whose value is greater than the isovalue (i.e., denoted as a filled (black) circle in the
figure) is shown. The contour shown at the left (as a dashed line) represents the actual
phenomenon boundary, which has a sharp corner feature. Such cells are recognized by
the standard MS as Case 2 cells (using the numbering as in Fig. 1). The Case 2 topology
specifies two grid edge intersections, and MS performs linear interpolation on these edges
to find the intersection locations. For the Fig. 2 example, the ×marks show the locations.
MS connects the two intersections with a single line segment, as shown in the contour
on the right (as a dotted line) of Fig. 2. The corner produced here by MS does not have
the sharp shape of the actual boundary; instead, MS produces a chamfered corner.

The analogue of MS that triangulates each rectilinear grid cell before isocontouring
in that triangulation can reduce the degree of chamfering for some corners. However,
there are several costs for that benefit. First, the upfront triangulation of cells imposes an
additional computational burden. Second, for an actual contour with a long, straight run
that is diagonally-oriented, the contour produced for that run can be staircased. Third,
the contour intersection locations on the diagonal edge segments of the triangulation
differ from segment positions in MS since the analogue uses a different interpolation
than the axis-aligned bilinear interpolant used by MS on the underlying rectilinear grid.
Fourth, the total number of segments is usually significantly increased.

MS is often applied on many types of 2D grayscale images as a boundary-finding
method (e.g. for segmentation [2, 29] or silhouette determination [11]). Compared to
using contours or boundaries based on traditional, popular edge detectors, like the So-
bel edge detector [10] (that typically produce edges that pass through pixel locations
where the highest gradient changes are detected), using MS for boundary-finding has
certain advantages. First, traditional edge detectors can produce a boundary that is
not continuous (i.e., some individual edge pixels can be isolated (i.e., disconnected) from
others), rather than a guaranteed continuous water-tight contour, as MS does. While
edge detectors can be coupled with edge linking algorithms (e.g. such as [3, 17]) on the
disconnected edge segments, the boundaries may still not be continuous. If the area need-
ing the boundary description is known, one historically popular alternative approach to

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 25

determine a boundary description has been chain coding [7] (or its variants). However,
in chain coding, the segment endpoints have pixel-level precision only. In comparison
to traditional edge detection with linkage or chain coding, MS produces a contour that
has sub-pixel-level precision. In addition, the MS contour segments have many possible
orientations (limited only by the finite precision of machine floating-point arithmetic).
In contrast, the elements of a chain-coded boundary can have only 8 possible orien-
tations. Finally, the MS boundary is associated with a specific activity (or intensity)
level whereas boundaries from edge linkages may not be associated with one activity (or
intensity) level.

The boundary MS produces has been used in many applications, such as a part of
processing to find the contour of a pelvic region in CT data [8], for generating toolpaths
in a 3D printing application [28], and in a set relations visualization scheme [4]. Other
than boundary finding, MS has been combined with methods for image segmentation [3]
or with methods based on Minkowski functionals for image analysis [16]. In addition,
MS has been used in a color distinguishability study to extract features such as stripe
outlines from images [23]. MS can also be used in contour length estimation [3], since
the contour segment produced for each cell is easy to calculate. A parallelization scheme
for MS has also been described [20].

3. Related work in feature preserving isocontouring

Isocontouring that maintains certain shape features in the boundary it produces is called
feature-preserving isocontouring. Next, some such existing approaches are described.
These existing approaches are aimed at true 3D isocontouring (on volumetric data),
usually by extension of the Marching Cubes (MC) Algorithm. MC can be viewed as
a generalization of MS to volumetric data. Its isocontour is a surface called an isosurface.
MC is very well-known [21, 22]. Like MS, MC can produce an isocontour that lacks
certain “sharp” features, even if the isocontour represents the boundary of an underlying
phenomenon or structure that does have such features.

One approach to enable certain sharp features to be preserved in an isosurface was
described by Kobbelt et al. [14]. In their approach, after the isovalue is determined,
the original dataset is converted into a directed distance field that stores three distance
values at each grid point, namely the shortest distances in the x, y and z directions from
the point to an isosurface component.

Then, Kobbelt et al.’s approach performs MC-like processing on the distance field as
follows. First, a basic octree is built whose leaf nodes each store one 3D grid cell.
The octree also records which cells are candidates for containing sharp features, as
described later. The octree building starts from the leaf nodes. A merging process forms
higher levels of the tree by merging some leaf nodes with their parent (if certain rules
are satisfied). One such rule, for example, involves considering the current isocontour

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

26 Isocontouring with sharp corner features

position in lower level nodes versus the isocontour position in the next higher level node
(i.e., formed by merging the lower level nodes). If the difference between these positions
is too large, no merging takes place. Merging of non-leaf nodes with their parents occurs
if they have particular values and all their children can also be merged. Following the
merging process, nodes that haven’t been merged are the candidate nodes (for containing
sharp isocontour features). Grid cells within merged nodes are processed by standard
Marching Cubes (since no sharp corner is likely present). In all cells of candidate nodes,
the algorithm produces a different isocontour than MC; it creates additional triangular
facets that could allow a sharp corner shape to be produced. These facets are connected
to the ones generated in the nearby cells to avoid “holes” occurring in the isocontour.

Another feature preserving approach for 3D data is the fine feature recovery approach
of Kaneko et al. [13]. By recovering fine features, they mean that the isocontour includes
the thin or narrow parts of the actual underlying object or structure in a volumetric
dataset. In the isocontour produced by standard MC, these types of features could be
smaller or larger than they actually are. The Kaneko et al. approach first produces the
standard MC contour. Then, using this contour, it estimates what the dataset values
at each grid point location would need to be if the produced isocontour was the actual
boundary. At each grid point, it then compares these estimates with the actual data
value. Whenever such values differ significantly, the approach considers the recovered
isocontour segments near this grid point to be in need of adjustment. It follows a two-step
process to do that. First, it adds or subtracts a constant to the value at that grid point,
producing an adjusted dataset. Then it produces an isocontour on the adjusted dataset
using standard MC. The isocontour produced from the adjusted dataset encloses a region
that has a volume that better resembles the volume enclosed by the actual boundary [13].

These two methods, however, are extensions of 3D isocontouring. They have not
been extended to address sharp corner recovery in 2D isocontouring. In addition, while
inspiring, the Kobbelt method has some overhead (i.e., it must produce the distance
field prior to isocontour recovery), which can be time consuming. Kaneko’s method,
on the other hand, has a primary focus on fine feature preservation instead of sharp
corner preservation. While sharp corners can sometimes also be fine features (e.g. when
they are narrow and long), in most cases they are not fine enough for Kaneko’s method
to recover.

Our method described here extends the state-of-the-art for 2D isocontouring by al-
lowing sharp corner recovery in 2D isocontouring.

4. Methods: Corner Feature Expressive Marching Squares

Our new algorithm is a feature-preserving approach that extends the Marching Squares
to allow expression of sharp corner features. In this section, a step-by-step elaboration
of our algorithm and an enumeration of its topological cases are described.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 27

c c c

Fig. 3. Two possible contours. (Left) contour with a sharp corner feature; (right) con-
tour with a chamfered corner feature; (middle) with the same intersection loca-
tions.

4.1. Corner Feature Expressive Marching Squares: motivation

Our corner feature expressive algorithm can produce a contour with sharp corners using
information from small, local regions surrounding the corner. We motivate the algo-
rithm’s approach next. Later in the section, the specific, step-by-step processing is
laid out.

As discussed in Section 2, the standard MS has, for each topological case, a single
predefined way to connect the points of intersections of the isocontour with the grid
lines. Thus, no matter what type of contour shape is actually present in a given cell, the
predefined contour shape for that cell’s topological case is the only type of shape that
can be produced for the isocontour for the cell. An example of this situation is shown
for one cell (of topological Case 4) in Fig. 3. For the case of this figure, the isocontour
has a segment below the cell, which starts from the middle of the lower edge and extends
down and to the right, and a segment on the right of the cell, which starts in the middle
of the right edge and extends above and to the right (i.e., these parts of the isocontour
are shown as dotted lines in the center part of the figure). The lower right lattice point
of this cell is labeled as C. The value at that lattice point is used in determining both
of the isocontour’s intersection locations with the cell. Here, those points are marked
with “×” marks in the center part of the figure. The contour MS produces is shown as
a dotted line on the right. This contour has a chamfered corner, even though the true
contour shape could include a sharp corner, like the one shown on the left of this figure.
Using only the locations of the isocontour intersections with the grid lines bounding
the cell, it is not possible to tell whether the shape of the contours inside the grid cell
contains a chamfered corner shape or a square corner shape.

Our algorithm exploits the contour segment orientations in the cells adjacent to
possible corners to estimate contour shape and corner position in cells possibly containing
a corner. In particular, it first considers if the contour segments in the adjacent cells
provide clues suggesting if there could be a sharp corner.

An example of two sorts of clues that neighboring cells can provide is shown in Fig. 4.
In the middle part of this Figure, two types of contours with different corner shapes are
shown for one cell. Beside that, two possible arrangements of cells neighboring the one in

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

28 Isocontouring with sharp corner features

�

�

� �

� �

�

�

�

Fig. 4. Two possible arrangements of cells neighboring one grid cell.

question are shown. The cell in question is shaded and numbered “2.” The neighboring
cells in this example are labelled “1,” “3” and “4.” The actual contour shapes are also
shown for each arrangement. In both arrangements shown here, the cell in question
has the Case 2 topology. One arrangement features a diagonal edge (perhaps part of
a chamfered corner), as shown by the dotted line. The other one features a sharp corner,
as shown by the dashed segments. Since the grid cell in question has a Case 2 topology,
the isocontour in it will be produced as a diagonal edge in standard MS, regardless if
there is in fact a chamfered corner there. However, here the neighboring cells can provide
some clue about the likely corner type in the cell. For the arrangement shown at the left,
the dashed contour in the cells labeled “1” and “4” provides a clue that there may be
a sharp corner feature in the shaded cell. For that arrangement, cells “4” and “1” have
the Case 3 and Case 6 topologies, respectively. For such scenarios, a contour similar to
the square corner shown in the left arrangement seems more credible to many human
observers. In contrast, for the arrangement shown at the right, the dotted contour in the
cells labeled “1” and “4” does not provide such a clue. For that arrangement, cells “1”
and “4” have Case 7 topologies, and the contour produced by MS has a suitable shape
for the cell in question.

4.2. Corner Feature Expressive Marching Squares: elaboration

In keeping with such reasoning, our extended Marching Squares considers cells adjacent
to potential corner-containing grid cells to determine situations for which sharp corners
are credible. Our approach follows processing similar to the illustration shown for the
situation in Fig. 4; cells likely to contain a part of the boundary that has a sharp
corner are found by considering the neighborhood about the cell. We call such possible
corner-containing cells candidate corner cells, and we call neighborhoods about the corner
candidates grid cell groups. Each grid cell group consists of the candidate corner cell and
two cells adjacent (i.e., that are 4-neighbors) to that one. Specifically, the two adjacent
cells considered are the ones that the contour enters from the possible corner-containing
cell. (Due to the way MS finds isocontour-cell intersections, the adjacent cells can only
be horizontally or vertically adjacent to the candidate corner cell.) We call those two
adjacent cells the adjacent neighbor cells.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 29

� � � � � �

a b

Fig. 5. Grid cell group layouts and insufficient groups. (a) Enumeration of grid cell
group. (b) Insufficient (grid cell) groups.

There are 6 possible layouts (forms) for each grid cell group, as shown in Fig. 5a.
We call each one a grid cell group layout, and we label them as Layouts 1 through 6. In
Fig. 5a, the candidate corner cell for each layout is shaded. The other two grid cells that
are not shaded are its adjacent neighbor cells. Each grid cell group has a total of eight
grid points and ten unique edges. Since each grid point can either be marked as “1” or
“0”, there are 28 = 256 possible different combinations of markings. However, in corner
detection processing, it is not necessary to consider such a number of combinations since
some of the combinations do not contain a corner (e.g. the combinations with all 0 or
all 1 markings have no cells intersected by the isocontour).

Grid cell groups that include diagonally-adjacent cells could potentially be used, but
we do not consider them here, since by themselves they often do not provide additional
credible evidence of corners. But, if a larger set of nearby cells was considered, these
larger groups of grid cells could be useful for corner detection. We leave corner detection
and sharp corner contour production for such groups to future work; we focus here on
a methodology that is applicable to grid cell groups of size 3. In the work here, evidence
from size 3 grid cell groups is used to detect where sharp corner features are likely and
then to produce contours containing such features. We also focus only on grid cell groups
that have sufficient neighbor information.

Fig. 5b shows six example grid cell groups with insufficient neighbor information. In
it, each group contains at least one part of a contour that might in fact be a sharp corner
but the candidate corner cells in the group do not have two adjacent neighbors that both
contain continuations of the contour segment from the candidate corner cell. We term
such grid cell groups without enough neighboring information as insufficient groups. We
call grid cell groups that have enough neighboring information sufficient groups.

Some sharp corners in insufficient groups are in fact detected and produced correctly
by our method. This detection occurs due to a nearby sufficient group that includes
some grid cells that are also in the insufficient group. An example of such a situation
is shown in Fig. 6b. In this figure, there are three grid cell groups that are highlighted
(using an outline feature or by gray shading). One of them (the gray shaded one) can
be considered as an insufficient group. The other two (shown as the solid outline and
dashed outline) are sufficient groups. The insufficient grid cell group contains two corner

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

30 Isocontouring with sharp corner features

��� ��� ��� ���

��� ��� ��	 ��

�

a b

Fig. 6. Examples of group topology and insufficient/sufficient groups. (a) Group topol-
ogy list for Case 1 candidate corner cell. (b) Corner features detectable from the
sufficient groups (dashed outlined and solid outlined) but not in the insufficient
group (shaded).

features, but neither occurs at its candidate corner cell (marked by “∗”). However, each
corner feature can be detected via one of the two (outlined) sufficient grid cell groups
since they offer credible evidence that a corner could be present.

We examined all of the 16 topological cases for MS and determined the grid cell
group topologies that could contain sharp corners. Our algorithm stores such cases in
a group topology list. In this list, each group contains the three grid cells making up
a grid cell group. These are the candidate corner cell and its opposing neighbor cells.
Each MS topological case, except Cases 0 and 15, can give rise to a candidate corner
cell. Thus, for the Case 1 through 14 topologies, we examined all of the 4-neighbors of
candidate corner cells and the contour segments in them.

We list some examples of the group topologies in Fig. 6a. In this figure, each group
topology is labelled with a combination of a number and a letter. The number indicates
the case topology of its candidate corner cell in the original MS look-up table (from
Fig. 1), and the letter indicates our subcase identifier. For example, in Fig. 6a, we list
all 8 subcases for candidate corner cells with Case 1, labeled as 1-a through 1-h. The
complete group topology listing for all the cases is shown in Appendix A, and that listing
is labelled with the same scheme as in Fig. 6a.

While our method can produce a contour in the candidate corner cell that differs from
what standard MS produces for that, it does not vary the contour shape in the other
cells of the grid cell group. To detect if the contour in a candidate corner cell is likely to
contain a sharp corner, we first determine the orientations of the contour segments in the
adjacent neighbor cells of its grid cell group. Then the angular difference between these
orientations is calculated. If that difference is close to 90 degrees, our method marks the

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 31

����������	�
���
����

�������������
��
��

���
��
�����	������

�����	����������

�������
��������
��������
��

���������������������

��	������������
�� �������
�����

���
���������

Fig. 7. Corner detection and production process.

cell as one which likely has a sharp corner feature. Otherwise, when the angle between
two line segments in the neighbors is not sharp, we classify the cell as a non-corner
cell and use the standard MS rules to produce the isocontour segments. In addition, all
other non-corner cells are produced according to the standard MS rules.

For candidate corner cells that likely have a sharp corner, a two-step process is used
to produce the corner. First the corner location is determined as the point where the
contour segments in the adjacent neighbor cells intersect. Then, contour segments are
formed connecting this point to the locations where the contours intersect cell edges.

Fig. 7 shows an example of the corner construction process for a grid cell group with
a Case 4 candidate corner cell. In the adjacent neighbor cells, the two contour segments
form an angle of 90 degrees. In this case, due to the size of the angular difference, our
method determines that the candidate corner cell contains a sharp corner feature (i.e.,
thus, for that cell, we do not use standard MS rules to produce its contour). Once
a likely sharp corner has been determined, contour segments in opposing neighbor cells
are extended, as shown at the right part of the figure. The final result is the contour
with the sharp corner shown in the last panel of the figure.

4.3. Corner Feature Expressive Marching Squares: algorithm

A step-by-step elaboration of our algorithm is shown in the listing labelled Algorithm 4.1.

5. Results and discussion

Next, some results of applying our algorithm in images are presented. Results of synthetic
images are presented first, followed by images from volumetric datasets, and then X-ray
images at last. For comparison, results for standard MS are also exhibited.

Our synthetic images are density/occupancy images of objects with density 100 in
a 16×16 rectilinear grid. The background density is 0. At each grid lattice point, the
data value is the aggregate density over a unit-sized square region centered at that lattice
point. Thus, any lattice point representing a fully occupied unit-sized region in space

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

32 Isocontouring with sharp corner features

Algorithm 4.1 Corner Feature Expressive Marching Squares.

for each grid cell in the dataset do
determine its topological case
if it is not Case 0 or Case 15 then

locate its two adjacent neighbor cells according to the group topology list
calculate the contour segment orientations in the neighboring cells
if they form a sharp angle then

extend the contour segments of the adjacent neighbor cells into this cell to
produce a sharp corner

else
apply standard MS on the cell

end if
else

apply standard MS on the cell
end if

end for

has a data value of 100 associated with it. The objects are axis-aligned in some of the
images, but not in others. We can determine the error in an isocontouring method’s
result using these images because the actual boundaries in each of them are known.

A comparison of results from standard MS and our algorithm for synthetic images
of an L-shaped block, star-shaped object (in two orientations), and a ninja star-shaped
object is shown in Fig. 8. In this figure, the dashed contours are the results produced
by our algorithm and the dotted contours are the results produced by standard MS.
The solid black contours are the actual object boundaries. The parts of the boundary
that lack sharp corner features yield overlapping contours from standard MS and our
algorithm.

We also show a result from standard MS, our algorithm, and MDDS in Fig. 9b. In
this figure – and for Fig. 10, 11 and 12 – we use the same contour drawing patterns
as used in Fig. 8, except we periodically overlay circle glyphs on the dashed results (of
our approach). In addition, the result of MDDS is drawn in a dash-dot pattern in the
Fig. 9b. Our approach recovered four sharp corners while MDDS recovered none. MDDS
also recovered some of the straight edges as wavy edges. Since MDDS does not produce
a competitive result for sharp corner recovery, it is not shown in other result images in
this paper.

Our new algorithm recovered many, but not all, of the sharp corners in these images.
In particular, if a corner feature spans a few cells, the new algorithm can have difficulty
to fully recover all corners. Expanding the size of the grid cell groups may improve
matters, although possibly at a cost of false positives.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 33

Fig. 8. Synthetic dataset of object isocontouring results for two approaches. (a) L-shape
oriented at 45 degree angle with the x-axis. (b) A star object oriented at 15
degree angle with the x-axis. (c) A Star object oriented at 0 degree angle with
the x-axis. (d) A ninja star object.

a b

Fig. 9. Some applications. (a) X-ray images of: (left) hook embedded in a human face,
(right) hook caught on a dog. (b) Example results.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

34 Isocontouring with sharp corner features

Fig. 10. Engine Block dataset slice image isocontouring results. (Upper left cor-
ner) the slice image.

Next, we describe results from applying our algorithm on real images. First, results
for one slice image (size 256×256) of the well-known Engine Block dataset (from the
Volume Library [25]) are shown in Fig. 10 using the line marking pattern described
earlier. In this figure, zoomed-in call-outs are shown for several corners. The gray scale
image of this slice of data is also shown at the upper left of the figure as a reference.

We applied our algorithm and standard MS on 10 of the slices of the Engine Block
dataset and counted the number of sharp corners recovered by each algorithm. The
corner counts are presented in Tab. 1. On average, our algorithm recovered 10 sharp
corners more than standard MS did.

Results for applications to some X-ray images are shown in Fig. 11, which includes
comparison results for standard MS versus our algorithm for two images containing
objects with sharp corners (from radiopaedia.org [5]). The Fig. 11a image is of a biopsy
needle is size 220×320. The Fig. 11b image is of scissors lodged in a human and is
size 320×240. We call these images Needle and Scissors, respectively. For each image,

Tab. 1. Number of sharp corners recovered by our algorithm but not by standard MS.

Image No. 1 2 3 4 5 6 7 8 9 10
Sharp Corners 13 12 10 15 10 9 14 7 4 6

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 35

a b

Fig. 11. X-ray image and isocontour comparison results: (a) biopsy needle, (b) scissors
lodged inside human.

a zoomed-in call-out of an area containing a sharp corner feature is shown, with the
result of standard MS (in dotted segments) side-by-side with our algorithm result (in
dashed segments). In these images, the new algorithm has produced a sharper point for
the needle and scissors objects than standard MS has. We also applied both algorithms
on four images (labelled Hook1, Hook2, Hook3, and Hook4) of hooks embedded in tissue,
two of which are shown in Fig. 9a.

Some results for applying our algorithm to three range images of block or box ob-
jects containing sharp corners are shown in Fig. 12. These images are from the OSU
(MSU/WSU) range image database [24] and include a set of rectangle blocks (called
Blox2), a set of cylindrical blocks (called Blox3), and three stacked boxes (called Stack).
The Blox2 and Blox3 images are size 240×240. The Stack image is size 128×128. For
each image, we exhibit several zoomed-in call-outs of areas containing sharp corner fea-
tures, showing both the result of standard MS (in dotted segments) and our algorithm
(in dashed segments) shown. In these images, the new algorithm has produced many
sharp corners while MS has failed to produce them.

5.1. Empirical Error Studies: Our Algorithm vs. Standard MS

We have also used synthetic images in empirical tests of our algorithm and standard
Marching Squares to study contour accuracy in a quantifiable way. In these images, there

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

36 Isocontouring with sharp corner features

a

b c

Fig. 12. Range images and isocontour comparison results. (a) Blox2. (b) Blox3.
(c) Stack.

are sharp corners that have an internal angle very close to 90 degrees. In determining
accuracy for the tests, the lower left grid point of each cell was taken as a local coordinate
system origin of a cell assumed to be size 1×1. A number of test scenarios were used in
the experiments, with the sharp corner locations varied in each scenario. Four methods
were used to estimate the error in the contours. Those methods and outcomes from
using them are presented next.

5.1.1. Average Closest Euclidean Distance Error Measure

For each test case, we determined the smallest Euclidean distance to the actual boundary
from points sampled from the recovered contour. The average of these distances was
taken as the error ED in the recovered contour for that test case:

ED =
1

N

∑
D(i) , (1)

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 37

Fig. 13. Average closest Euclidean distance error measure, ED, for new algorithm (cir-
cles) and standard MS (stars).

where N is the number of sample points, and D(i) is the closest distance from the i-th
sample point on the recovered contour to the actual boundary.

Plots of such errors for a range of test cases are shown in Fig. 13. These plots consider
test cases for three distinct corner locations (the center of the cell and two other points
on the diagonal of a cell, as indicated in the plot captions). For each plot, the x axis
indicates the degree of the corner, and the y axis indicates the error for each case. The
stars show error for standard MS, and the circles show error for the new algorithm. For
most cells with sharp corners, the new algorithm yielded the lower error. Its improvement
appears to be best when corner angles are close to 90 degrees.

5.1.2. Corresponding Points Error Measure

Another error measurement we considered was EDC , an average distance measure com-
puted by averaging distances between corresponding points on two contours. Since stan-
dard MS does not usually produce a sharp corner feature, we determined the distance
measure’s component for the corner by taking the mid point of MS’s contour as the point
corresponding to the corner of the actual contour. We then divided it into two pieces at
its mid point, with each piece corresponding to one portion of the contour that forms the
sharp corner. Then, evenly-spaced point samples were taken on each part of the contour.
The same number of point samples were also taken on the actual corner boundary, and
they were also evenly-spaced. The correspondences of the two sets of points were then
found one-for-one (e.g. the first point on the recovered boundary corresponded to the
first point on the actual boundary, etc.)

We tested nine cases of distinct corner locations inside a cell using this error measure.
Results are shown in plots in Fig. 14. In each test case, the location of the corner was
fixed as indicated in each plot (e.g. in the first plot, the corner location is (0.5, 0.5)
– the center of the cell). For each location, the degree of the corner varied from 80

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

38 Isocontouring with sharp corner features

to 90 degrees. The stars show error for standard MS and the circles show error for
the extended method. For the cases shown in Fig. 14, the isocontour produced by our
algorithm had a lower error than the isocontour produced by standard MS.

5.1.3. Contour Length Ratio Error Measure

A third measure we considered was the length of the produced contours versus the length
of the actual boundary. We call this measure the contour length ratio error measure.
The measure uses the ratio of the length of the recovered isocontour, Lr, to the length
of the actual boundary, La. The error of this measure, EL, is defined as:

EL = Lr/La . (2)

Thus, values closer to 1 represent better contours. We used the same test cases described
at the beginning of Section 5.1 to find this error measure, and we show several plots of
error in Fig. 15, with the circles denoting the error of our method and the stars denot-
ing the error of standard MS. The average value of EL for standard MS is 0.55 (45%
underestimation) while the average value of EL for our algorithm is 0.77 (23% under-
estimation). These experiments suggest that the extended method produces a contour
that has a length closer to the actual boundary than does standard MS.

5.1.4. Error between Actual Corner Location and Recovered Corner Location

A fourth error measure we considered is the discrepancy (error) between the actual corner
location and the recovered corner location. We consider such error versus the corner’s
relative distance to a reference location, LAC , on the grid cell. Since standard MS does
not recover a sharp corner, we considered the midpoint of the contour as the recovered
corner location, LRC , to measure the discrepancy. The error of this measure, ECL, is
defined as:

ECL = |LAC − LRC | . (3)

To evaluate this error, we used synthetic images of an object with a 90-degree sharp
corner inside one grid cell. We varied the corner location in each test image.

To determine ECL, we used a grid cell vertex as the reference location. Specifically,
we used the vertex that is closest to the recovered corner. A plot of error measured this
way is shown in Fig. 16a. In this figure, the errors of our algorithm are shown as circles,
and the errors of standard MS are shown as stars. Our algorithm was found to produce
an error free contour when the actual location is at the center of the grid cell (at that
location, the distance to the reference location is 0.71).

We also computed ECL using a location of the grid cell edge closest to the recovered
corner as the reference location. A plot of error measured this way is shown in Fig. 16b.
This plot uses the same color coding as Fig. 16a does. The error free corner case can also
be observed in this figure. These two experiments suggest that our algorithm produces

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 39

Fig. 14. Average distance between corresponding points error measure, EDC , for new
algorithm (circles) and standard MS (stars).

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

40 Isocontouring with sharp corner features

Fig. 15. Contour length ratio error, EL, measure for new algorithm (circles) and stan-
dard MS (stars).

Fig. 16. The distance between recovered corner and the actual corner, ECL, vs. the
distance between the actual corner location and two different reference locations.
(a) Reference location: the closest grid cell vertex. (b) Reference location: the
closest grid cell edge.

a corner that is located closer to, and sometimes at the exact location of, the actual cor-
ner, while standard MS invariably exhibited error. Our algorithm also tends to produce
corners with error smaller than the contours produced by standard MS.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 41

5.2. Processing Time

Next, we report on processing times for the new algorithm and the standard MS. Timings
were done on a machine with an Intel i7-3770 quad core processor and 12GB of mem-
ory. The datasets used for testing were the Hook1, Hook2, Needle, and Scissors images
described earlier and the synthetic L-shaped axis aligned block used in Fig. 8 (which we
call Synthetic here). Results are presented in Tab. 2. In these tests, our method had
slightly longer processing times than the standard MS due to its additional processing
steps for the corner-containing grid cells, but the amount of overhead associated with
sharp corner production is quite small (averaging 3.3% overhead).

6. Conclusions

We have presented a new algorithm that allows for production of an isocontour with
sharp corner features. The method is an extension to the Marching Squares algorithm.
It exploits contour information from neighboring cells to determine likely locations of
sharp corners and then creates a contour with sharp corners there. Applications of
the new algorithm on synthetic datasets and X-ray images suggest that when sharp
corner features occur in the actual boundaries, the new algorithm produces contours
closer to the actual boundaries than standard MS does. Error studies show that our
approach exhibits smaller error than standard MS in (1) two out of three cases using
average closest Euclidean distance, (2) all twelve cases using average distance between
corresponding points, and (3) all four cases using the contour length ratio measure. The
new algorithm also produces very small to no error when the angle of the sharp corner
is close to 90 degrees.

In future work, we hope to develop further extensions that can produce other contour
feature types.

Tab. 2. Processing times.

Processing times [ms] Processing times (in ms)
Dataset Std. MS Our alg. Overhead Dataset Std. MS Our alg. Overhead
Synthetic 0.132 0.143 7.7% Hook4 0.138 0.144 4.2%
Hook1 0.142 0.147 3.4% Needle 0.131 0.135 3.0%
Hook2 0.143 0.145 1.4% Scissors 0.138 0.141 2.1%
Hook3 0.142 0.144 1.4%

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

42 Isocontouring with sharp corner features

A. Grid Cell Group Topologies

Figs. 17 and 18 show the grid cell group topologies keyed to the Cases 1 to 14 for
Marching Squares.

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ���

��� ��� ��	 ��

��
��
��
��
��
��
�	
�

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��	 ��
���

��� ��� ��� ��� ��� ��� ��	 ��

Fig. 17. Grid cell group look-up table – part I.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 43

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��� ��� ��	 ��

�
�� �
�� �
�� �
�� �
�� �
�� �
�	 �
�

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
��

���� ���� ���� ���� ���� ���� ���	 ���

���� ���� ���� ����

���� ���� ���	 ���

���� ���� ���� ���� ���� ���� ���	 ���

���� ���� ���� ���� ���� ���� ���	 ���

Fig. 18. Grid cell group look-up table – part II.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

44 Isocontouring with sharp corner features

References

[1] M. Cammarano. Depicting terrain with shaded relief maps. Stanford Univ. Class Report, 2004.
http://graphics.stanford.edu/~mcammara/vis2004/paper.pdf. Accessed: Sept 22, 2015.

[2] P. B. Chamberlain and C. L. Thomas. Direct thick layer rapid prototyping from medical images.
In Proc. 10th Solid Freeform Fabrication Symp. SFF ’99, pages 599–605, Austin, TX, August 9-11,
1999. http://sffsymposium.engr.utexas.edu/Manuscripts/1999/1999-069-Chamberlain.pdf.

[3] M. P. Cipolletti, C. A. Delrieux, G Perillo, and M. C. Piccolo. Superresolution border segmentation
and measurement in remote sensing images. Computers & Geosciences, 40:87–96, March 2012.
doi:10.1016/j.cageo.2011.07.015.

[4] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set relations with isocontours over
existing visualizations. IEEE Trans. Vis. and Comp. Graphics, 15(6):1009–1016, November 2009.
doi:10.1109/TVCG.2009.122.

[5] Fishing accident. http://radiopaedia.org/cases/fishing-accident. Accessed: September 22,
2015.

[6] A. Fofonov, V. Molchanov, and L. Linsen. Visual analysis of multi-run spatio-temporal simulations
using isocontour similarity for projected views. to appear in IEEE Trans. Vis. and Comp. Graphics,
pages 2037–2050, 2016. doi:10.1109/TVCG.2015.2498554.

[7] H. Freeman. Computer processing of line-drawing images. ACM Comput. Surv., 6(1):57–97, March
1974. doi:10.1145/356625.356627.

[8] Q. Gao, S. M. Ali, and P. Edwards. Automated atlas-based pelvimetry using hybrid registration. In
Proc. IEEE 10th Int. Symp. Biomedical Imaging ISBI 2013, pages 1292–1295, San Francisco, USA,
April 2013. doi:10.1109/ISBI.2013.6556768.

[9] S. Gong and T. S. Newman. A corner feature sensitive marching squares. In Proc. IEEE Southeastcon
SECON 2013, pages 1–6, Jacksonville, USA, April 2013. doi:10.1109/SECON.2013.6567363.

[10] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall, 3 edition, 2007.

[11] T. Igarashi, T. Moscovich, and J. F. Hughes. As-rigid-as-possible shape manipulation. In ACM
SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 1134–1141, Los Angeles, CA, USA, 2005. ACM.
doi:10.1145/1186822.1073323.

[12] L. S. Johnson. Progressive transmission of surfaces with geometric constraints. Master’s thesis,
Univ. of South Carolina, 2004.

[13] T. Kaneko and Y. Yamamoto. Volume-preserving surface reconstruction from volume data. In Proc.
Int. Conf. Image Processing ICIP ’97, volume 1, pages 145–148, Santa Barbara, USA, October 1997.
doi:10.1109/ICIP.1997.647405.

[14] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H-P. Seidel. Feature sensitive surface extraction from
volume data. In Proc. 28th Ann. Conf. Computer Graphics and Interactive Techniques, SIGGRAPH
’01, pages 57–66, New York, NY, USA, 2001. ACM. doi:10.1145/383259.383265.

[15] K. R. Krishnan and S. Radhakrishnan. Focal and diffused liver disease classification from
ultrasound images based on isocontour segmentation. IET Image Proc., 9(4):261–270, 2015.
doi:10.1049/iet-ipr.2014.0202.

[16] H. Mantz, K. Jacobs, and K. Mecke. Utilizing Minkowski functionals for image analysis: A march-
ing square algorithm. J. Statistical Mechanics: Theory and Experiment, 2008(12):P12105, 2008.
doi:10.1088/1742-5468/2008/12/P12015.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

http://graphics.stanford.edu/~mcammara/vis2004/paper.pdf
http://sffsymposium.engr.utexas.edu/Manuscripts/1999/1999-069-Chamberlain.pdf
https://doi.org/10.1016/j.cageo.2011.07.015
https://doi.org/10.1109/TVCG.2009.122
http://radiopaedia.org/cases/fishing-accident
https://doi.org/10.1109/TVCG.2015.2498554
https://doi.org/10.1145/356625.356627
https://doi.org/10.1109/ISBI.2013.6556768
https://doi.org/10.1109/SECON.2013.6567363
https://doi.org/10.1145/1186822.1073323
https://doi.org/10.1109/ICIP.1997.647405
https://doi.org/10.1145/383259.383265
https://doi.org/10.1049/iet-ipr.2014.0202
https://doi.org/10.1088/1742-5468/2008/12/P12015
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

S. Gong, T.S. Newman 45

[17] C. Maple. Geometric design and space planning using the marching squares and marching cube
algorithms. In Proc. Int. Conf. Geometric Modeling and Graphics GMAG 2003, pages 90–95, July
2003. doi:10.1109/GMAG.2003.1219671.

[18] P. Moinier, J-D. Müller, and M. B. Giles. Edge-based multigrid and preconditioning for hybrid
grids. AIAA Journal, 40(10):1954–1960, 2002. doi:10.2514/2.1556.

[19] M. Müller. Fast and robust tracking of fluid surfaces. In Proc. 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’09, pages 237–245, New Orleans, Louisiana, USA, 2009.
ACM. doi:10.1145/1599470.1599501.

[20] A. Murthy, E. Bartocci, F. Fento, et al. Curvature analysis of cardiac excitation
wavefronts. IEEE Trans. Computational Biology and Bioinformatics, 10(2):323–336, 2013.
doi:10.1109/TCBB.2012.125.

[21] T. Newman and H. Yi. A survey of the marching cubes algorithm. Computers and Graphics,
30(5):854–879, 2006. doi:10.1016/j.cag.2006.07.021.

[22] G. M. Nielson. On marching cubes. IEEE Trans. Vis. and Comp. Graphics, 9(3):283–297, July
2003. doi:10.1109/TVCG.2003.1207437.

[23] Y. Omori, T. Murakami, and T. Ikeda. Color universal design without restricting colors and their
combinations using lightness contrast dithering. In Proc. 5th Int. Congress of Int. Assoc. of Societies
of Design Res. IASDR 2013, 2013. Paper No. 2227-1. http://design-cu.jp/iasdr2013/papers/
2227-1b.pdf.

[24] OSU (MSU/WSU) range image database. http://web.archive.org/web/19991008150305/http:

//eewww.eng.ohio-state.edu/~flynn/3DDB/RID/. Accessed: October 23, 2016.

[25] S. Roettger. The Volume Library. http://schorsch.efi.fh-nuernberg.de/data/volume/. Ac-
cessed: September 22, 2015.

[26] B. Schlei. A new computational framework for 2D shape-enclosing contours. Image and Vision
Computing, 27(6):637–647, May 2009. doi:10.1016/j.imavis.2008.06.014.

[27] D. Siedhoff, F. Weichert, P. Libuschewski, and C. Timm. Detection and classification of nano-objects
in biosensor data. In Proc. 6th Int. Workshop on Microscopic Image Analysis with Applications in
Biology MIAAB 2011, Heidelberg, Germany, September 2011.

[28] Z. Wang, J. K. Min, and G. Xiong. Robotics-driven printing of curved 3D structures for manufactur-
ing cardiac therapeutic devices. In Proc. IEEE Int. Conf. Robotics and Biomimetics ROBIO 2015,
pages 2318–2323, December 2015. doi:10.1109/ROBIO.2015.7419120.

[29] D. Wu, H. Tian, G. Hao, et al. Design and realization of an interactive medical images three
dimension visualization system. In Proc. 3rd Int. Conf. Biomedical Engineering and Informatics
BMEI 2010, volume 1, pages 189–193, Oct 2010. doi:10.1109/BMEI.2010.5639435.

Machine GRAPHICS & VISION 27(1/4):21–45, 2018. DOI: 10.22630/MGV.2018.27.1.2 .

https://doi.org/10.1109/GMAG.2003.1219671
https://doi.org/10.2514/2.1556
https://doi.org/10.1145/1599470.1599501
https://doi.org/10.1109/TCBB.2012.125
https://doi.org/10.1016/j.cag.2006.07.021
https://doi.org/10.1109/TVCG.2003.1207437
http://design-cu.jp/iasdr2013/papers/2227-1b.pdf
http://design-cu.jp/iasdr2013/papers/2227-1b.pdf
http://web.archive.org/web/19991008150305/http://eewww.eng.ohio-state.edu/~flynn/3DDB/RID/
http://web.archive.org/web/19991008150305/http://eewww.eng.ohio-state.edu/~flynn/3DDB/RID/
http://schorsch.efi.fh-nuernberg.de/data/volume/
https://doi.org/10.1016/j.imavis.2008.06.014
https://doi.org/10.1109/ROBIO.2015.7419120
https://doi.org/10.1109/BMEI.2010.5639435
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.2

Extraction of Image Parking Spaces
in Intelligent Video Surveillance Systems

Rykhard Bohush1, Pavel Yarashevich1, Sergey Ablameyko2, Tatiana Kalganova3
1 Polotsk State University, Polotsk, Belarus

2 Belarusian State University, Minsk, Belarus
3 Brunel University, London, UK

r.bogush@psu.by

Abstract. This paper discusses the algorithmic framework for image parking lot localization and

classification for the video intelligent parking system. Perspective transformation, adaptive Otsu’s bi-

narization, mathematical morphology operations, representation of horizontal lines as vectors, creating

and filtering vertical lines, and parking space coordinates determination are used for the localization

of parking spaces in a video frame. The algorithm for classification of parking spaces is based on the

Histogram of Oriented Descriptors (HOG) and the Support Vector Machine (SVM) classifier. Parking

lot descriptors are extracted based on HOG. The overall algorithmic framework consists of the following

steps: vertical and horizontal gradient calculation for the image of the parking lot, gradient module

vector and orientation calculation, power gradient accumulation in accordance with cell orientations,

blocking of cells, second norm calculations, and normalization of cell orientation in blocks. The pa-

rameters of the descriptor have been optimized experimentally. The results demonstrate the improved

classification accuracy over the class of similar algorithms and the proposed framework performs the

best among the algorithms proposed earlier to solve the parking recognition problem.

Key words: parking space, localization, Histogram of Oriented Descriptors, classification, Support

Vector Machine.

1. Introduction

The importance of video surveillance systems become more and more important in dif-
ferent types of human activity. The development in computer vision technologies made
it possible thanks for recent development of video surveillance systems with intelligent
processing of input video data for various applications, including car parking control
systems.

Over the last decade the numerous intelligent systems have been developed for park-
ing space detection with different lighting conditions and restrictions [1, 2, 6, 14, 24, 25].
For example, a system for management and monitoring of a parking lot by a video cam-
era for simple indoor parking garage proposed in [6] uses the edge detection method for
identification of the free parking places within indoor scenario only with a permanent
lightning source. Parking system described in the paper [25] uses the brown rounded

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

mailto:r.bogush@psu.by
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

48 Extraction of image parking spaces in intelligent video surveillance systems

image drawn at parking spaces and produces the information of empty spaces. A display
shows the number of currently available parking lots. This system was tested and results
were presented only for 8 parking spaces. A video-based system for vacant parking space
detection based on colour histograms and difference of Gaussian features, SVM classifier,
and exponential smoothing for temporal integration is presented in [24]. This system
can be adopted by a car-park routing system to navigate drivers to a comfortable park-
ing space. Authors proposed to use Raspberry Pi in a video camera in [2]. That work
is based on deep Convolution Neural Network (CNN) architecture to classify images of
parking spaces as occupied or vacant and exhibits a very high accuracy. However, such
approach is computationally expensive.

The systems like those just described can be integrated in a large system known as
Smart City and some optional functionality for both parking owners and parking users
can be implemented [1, 2, 18]. For example, for parking owner, an important additional
information is the number of automobiles in the parking lot, the automobile types,
the human activity. Car owners need background information about vacant parking
space location, car surveillance with a smartphone, alarming via smartphone in case
of an extraordinary situation [16]. In such systems the advanced, efficient video data
processing algorithms are necessary, which need large computational resources. They
should operate in the presence of various noise factors: shadows, light spots in sunny
weather, changes in the overall illumination of the automotive parking during the day,
changing weather conditions, etc.

The methods that determine the occupancy of parking spaces on video images can
be divided into three groups. The first group includes methods based on detection of a
car in a parking lot [5, 22], the second group contains methods based on a comparison
of the processed parking space with the reference vacant space [20] and the third group
includes from combined methods [12,15].

The methods from the first group are unstable due to classification errors, which arise
because of the overlap of cars in video images. The second group of methods are based
on the model of reference vacant parking space, so the probability of false classification
increases with the appearance of natural noise, the presence of people and other objects
in an image, the local change in illumination, etc. In the combined methods, as a rule,
the positive properties of the component methods are emphasized and their negative
sides are avoided, but computing cost of these methods are usually large.

Among the features to be chosen to form vectors of image characteristics, HOG [7]
is a good candidate. This is due to that it has a number of desirable characteristics,
like the invariance to image rotation and scale changing, and the stability to noise and
illumination variations. Recently, a range of methods and algorithms using HOG gra-
dients have been proposed [10, 11, 12, 13]. In the method [11] the HOG descriptor and
Bayesian classifier was used, and the correct classification probability was 0.9945 when
the images were taken in typical lighting conditions. In this method it is assumed that

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

R. Bohush, P. Yarashevich, S. Ablameyko, T. Kalganova 49

a structural 3D model of each parking place is built, so the computation time is long.
The method described in [12] is more effective than those previously mentioned and at-
tains an increased probability of correct classification in case of less controlled shooting
conditions. An improvement of this algorithm by introducing the SVM classification
method is presented in [13]. As a result, the probability of correct classification became
0.9955. In [10], the parking lots classification algorithm based on HOG and SVM is
compared with the algorithm based on Haar-like features and AdaBoost method. For
the first algorithm, the probability of correct classification is equal to 0.691, while for
the second method this probability is 0.95. Hence, despite of good characteristics of
the both methods the problem which is our object of interest has not being solved yet.
Therefore, this area of research is still of great interest.

This paper is organized as follows. In Section 2, an intelligent parking lot inspection
system, suitable for scaling and having some optional service functionalities is illustrated.
In Section 3, the algorithm for locating the parking spaces in the parking lot image and
the algorithm for space classification are presented. In Section 4, experimental results
of the search for more effective descriptor parameters and for better class separating
functions in the classifier are performed. The correct classification probability of parking
spaces of the present algorithm is compared to those of the other approaches. Finally, a
conclusion is provided in Section 5.

2. Intelligent Parking Lot Control System

Intelligent parking lot control system is shown in Fig. 1. The system consists of video
camera, video processing module, service functions module, information representation
device or display and cloud platform for integration with the Smart City. Video in-
formation processing module includes subsystems for parking space localization and
subsystems for parking space classification.

Parking space localization subsystem is intended to locate parking spaces in video
frame and save these positions in Local Storage. This is required when the point of view
is changing after the installation of a new system or camera. Input image perspective
transformation is used to facilitate possibility of describing parking space by rectangle,
to detect separating parking lines and should be found once for a given car park and
camera location. For parking space segmentation is mandatory a specialized processing
algorithm. In the last step, coordinates of parking spaces are saved in local storage. This
data will be used by subsystem of parking spaces classification.

Parking space classification subsystem captures a video, processes it frame-by-frame
and present the result for the current frame. This subsystem is used to dedicate fol-
lowing contributions: coordinates of parking space extraction from local storage; feature
extraction for each image of parking space; parking spaces classification to “vacant” and
“occupied” based on features; merging results from the previous step with input video

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

50 Extraction of image parking spaces in intelligent video surveillance systems

Fig. 1. The structure of the intelligent parking lot control system.

frame for visualization on a display of occupied and vacant parking spaces. System capa-
bility can be escalated by optional module ”Service functions”. This module can consist
of car counter on parking lot, car types recognition, map of vacant parking spots, car
surveillance with smart phone, etc. This approach can help to solve an important prob-
lem of huge negative environmental impact by minimizing it. The level of car emissions
will significantly decrease, as a driver can quickly find a vacant parking spot in a large
parking lot.

3. Parking space extraction algorithms

3.1. Parking spaces localization

The system determine locations of parking spaces when a new system is installed or the
camera’s point of view is changed. Parking space location is describes by four coordinates
in image of parking lot. Locations of Parking spaces stored in Local Storage. Algorithm
of parking space localization includes the following steps:

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

R. Bohush, P. Yarashevich, S. Ablameyko, T. Kalganova 51

1. Perspective transformation of parking lot image. The perspective transformation is:(
x,, y,, 1

)
= H × (x, y, 1)T , where

(
x, y, 1

)
are homogeneous pixel coordinates in the

image of parking lot,
(
x,, y,, 1

)
are corresponding homogeneous pixel coordinates in

the output image, H – homography matrix. The pixels coordinates
(
xp, yp

)
, p = 1, 4

on the image of parking lot and corresponding pixels coordinates
(
x,
p, y

,
p

)
, p = 1, 4

on the output image are used to compute homography matrix. Pixels coordinates(
xp, yp

)
are defined manually, when perspective transformation is applying the first

time. These coordinates are the corners of the closest parking row. Pixels coordinates(
x,
p, y

,
p

)
describe a rectangular area. The output image after perspective transforma-

tion is larger than the original image. Now, each parking space represents a rectangle
area, and its sides are parallel to the axes.

2. Otsu method is used to binarize the image.

3. A closing operation of mathematical morphology is used to remove gaps on the lines
that separate parking spaces from each other:

A •B =
(
A⊕B

)
⊖B (1)

where
(
A⊕B

)
is dilation of image A by the structuring element B of 7× 7 and ⊖ is

erosion. An opening operation of mathematical morphology is used to shrink areas
of small noise and unrelated elements:

A ◦ C =
(
A⊖ C

)
⊕ C (2)

where C – the structuring element of 5× 5.

4. Each inseparable horizontal sequence of pixels is represented by horizontal line
Vi

(
x,hl
i , y,hli , li

)
, i = 0, nov − 1, where

(
x,hl
i , y,hli

)
is a start pixel of horizontal line,

l is a length of horizontal line, nov is a total number of lines. The one pixel repre-
sents as

(
x,hl, y,hl, 1

)
.

5. Horizontal lines Vi

(
x,hl
i , y,hli , li

)
are stacking into vertical lines Lj

(
V̄
)
, j = 0, nol − 1,

nol – total number of vertical lines. Vectors form vertical line and they should be one
under another and should not exceed neighboring vectors by length. They stacked
into vertical line Lj

(
x,vl
j , y,vlj , w,vl

j , h,vl
j

)
, where

(
x,vl
j , y,vlj ,

)
is a start pixel of vertical

line, wj , hj are width and height of vertical line. Each vertical line Lj covers every

horizontal line over a rectangle area x,vl
j , y,vlj , x,vl

j + w,vl
j , y,vlj + h,vl

j .

6. The lines are sorted according to the initial coordinates: from the left to the right,
from the top to the bottom. Then they are combined into parking spaces Sk

(
Ll
k, L

r
k

)
,

k = 0, nos− 1, where Ll
k, L

r
k are the left and the right dividing strips respectively,

nos is a number of parking spaces.

7. Parking spaces Sk

(
x,s
k , y

,s
k , w

,s
k , h

,s
k

)
, k = 0, nos− 1 are described by its initial coordi-

nates
(
x,s, y,s

)
, its width w,s and height h,s.

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

52 Extraction of image parking spaces in intelligent video surveillance systems

3.2. Feature set computation

1. The subimage of parking space I
(
w,s, h,s

)
is extracted according to its location

S
(
x,s, y,s, w,s, h,s

)
. Then it is scaled into subimage I

(
w, h

)
, where

(
w, h

)
is the

size of the subimage.
2. Magnitude of gradient G and orientation of gradient θ is calculated for grayscaled
subimage of parking space I as:

Gx,y =

√
Gx

x,y
2 +Gy

x,y
2

(3)

θx,y = arctan
(Gx

x,y

Gy
x,y

)
(4)

where Gx
x,y and Gy

x,y – horizontal and vertical gradients:

Gx
x,y = Ix,y ·Mx (5)

Gy
x,y = Ix,y ·My (6)

where 0 ≤ x < w, 0 ≤ y < h, Mx and Mx – derivative kernels
(
Mx = MyT =

[−1, 0,+1]
)
.

3. Magnitude of gradients G is divided into cells Cm,n with size Cw × Ch and power
gradient accumulation in accordance with orientations θ for each cell:

Cl
m,n =

(n+1)·ch−1

(m+1)·cw−1∑
j=n·ch
i=m·cw

{
Gi,j ,

l·2·π
b ≤ θi,j <

(l+1)·2·π
b

0, l·2·π
b > θi,j

⋃
θi,j ≥ (l+1)·2·π

b

(7)

where b – a number of orientation bins in cell, 0 ≤ l < b, 0 ≤ m < cw, 0 ≤ n < ch,
cw = w

Cw
, ch = h

Ch
.

4. Cells are united into overlapping blocks Bf,g with size Bw ×Bh:

Bf,g =

 Cf,g . . . Cf+Bw−1,g

...
. . .

...
Cf,g+Bh−1 . . . Cf+Bw−1,g+Bh−1

 (8)

where 0 ≤ m < bw, 0 ≤ g < bh, bw = cw −Bw + 1, bh = ch−Bh + 1.
5. The L2-norm block normalization scheme is used. Some cells present in several over-
lapping blocks, and each of them normalized with respect to the block it belongs
to:

Cl
i,j

f,g
=

Cl
i,j

||Bf,g||2
=

Cl
i,j√∑f+Bw−1

i=f

∑g+Bh−1
j=g

∑b−1
l=0 Cl

i,j
2
+ ϵ2

(9)

where ϵ is a small constant, prevents from division by zero.

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

R. Bohush, P. Yarashevich, S. Ablameyko, T. Kalganova 53

6. Normalized blocks are sequentially added to the descriptor. Values of cells Cl
i,j

f,g
in

blocks Bf,g are grouped together to construct a feature vector:

db·Bw·Bh·(bw·g+f)+b·(Bw·(j−g)+(i−f))+l = Cl
i,j

f,g
(10)

Vector size of d depends on size w×h of parking space subimage, size of cell Cw×Ch,
numbers of orientations in cell b and size of block Bw ×Bh:

DS = b ·Bw ·Bh ·
(w

Cw
− 1

)
·
(h

Ch
− 1

)
(11)

3.3. Feature set classification

We use support vector machine to classify computed descriptors of parking space [21].
Support Vector Machine is a linear classifier. To perform a non-linear classification kernel
trick is used. Support Vector Machine is used for binary classification to distinguish
vacant parking spaces from occupied:

a(d) = sign
(n∑

i=0

λiyiK
(
di, d

)
− w0

)
(12)

where a(d) – returns +1 if parking space is vacant, and -1 if parking space is occupied;
λ
(
λ0, λ1, ..., λn

)
– a vector of dual variables; di, i = 1, n – descriptors of support vec-

tors; y
(
y0, y1, ..., yn

)
– an array of class labels; w0 – a threshold value; d – a descriptor

of parking space subimage to be classified. Classification efficiency depends on kernel
functions. For parking lot classification, the following kernel functions can be used:
• linear:

Klin(da, db) = da · db (13)

where da and db – descriptors.
• radial basis function:

Krbf(da, db) = exp
(
−γ · ||da − db||2

)
(14)

• polynomial:

Kpoly(da, db) =
(
γ ·K(da, db) + c

)δ
(15)

γ, δ, c – parameters of corresponding kernel functions.
• histogram intersection:

Khist(da, db) =
∑

min
(
|dai|, |dbi|

)
(16)

To achieve good results of classification the parameters of Histogram of Oriented Gra-
dients and Support Vector Machine should be chosen attentively. Relevant experiments
are described in the next section.

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

54 Extraction of image parking spaces in intelligent video surveillance systems

Tab. 1. Main characteristics of parking spaces subimages.

Weather
conditions

Number of days/
number of images

Number of subimages
of parking spaces
vacant occupied

Mist 6/664 61406 28898

Rain 4/416 18670 37906

Shiny 12/1073 78801 67127

4. Experimental results and discussion

4.1. Evaluation metrics definition

For our experiments, we used the PKLot dataset [8]. PKLot dataset contains images of
parking lot taken in different weather conditions, shadow effects and illumination. Pic-
tures from this dataset taken by a camera, that is installed high enough and located in
the middle of the right parking row, and rows behind it. So the perspective transforma-
tion could be applied to receive the top view of parking lot image, without overlapping
between vehicles.

Experiments on described algorithms and evaluation of research result was realized
using programming language Java, Eclipse development environment, computer vision
libraries OpenCV 3.0.0 and machine learning library jlibsvm.

Fig. 2 shows parking lot image (Fig. 2a) and results for some steps (Fig. 2b-f) of
parking space localization algorithm. Parking lot image after perspective transformation,
binarization and applying morphological operations is presented in Fig. 2b. Fig. 2c is
a subimage from Fig. 2b. Fig. 2d shows a result after horizontal and vertical lines
definition on the subimage (Fig. 2c). Results parking spases localization for subimage
and all parking lot are presented in Fig. 2e and Fig. 2f correspondingly. We use 2135
images of parking lot from PKLot dataset. The total number of subimages of parking
spaces is 292808. Fig. 3 shows some examples for vacant and occupied parking spaces.
Main characteristics of parking images for different weather conditions are presented in
Tab. 1. Descriptor efficiency is evaluated by correctly parking space images classification
probability RR that can be represented as:

RR =
TP + TN

TP + FP + TN + FN
(17)

where TP – correctly classified vacant parking spaces; FP – incorrectly classified vacant
parking spaces; TN – correctly classified occupied parking spaces; FN – incorrectly clas-
sified occupied parking spaces. The probability of falsely vacant parking space subimage
classification is calculated as follows:

FPR =
FP

TP + FP
(18)

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

R. Bohush, P. Yarashevich, S. Ablameyko, T. Kalganova 55

a b

c d e

f

Fig. 2. Example of parking spaces localization algorithm. (a) The image of parking
lot; (b) the result of applying the first, the second and the third step; (c) the
subimage of Fig. 2b; (d) the result of applying the fourth and the fifth step;
(e) after applying the sixth and the seventh step; (f) localized parking spaces.

a

b

Fig. 3. Examples for image of parking spaces: (a) vacant; (b) occupied.

The probability of falsely occupied parking space subimage classification is defined as

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

56 Extraction of image parking spaces in intelligent video surveillance systems

Fig. 4. Probability of correct classification for different size of parking space subimage.

equation:

FNR =
FN

TN + FN
(19)

4.2. Experiments and its results

Proposed model for parking lot classification is consists of HOG descriptor and SVM
classifier. Parameters of descriptor and classifier should be optimized to receive high
efficiency model. HOG includes a large number of parameters to optimize: the size of
parking space subimage, the size of cell, the number of orientation bins, the size of block.
It is very hard problem to find an optimal set for all the possible combinations of param-
eters. Therefor, fixed sequence of parameters would be used to optimize: w, h,Cw, Ch, b,
where Cw, Ch are width and height of cell; b is number of orientations in cell. At the
first step, dual-dimension parameters (the size of parking space subimage, the size of
cell) would be determined. After that, the one-dimensional parameter (number of orien-
tation cells) should be determined. At each step, parameters will be selected to reduce
the descriptor size. This approach would reduce computational cost for parking space
classification subsystem.

The highest probability of correct classification was achieved by using the following
sizes of parking space subimage: 64 × 56, 64 × 64, 64 × 72, 64 × 80, 48 × 104. We
used 8 × 8 cell and 9 bins cell histogram, which are effective for other practical tasks,
for example, pedestrian detection The experimental results are shown in Fig. 4. Fig-
ures 4-6 are the heatmap diagrams. Such a diagram represents a value by a color, a
minimum and maximum values are represented by white and black colors correspond-
ingly. White rectangles show parameter values that are selected for next step. Next,
highest probability of correct classification was achieved for parking spaces subimage
size and cells size

(
w, h,Cw, Ch

)
: (64, 56, 8, 8), (64, 64, 8, 8), (64, 72, 8, 6), (64, 72,

8, 8), (64, 72, 8, 9), (64, 72, 8, 12), (64, 80, 8, 5), (64, 80, 8, 8), (64, 80, 8, 16), (48,
104, 8, 8). The experimental results are shown in Fig. 5. At last step, we find the
orientation numbers in cells that provide maximal correct detection probability on the

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

R. Bohush, P. Yarashevich, S. Ablameyko, T. Kalganova 57

a b c

d e

Fig. 5. Correct classification probability for different cell’s size with size of parking space
subimage. (a) 64× 56; (b) 64× 64; (c) 64× 72; (d) 64× 80; (e) 48× 104.

Tab. 2. Efficiency comparison of different kernel function.
KF SSW SVN RR FPR FNR

Lin. 4.366 161 0.99431 2.91e-3 9.16e-3

H. I. 2.387 262 0.99652 2.12e-3 5.19e-3

R. B. F. 1.371 330 0.99706 1.41e-3 4.86e-3

Poly. 0.752 479 0.99740 1.58e-3 3.86e-3

interval from 4 to 18 bins histogram. Experimental results for the number of orienta-
tions in the cell showed that for the interval from 4 to 8 bin, values of right detecting
probability are not acceptable. Therefore, experimental results from 9 to 18 are shown
in fig. 6.The highest probability of correct classification was achieved by using for fol-
lowing parameters

(
w, h,Cw, Ch, b

)
: (64, 72, 8, 6, 14), (64, 72, 8, 6, 16), (64, 72, 8,

8, 16). The feature set length of obtained descriptors are Ds

(
64, 72, 8, 6, 14

)
= 4928,

Ds

(
64, 72, 8, 6, 16

)
= 5638, Ds

(
64, 72, 8, 8, 16

)
= 3584. So, the most effective descrip-

tor given reduce computation cost has the following parameters: parking space size is
64× 72, cell size is 8× 8, and orientations number in cell is 16.

SVM classification result efficiency is depends on the type of kernel function. There-
fore, experiments were conducted to evaluate the effectiveness of SVM classification of
parking space characteristics based on HOG using various kernel functions Tab. 2 (where
KF – kernel function, SSW – separating strips wide, SVN – support vector number, Lin.
– linear kernel, H. I. – histogram intersection kernel, R. B. F. – Radial Basis Function,
Poly – polynomial kernel). The polynomial kernel shows the highest RR, but we choose
histogram intersection kernel because it classifies much more faster then radial basic
function kernel or polynomial kernel.

Fig. 7 shows the example of parking space classification using the developed algorithm

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

58 Extraction of image parking spaces in intelligent video surveillance systems

Fig. 6. Probability of correct classification for different orientations numbers in cells:
(64, 56, 8, 8), (64, 64, 8, 8) (64, 72, 8, 6), (64, 72, 8, 8), (64, 72, 8, 9), (64, 72, 8, 12),
(64, 80, 8, 5), (64, 80, 8, 8), (64, 80, 8, 16), (48, 104, 8, 8).

a b c d

Fig. 7. The result of parking spaces classification under different weather conditions. (a)
Sunny; (b) Shadow cast; (c) Rainy; (d) Cloudy.

with defined parameters under different weather conditions. Every image of parking
space has been correctly classified. Comparison of the proposed algorithm with other
classification of parking space image algorithms is shown in Tab. 3.

These results show that correct classification of image parking spaces based on pro-
posed descriptor parameters is more attractive with other descriptor parameters.

Comparison of classification algorithms for PKLot dataset is presented in Tab. 4. As

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

R. Bohush, P. Yarashevich, S. Ablameyko, T. Kalganova 59

Tab. 3. Characteristics comparison of classification algorithms for parking spaces.

Algorithm Descriptor Classifier

No. of
parking

lot
images

No. of
parking
spaces

RR

C. C. Huang [11] HOG (64, 32, 16, 16, 8) Bayes 955 72 0.9945
C. C. Huang [12] HOG (64, 32, 16, 16, 10) Bayes 825 72 0.9939
C. C. Huang [13] HOG (96, 48, -, -, -) SVM 1,564 72 0.9955
R. Fusek [10] HOG (96, 96, 8, 8, 4) SVM - 57 0.6910
R. Fusek [10] Haar Adaboots - 57 0.9500

M.
Tschentscher
[23]

Histogram, HSV
k-NN

1,010 36

0.9655
DoG 0.9358

Histogram, RGB
SVM

0.9712
DoG 0.9413

L. Baroffio [4] Histogram, HSV SVM
3,791
4,152
4,474

28
37

100

0.9600
0.9300
0.8700

Proposed HOG(64, 72, 8, 8, 16) SVM 2,153 136 0.9970

Tab. 4. Comparison of classification algorithms for PKLot dataset.
Author Classifier Descriptor RR

L. Baroffio et al. [4] SVM Color Hist. 0.960
G. Amat et al. [3] mAlexNet - 0.904

D. D. Mauro et al. [9] mAlexNet - 0.990
G. Amato et al. [2] mAlexNet - 0.996
X. Li et al. [17] GAN - 0.957

S. Nurullayev et al. [19] CarNet - 0.982
Proposed SVM HOG 0.997

we can see in this table, the approach is the most effective among other approaches,
which using PKLot dataset for testing.

5. Conclusion

The intelligent parking lot control system is proposed. It includes the video camera, the
video processing module, the cloud platform, the service functions module, and the infor-
mation representation device or display. In this system, efficient algorithms for parking
space localization and classification have been proposed. The algorithm for localization
of parking spaces in the parking lot image consists of the following steps: perspec-
tive transformation, Otsu’s binarization, operations of mathematical morphology, lines
construction and coordinates of parking spaces determination. Histogram of Oriented
Descriptors and Support Vector Machine are used to classify the parking spaces. The

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

60 Extraction of image parking spaces in intelligent video surveillance systems

algorithm for HOG computation consists of the following steps: vertical and horizontal
gradient calculation for image of parking lot, gradient module vector and orientation
calculation, power gradient accumulation in accordance to the cell orientations, block-
ing of cells, second norm calculations, and normalization of cell orientation in blocks.
The kernel function based on histogram intersection is the most effective to classify the
computed HOG feature sets for car parking spaces. The most effective parameters of
the descriptor were found to be as follows: 64× 72 – the size of parking space subimage,
8×8 – the size of cell, 16 – the number of orientation bins. The correct classification rate
is 0.997. The experimental results demonstrate the improved classification accuracy.

References

[1] M. Alam, D. Moroni, G. Pieri, M. Tampucci, M. Gomes, J. Fonseca, J. Ferreira, and G. R. Leone.
Real-time smart parking systems integration in distributed ITS for smart cities. Journal of Ad-
vanced Transportation, 2018. Article ID 1485652. doi:10.1155/2018/1485652.

[2] G. Amato, F. Carrara, F. Falchi, C. Gennaro, C. Meghini, and C. Vairo. Deep learning for de-
centralized parking lot occupancy detection. Expert Systems with Applications, 72:327–334, 2017.
doi:10.1016/j.eswa.2016.10.055.

[3] G. Amato, F. Carrara, F. Falchi, C. Gennaro, and C. Vairo. Car parking occupancy detection using
smart camera networks and deep learning. In Proc. IEEE Symp. on Computers and Communication
(ISCC 2016), pages 1212–1217. IEEE, 2016. doi:10.1109/iscc.2016.7543901.

[4] L. Baroffio, L. Bondi, M. Cesana, A. E. Redondi, and M. Tagliasacchi. A visual sensor network for
parking lot occupancy detection in smart cities. In Proc. IEEE 2nd World Forum on Internet of
Things (WF-IoT 2015), pages 745–750, 2015. doi:10.1109/WF-IoT.2015.7389147.

[5] D. B. L. Bong, K. C. Ting, and N. Rajaee. Car-park occupancy information system. In Proc.
3rd Real-Time Technology and Applications Symposium (RENTAS 2006), pages 65–70, Serdang,
Selangor, Malaysia, 2006.

[6] T. Čaklović, I. Aleksi, and Ž. Hocenski. Managing and monitoring of a parking lot by a video
camera. In Proc. of Automation in Transportation, Zagreb, Croatia, 2010. http://bib.irb.hr/

datoteka/509872.Automatizacija_u_prometu_2010.pdf.

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. Int. Conf.
on Computer Vision & Pattern Recognition (CVPR’05), volume 1, pages 886–893. IEEE, 2005.
doi:10.1109/CVPR.2005.177.

[8] P. R. L. De Almeida, L. S. Oliveira, A. S. Britto, E. J. Silva, and A. L. Koerich. PKLot – a robust
dataset for parking lot classification. Expert Systems with Applications, 42(11):4937–4949, 2015.
doi:10.1016/j.eswa.2015.02.009.

[9] D. Di Mauro, S. Battiato, G. Patanè, M. Leotta, D. Maio, and G. M. Farinella. Learning approaches
for parking lots classification. In Proc. Int. Conf. on Advanced Concepts for Intelligent Vision
Systems (ACIVS 2016), volume 10016 of Lecture Notes in Computer Science, pages 410–418.
Springer, 2016. doi:10.1007/978-3-319-48680-2 36.

[10] R. Fusek, K. Mozdřeň, M. Šurkala, and E. Sojka. Adaboost for parking lot occupation
detection. In Proc. 8th Int. Conf. on Computer Recognition Systems CORES 2013, vol-
ume 226 of Advances in Intelligent Systems and Computing, pages 681–690. Springer, 2013.
doi:10.1007/978-3-319-00969-8 67.

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://doi.org/10.1155/2018/1485652
https://doi.org/10.1016/j.eswa.2016.10.055
https://doi.org/10.1109/iscc.2016.7543901
https://doi.org/10.1109/WF-IoT.2015.7389147
http://bib.irb.hr/datoteka/509872.Automatizacija_u_prometu_2010.pdf
http://bib.irb.hr/datoteka/509872.Automatizacija_u_prometu_2010.pdf
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1016/j.eswa.2015.02.009
https://doi.org/10.1007/978-3-319-48680-2_36
https://doi.org/10.1007/978-3-319-00969-8_67
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

R. Bohush, P. Yarashevich, S. Ablameyko, T. Kalganova 61

[11] C. C. Huang, Y. S. Dai, and S. J. Wang. A surface-based vacant space detection for an intelligent
parking lot. In Proc. 12th Int. Conf. on ITS Telecommunications, pages 284–288. IEEE, 2012.
doi:10.1109/ITST.2012.6425183.

[12] C. C. Huang, Y. S. Tai, and S. J. Wang. Vacant parking space detection based on plane-based
bayesian hierarchical framework. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 23(9):1598–1610, 2013. doi:10.1109/TCSVT.2013.2254961.

[13] C. C. Huang, H. T. Vu, and Y. R. Chen. A multiclass boosting approach for integrating weak
classifiers in parking space detection. In Proc. 2015 IEEE Int. Conf. on Consumer Electronics –
Taiwan, pages 314–315. IEEE, 2015. doi:10.1109/ICCE-TW.2015.7216918.

[14] M. Y. I. Idris, Y. Y. Leng, E. M. Tamil, N. M. Noor, and Z. Razak. Car park system a review
of smart parking system and its technology. Information Technology Journal, 8(2):101–113, 2009.
doi:10.3923/itj.2009.101.113.

[15] J. Jermsurawong, M. U. Ahsan, A. Haidar, H. Dong, and N. Mavridis. Car parking vacancy
detection and its application in 24-hour statistical analysis. In Proc. 10th Int. Conf. on Frontiers
of Information Technology (FIT 2012), pages 84–90. IEEE, 2012. doi:10.1109/FIT.2012.24.

[16] J. Lanza, L. Sánchez, V. Gutiérrez, J. A. Galache, J. R. Santana, P. Sotres, and L. Muñoz. Smart
city services over a future internet platform based on internet of things and cloud: The smart
parking case. Energies, 9(9):719, 2016. doi:10.3390/en9090719.

[17] X. Li, M. C. Chuah, and S. Bhattacharya. Uav assisted smart parking solution. In Proc.
Int. Conf. on Unmanned Aircraft Systems (ICUAS 2017), pages 1006–1013. IEEE, 2017.
doi:10.1109/icuas.2017.7991353.

[18] R. Novotnỳ, R. Kuchta, and J. Kadlec. Smart city concept, applications and services. Journal of
Telecommunications System & Management, 3(2):1, 2014. doi:10.4172/2167-0919.1000117.

[19] S. Nurullayev and S. W. Lee. Generalized parking occupancy analysis based on dilated convolutional
neural network. Sensors, 19(2):277, 2019. doi:10.3390/s19020277.

[20] R. J. L. Sastre, P. G. Jimenez, F. J. Acevedo, and S. M. Bascon. Computer algebra algorithms ap-
plied to computer vision in a parking management system. In Proc. IEEE Int. Symp. on Industrial
Electronics (ISIE 2007), pages 1675–1680. IEEE, 2007. doi:10.1109/ISIE.2007.4374856.

[21] M. O. Stitson, J. A. E. Weston, A. Gammerman, V. Vovk, and V. Vapnik. Theory of support vector
machines. Technical Report CSD-TR-96-17, Department of Computer Science, Royal Holloway
University of London, 1996.

[22] N. True. Vacant parking space detection in static images. Report, course CSE 190-A: Projects in
Vision & Learning, University of California, San Diego, 2007. http://cseweb.ucsd.edu/classes/

wi07/cse190-a/.

[23] M. Tschentscher, C. Koch, M. König, J. Salmen, and M. Schlipsing. Scalable real-time
parking lot classification: An evaluation of image features and supervised learning algo-
rithms. In Proc. Int. Joint Conf. on Neural Networks (IJCNN 2015), pages 1–8. IEEE, 2015.
doi:10.1109/IJCNN.2015.7280319.

[24] M. Tschentscher and M. Neuhausen. Video-based parking space detection. In Proc. Forum Bauin-
formatik, pages 159–166, 2012.

[25] R. Yusnita, F. Norbaya, and N. Basharuddin. Intelligent parking space detection system based on
image processing. International Journal of Innovation, Management and Technology, 3(3):232–235,
2012. doi:10.7763/IJIMT.2012.V3.228. http://www.ijimt.org/show-37-455-1.html.

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://doi.org/10.1109/ITST.2012.6425183
https://doi.org/10.1109/TCSVT.2013.2254961
https://doi.org/10.1109/ICCE-TW.2015.7216918
https://doi.org/10.3923/itj.2009.101.113
https://doi.org/10.1109/FIT.2012.24
https://doi.org/10.3390/en9090719
https://doi.org/10.1109/icuas.2017.7991353
https://doi.org/10.4172/2167-0919.1000117
https://doi.org/10.3390/s19020277
https://doi.org/10.1109/ISIE.2007.4374856
http://cseweb.ucsd.edu/classes/wi07/cse190-a/
http://cseweb.ucsd.edu/classes/wi07/cse190-a/
https://doi.org/10.1109/IJCNN.2015.7280319
https://doi.org/10.7763/IJIMT.2012.V3.228
http://www.ijimt.org/show-37-455-1.html
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

62 Extraction of image parking spaces in intelligent video surveillance systems

Rykhard Bohush Graduated from Polotsk State University in 1997. In
2002 he got his PhD in the field of Information Processing at the Institute
of Engineering Cybernetics, the National Academy of Sciences of Belarus.
Head of Computer Systems and Networks Department of Polotsk State Uni-
versity. His scientific interests include image and video processing, object
representation and recognition, intelligent systems, digital steganography.

Pavel Yarashevich Born in 1991. In 2016 he got his the master degree
in the field of Mathematical Modelling, Numerical Methods and Complexes
of Programs. Currently he works as assistant of Computer Systems and
Networks Department in PSU. Research interests are computer graphics
processing, cryptography and programming.

Sergey Ablameyko DipMath in 1978, PhD in 1984, DSc in 1990, Prof. in
1992. Professor of Belarusian State University. His scientific interests are:
image analysis, pattern recognition, digital geometry, knowledge based sys-
tems, geographical information systems, medical imaging. He is in Editorial
Board of Pattern Recognition Letters, Pattern Recognition and Image Anal-
ysis and many other international and national journals. He is a senior mem-
ber of IEEE, Fellow of IAPR, Fellow of Belarusian Engineering Academy,
Academician of National Academy of Sciences of Belarus, Academician of
the European Academy, and others. He was a First Vice-President of Inter-
national Association for Pattern Recognition IAPR (2006-2008), President
of Belarusian Association for Image Analysis and Recognition.

Tatiana Kalganova Graduated from Belarusian State University of In-
formatics and Radio-electronics. In 2000 she got her PhD in the field of
Information Processing at the Napier University. Lecturer at Brunel Uni-
versity London. The main research fields of Dr. Kalganova are in Artificial
Intelligence and its real-life applications: Evolutionary Design and Optimi-
sation, Evolvable hardware, Modelling and optimisation of Large Systems,
Operational research, Robotics, Swarm optimisation.

Machine GRAPHICS & VISION 27(1/4):47–62, 2018. DOI: 10.22630/MGV.2018.27.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2018.27.1.3

	Interpreted Graphs and ETPR(k) Graph Grammar Parsing

for Syntactic Pattern Recognition
	Introduction
	Preliminaries
	Interpreted graphs and indexed edge-unambiguous graphs
	Formal properties of ETPR(k) graph grammars
	Parsing algorithm of ETPR(k) graph languages
	Concluding remarks

	Isocontouring with Sharp Corner Features
	Introduction
	Background
	Related work in feature preserving isocontouring
	Methods: Corner Feature Expressive Marching Squares
	Corner Feature Expressive Marching Squares: motivation
	Corner Feature Expressive Marching Squares: elaboration
	Corner Feature Expressive Marching Squares: algorithm

	Results and discussion
	Empirical Error Studies: Our Algorithm vs. Standard MS
	Average Closest Euclidean Distance Error Measure
	Corresponding Points Error Measure
	Contour Length Ratio Error Measure
	Error between Actual Corner Location and Recovered Corner Location

	Processing Time

	Conclusions
	Grid Cell Group Topologies

	Extraction of Image Parking Spaces

in Intelligent Video Surveillance Systems
	Introduction
	Intelligent Parking Lot Control System
	Parking space extraction algorithms
	Parking spaces localization
	Feature set computation
	Feature set classification

	Experimental results and discussion
	Evaluation metrics definition
	Experiments and its results

	Conclusion

