
Vol. 30, No. 1/4, 2021

Machine
GRAPHICS &VISION

International Journal

Published by
The Institute of Information Technology

Warsaw University of Life Sciences – SGGW

Nowoursynowska 159, 02-776 Warsaw, Poland

in cooperation with

The Association for Image Processing, Poland – TPO





On the Use of Convolutional Neural Networks
with Patterned Stride for Medical Image Analysis

Luiz Zaniolo, Oge Marques
Florida Atlantic University, Boca Raton, FL (USA)

Abstract. The use of deep learning techniques for early and accurate medical image diagnosis

has grown significantly in recent years, with some encouraging results across many medical specialties,

pathologies, and image types. One of the most popular deep neural network architectures is the convo-

lutional neural network (CNN), widely used for medical image classification and segmentation, among

other tasks. One of the configuration parameters of a CNN is called stride and it regulates how sparsely

the image is sampled during the convolutional process. This paper explores the idea of applying a pat-

terned stride strategy: pixels closer to the center are processed with a smaller stride concentrating the

amount of information sampled, and pixels away from the center are processed with larger strides con-

sequently making those areas to be sampled more sparsely. We apply this method to different medical

image classification tasks and demonstrate experimentally how the proposed patterned stride mecha-

nism outperforms a baseline solution with the same computational cost (processing and memory). We

also discuss the relevance and potential future extensions of the proposed method.

Key words: convolutional neural networks, patterned stride, medical image classification, deep

learning.

1. Introduction

The use of deep learning architectures for medical image analysis has experienced sig-
nificant growth in recent years [12], with impressive success stories and claims of super-
human performance across many tasks, image modalities, and diseases.

Convolutional Neural Networks (CNNs) are the most popular architecture for medical
image classification tasks. CNN architectures have an end-to-end structure, which learn
high-level representations from raw data [11] without the need for pre-selecting features
relevant to that type of data. Ever since their initial success on ImageNet Large-Scale Vi-
sual Recognition Challenge (LSVRC) 2012 [10], CNNs have been extended to specialized
image classification tasks.

The performance of a CNN can be improved by fine-tuning some of its parame-
ters (e.g., number of layers, type of layers, weights, biases) and hyperparameters (e.g.,
learning rate, number of epochs, loss function, activation functions). One of the CNN pa-
rameters that can be specified by the designer of the network is called stride: it specifies
how the filters in a convolutional layer convolve around the input volume. Larger stride
values mean that the network will perform more sparse convolutions – and consequently
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4 On the use of CNNs with patterned stride for medical image analysis

a smaller number of them – throughout the processing of the image. Smaller stride val-
ues mean more concentrated sampling and consequently larger number of convolutions
performed. The majority of existing CNNs implement a fixed value of stride, usually
between 1 and 3. The minimum stride value of 1 means that all pixels are processed,
which sets an upper bound on the computational cost of the convolution operations.

This paper explores the idea of changing the stride value in CNNs depending on the
position of the pixel within the image: a smaller stride value is used when processing the
center of the image, while a larger one is used for pixels close to the edges, according to
a predefined sampling pattern.

Guo et al. [6] proposed another method where image classification benefits from using
a patterned stride. However, their algorithm addresses the image classification problem
in a different way, by judging the image complexity based on extracted features, and
using that result to decide the stride value, suggesting smaller stride values for complex
images and larger strides for simple ones.

The proposed method is experimentally evaluated on three medical image analysis
tasks – (i) skin lesion classification, (ii) brain tumor detection, and (iii) image modal-
ity classification – and compared against a baseline fixed stride approach that requires
similar computational power for both training and inference phases.

2. Materials and Methods

2.1. Datasets

In this study, we use three datasets: the HAM 10000 dataset used for skin lesion classifica-
tion tasks; the Brain Tumor dataset, which contains images with healthy and unhealthy
magnetic resonance imaging (MRI) brain slices; and the MedNIST dataset for image
modality classification.

2.1.1. The HAM 10000 Dataset

The HAM10000 (Human Against Machine with 10000 training images) dataset [15] is
a large collection of labeled multi-source dermatoscopic images in RGB color space,
manually classified into one of seven different classes: Melanocytic nevi, Melanoma,
Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions,
and Dermatofibroma (Figure 1).

Training, validation, and test sets are available at the 2018 International Skin Imaging
Collaboration (ISIC) challenge archive website [9] (see [2,15] for more information), which
also includes a live challenge submission option, for continuous evaluation of automated
classifiers using the dataset.
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(a) Melanocytic nevi (b) Melanoma

(c) Benign keratosis-like lesions (d) Actinic keratoses

(e) Vascular lesions (f) Dermatofibroma

(g) Basal cell carcinoma

Fig. 1: HAM 10000 dataset: examples of representative images for each class.
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Fig. 2: Examples of tumorous brains.

Fig. 3: Examples of healthy brains.

2.1.2. The Brain Tumor Dataset

The Brain Tumor dataset [1] contains a total of 253 grayscale Brain MRI slices: 155 im-
ages that exhibit tumor and 98 slices that do not (Figures 2 and 3).

This dataset has been published on Kaggle [5] (arguably the world’s most famous
machine learning and data science community) and used in several experiments using
different network architectures to test performance and accuracy in classification tasks.

2.1.3. The MedNIST Dataset

The MedNIST dataset [4] is a collection of grayscale medical images categorized into
six different classes: Abdomen computed tomography (CT), Chest CT, Head CT, Chest
X-ray, Brain magnetic resonance (MR), and Breast MR (Figure 4).

This dataset was created with the purpose of teaching basic deep learning concepts.
In a follow up work [3], the dataset was used to demonstrate how to optimize a simple
image classifier, thereby guiding researchers in the process of building an environment to
execute a complete deep learning application, understanding the deep learning workflow,
and focusing more specifically on parameters adjustments and their influence on the
overall performance.
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(a) Abdomen CT (b) Chest CT

(c) Head CT (d) Chest X-ray

(e) Brain MR (f) Breast MR

Fig. 4: MedNIST dataset: examples of representative images for each class.
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2.2. CNN Architectures

CNNs have demonstrated excellent performance in image classification tasks. Classi-
cal examples of successful networks include AlexNet [10] and VggNet [14]. Modern
CNN architectures are deeper and use more complex connections among layers, such as
ResNet [7] and DenseNet [8].

When an input image is processed at the convolutional layer, the image goes through
a series of convolution operations taking as input different pixels of the image. These
operations are performed using masks (usually 3×3 or 5×5) in a similar way to spatial
filters in classical image processing, except for two significant differences: (i) the masks’
coefficients (weights) are learned by training the CNN (rather than fixed by the specific
image processing technique); and (ii) the number of pixels (known as stride) by which
a mask is shifted after performing the convolution in a certain portion of the image can
be chosen by the CNN designer.

The choice of stride value in CNNs impacts the number of computations (additions
and multiplications) required to process each image: smaller strides require more com-
putation than larger strides. Typical stride values are 1, 2, and 3. A stride of 1 means
that all pixels form the input image will be processed, which sets an upper bound on
the computational cost of the convolution operations.

In this paper we extend the ideas first presented in [16] to explore and test the idea
of varying the stride between 1 and 3 depending on the relative position of the pixels
to be used in the convolution operation within the image: pixels that are closer to the
center of the image will be processed using a smaller stride whereas pixels closer to the
edges of the images are processed with a larger stride.

Figure 5 illustrates the process using a generic input image whose size is 15×151,
where the blue pixels are pre-selected for the convolution operation. The resulting effect
is the assignment of corresponding stride values as follows:

• pixels 1 to 5: stride 3,

• pixels 5 to 7: stride 2,

• pixels 7 to 9: stride 1,

• pixels 9 to 11: stride 2,

• pixels 11 to 15: stride 3.

Medical images sizes are usually larger, therefore the original strategy has to be
expanded to accommodate larger images. It is easy to imagine how the process would
scale up. The sampling process has to be done in a way where there is a given percentage
of the pixels that would be sampled with stride 1, and others with strides 2 and 3. This
has to be arranged in a way as to sample half of the pixels in each dimension. For

1In our experiments the same basic idea was adapted and implemented with different image sizes,
depending on the dataset used.
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Fig. 5: Simple example of the proposed patterned stride mechanism for a generic image
of 15×15 pixels.

example, in the MedNIST dataset all images are 64×64 pixels. The stride arrangement
used for both dimensions in this dataset was as follows:

• pixels 1 to 8: stride 3,

• pixels 8 to 30: stride 2,

• pixels 30 to 35: stride 1,

• pixels 35 to 57: stride 2,

• pixels 57 to 64: stride 3.

In [16], the authors formalized their assumptions about the advantages of the pat-
terned stride approach with two complementary testable hypotheses:

•H1: The use of patterned stride in images whose main contents are in the central
portion of the image will lead to improved performance (when compared to the
baseline case of comparable computational complexity, i.e., fixed stride = 2).
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•H2: The use of patterned stride in images whose main contents are not in the central
portion of the image will lead to decreased performance (when compared to the
baseline case of comparable computational complexity, i.e., fixed stride = 2).

In this paper we focus on new examples of successful use of patterned stride, introduce
and explain three new hyperparameters (P1, P2, P3), and present image score calculations
to provide a rough estimate of how effective the patterned stride mechanism can be in
different datasets.

2.3. Hyperparameters P1, P2, P3

One of the assumptions that are needed to compare this new method against fixed
stride 2 is to create a model which has similar computational and memory requirements.
In order for this to happen, the first layer has to reduce the sampling points by half. The
sampling points can be spread in different ways throughout the image. The proposed
method postulates a concentrated sampling in the center and sparse at the edges, varying
the stride from 1 to 3 in different parts of the images as seen in figure 5. However, the
number of pixels in each area (stride 1, 2 or 3) can vary while still keeping the same total
number of sampling points. Figure 6 shows an example where the stride 2 area is enlarged
compared to strides 1 and 3. We propose the introduction of three new hyperparameters,
that will define the percentage of sampling points in each stride region, P1, P2 and P3

which are the percentage of total sampling points in each corresponding stride region
(1, 2 and 3) respectively.

Since we still need to comply with the requirement of having half of the sampling
points in the first convectional layer, we have to guarantee that the number of sampling
points on stride regions 1 and 3 are the same. Another intuitive way to explain this is
that any increase in a more concentrated sampling area (stride 1) has to be compensated
by an increase of a sparse area (stride 3).

Therefore the choice of P1, P2, and P3 is bound by the following conditions:

P1 = P3 ,

and
P1 + P2 + P3 = 1 .

The optimal values used for P1, P2, and P3 for each experiment will be described in
Section 3.

2.4. Image Score

To guide the selection of hyperparameters P1, P2, and P3, we created a new method
to calculate the input images’ score. The objective of the score is to calculate how
the meaningful part of the image frame is concentrated in the center. Image scores

Machine GRAPHICS & VISION 30(1/4):3–22, 2021. DOI: 10.22630/MGV.2021.30.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2021.30.1.1


L. Zaniolo, O. Marques 11

Fig. 6: Simple example of variation of stride areas for a generic image of 21×21 pixels.

range between 0 and 1, where 0 is an image where all the information is completely
concentrated in the center and 1 means the opposite. Figure 7 shows an example of
image score calculation using a quadrilateral bounding polygon, where the meaningful
part of the image is shown in yellow.

The score is calculated as:

S =
1

2

(
xc + yc

2
+

s∑
k=1

xk + yk
2n

)
,

where n is the number of sides of the bounding polygon and xc, yc, xk, and yk are the
partial scores of each individual point calculated as follows:

xc =
|pcx − icx|

dx
,

yc =
|pcy − icy|

dy
,
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Fig. 7: Image score bounding box.

xk =
|pkx − icx|

dx
,

yk =
|pky − icy|

dy
,

where

pcx – x coordinate of bounding polygon center,

pcy – y coordinate of bounding polygon center,

pkx – x coordinate of kth point of the bounding polygon,

pky – y coordinate of kth point of the bounding polygon,

icx – x coordinate of frame center,

icy – y coordinate of frame center,

dX – image width in pixels,

dY – image height in pixels.

This method was used to calculate the scores for the datasets used in the experiments
and will be reported together with the results of each experiment in Section 3.
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3. Experiments and Results

This section describes in detail the experiments performed to test the performance of
the patterned stride mechanism in a simple CNN (Figure 8), whose layers are described
below:

1. Convolutional 2D layer: this is the layer in which we modify the stride parameter,

2. Batch Normalization layer,

3. ReLu layer,

4. Max Pooling layer,

5. Convolutional 2D layer,

6. Batch Normalization layer,

7. ReLu layer,

8. Max Pooling layer,

9. Convolutional 2D layer,

10. Batch Normalization layer,

11. ReLu layer,

12. Fully connected layer,

13. Softmax layer,

14. Classification layer2.

3.1. Experimental setups

All experiments were performed using MATLAB. Since MATLAB doesn’t provide an
option to select variable strides for convolutional layers, some modifications in the MAT-
LAB source code were needed in other to perform the desired operation.

The train/test split was 95/5, i.e., 95% of the images were used for training/validation
and 5% for tests. Categorical cross-entropy loss and stochastic gradient descent with
momentum (SGDM) optimizer were used.

Network parameter values were experimentally selected to achieve the best per-
formance for each task. For the HAM10000 dataset, the network was trained using
20 epochs and a decaying learning rate (LR), starting with 0.0003 and reducing it by
half every 2 epochs. For the Brain Tumor dataset, we used 40 epochs and a LR of 0.0003.
For the MedNIST dataset, we used 8 epochs and a fixed LR of 0.0003.

3.2. Results

Test runs were performed in four different network configurations, where the stride pa-
rameter was set to 1, 2, 3 or patterned, depending on the run. Final results for the

2The number of nodes in this layer will vary depending on the experiment according to the number
of classes.
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Fig. 8: CNN architecture used for the classification experiments.
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Tab. 1: Skin lesion classification using the HAM10000 dataset and patterned stride:
classification accuracy results and time measurements.

Stride Accuracy Training Time Inference Time

1 77.0 % 258 min 31.9 ms
2 76.4 % 105 min 10.9 ms
3 75.5 % 70 min 5.8 ms

Patterned 78.1 % 105 min 10.9 ms

Tab. 2: Brain tumor detection using the Brain Tumor dataset and patterned stride:
classification accuracy results and time measurements.

Stride Accuracy Training Time Inference Time

1 89.6 % 12.5 min 50.6 ms
2 84.0 % 4.2 min 15.3 ms
3 81.6 % 2.4 min 7.4 ms

Patterned 87.2 % 4.2 min 15.3 ms

HAM10000 dataset, Brain tumor dataset, and MedNIST dataset are shown in Tables 1, 2,
and 3, respectively. In each table the respective classifier’s accuracy and the elapsed time
for training and inference for each case are reported. The tables confirm the computa-
tional cost for patterned stride is comparable to the cost for stride 2.

We performed tests with different values of hyperparameters P1, P2, and P3 and
reported results for optimal parameter selection. The optimal values for each dataset
are shown in Table 4.

Tab. 3: Image modality classification using the MedNIST dataset and patterned stride:
classification accuracy results and time measurements.

Stride Accuracy Training Time Inference Time

1 99.8 % 16.5 min 18.6 ms
2 98.3 % 5.0 min 6.1 ms
3 95.9 % 2.4 min 3.5 ms

Patterned 98.9 % 5.0 min 6.1 ms
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Tab. 4: Optimal values for P1, P2, and P3 of each dataset.

Dataset P1 P2 P3

HAM10000 0.24 0.52 0.24
Brain Tumor 0.46 0.08 0.46
MedNIST 0.16 0.68 0.16

4. Discussion

Experimental results on three different classification tasks, in three different datasets,
have confirmed the hypothesis that the proposed patterned stride mechanism outper-
forms the fixed stride options (with stride equal to 2 or 3) in all test cases.

For the HAM10000 dataset, the results were even better, with an accuracy even
higher than the stride 1 configuration (at a fraction of the computational cost). This is
consistent with the fact that the most informative portion of the skin lesion images in
the HAM10000 dataset is usually centered (and the surrounding area contains very little
information), which is the optimal case for the proposed patterned stride scheme.

On a related note, figures 9 and 10 show the confusion matrices for the case of
patterned stride and stride 2 in the MedNIST classification task. In Figure 9, which
displays the results for patterned stride, one can see that two of the images from the
brain MR category were misclassified, one as head CT and the other as breast MR.
In Figure 10, which displays the confusion matrix for stride 2, one can observe that
there were two instances of misclassification between the CTHead and MRBrain classes,
which did not happen for the patterned stride case (Figure 9). This result is particularly
interesting because for these two classes, since the general brain shape is the same, the
differences had to be found in internal image elements. This confirms that the patterned
stride has a better performance when the central area of the image contains the most
informative pixels within the image.

Even though the patterned stride mechanism delivered a better classification accuracy
in the MedNIST classification task, there were some cases where it classified an image
incorrectly. One example is shown in figure 11, where an image from the brain magnetic
resonance class was classified as breast magnetic resonance. In this case, the input image
was very dark and the key to classify it correctly lies on the observation of the external
shape where the breast magnetic resonance has some distinguishing factors. Since the
patterned stride network concentrates its effort in central places, it wasn’t able to get
the necessary nuances of the image for a correct classification.

Another interesting observation is the relationship between image scores and hyper-
parameters P1, P2, P3. Table 5 shows the comparison of image scores for each dataset
with the optimal values used for the parameters and indicates that larger scores need
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Fig. 9: Confusion matrix for the patterned stride case using the MedNIST dataset.

Tab. 5: Comparison between image scores and hyperparameters P1, P2, and P3 for each
dataset.

Dataset Image Score P1 P2 P3

Brain Tumor 0.29 0.46 0.08 0.46
HAM10000 0.35 0.24 0.52 0.24
MedNIST 0.44 0.16 0.68 0.16

to use smaller values for P1 and P3 and larger values for P2. These results confirm
the usefulness of the image scores as a preliminary estimate of the effectiveness of the
patterned stride mechanism across different datasets.

The proposed method has its limitations, more notably: (i) it does not provide better
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Fig. 10: Confusion matrix for the stride 2 case using the MedNIST dataset.

results than the fixed stride 2 baseline in cases where the informational content of an
image is spread throughout the image (as opposed to concentrated on its center)3; and
(ii) it does not work for cases where most of the useful information is concentrated in a
small portion of the image, but away from its center.

To address (i), a simple two-class classifier could be used to determine if a dataset
(and associated classification problem) is suitable for the patterned stride mechanism
or not. Such classifier could use an easy-to-compute measure of image complexity or
homogeneity (e.g., entropy) as its main feature. In its simplest form, if the entropy is
higher than a certain threshold, the dataset is not a good candidate for the patterned
stride approach. More sophisticated features and classifiers, of course, could be used.

A potential solution to (ii) could be the use of alternative sampling patterns (see

3See counterexamples in [16] that support hypothesis H2.
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Fig. 11: Brain magnetic resonance classified as breast magnetic resonance by the pat-
terned stride network.

Figure 12 for examples of five different predefined patterns4 for centered as well as top-
right, top-left, bottom-right, and bottom-left cases) and a selector algorithm that could
be used to determine – for each individual image in the dataset – which of the (five)
patterns is most appropriate. Such algorithm could use any type of region-of-interest
(ROI) detection scheme, e.g., off-the-shelf face detectors for images involving a face, or
ROI computation using saliency maps [13] for cases where the object of interest is also
the most salient in the scene.

5. Conclusion

We have extended a method for implementing a patterned stride mechanism in CNNs
and successfully demonstrated experimentally that the use of patterned stride leads to
higher accuracy than a fixed stride baseline case of same computational complexity in
three different medical image classification tasks and datasets.

The proposed approach could be extended to other datasets, more complex CNN
architectures, and different tasks using CNNs, such as semantic segmentation and object
detection.

4The examples show the sampling distribution for a 15×15 image, but can be extrapolated to any
image size.
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Fig. 12: Adjustable patterned stride sampling patterns.
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Abstract. In this pandemic-prone era, health is of utmost concern for everyone and hence eating
good quality fruits is very much essential for sound health. Unfortunately, nowadays it is quite very
difficult to obtain naturally ripened fruits, due to existence of chemically ripened fruits being ripened
using hazardous chemicals such as calcium carbide. However, most of the state-of-the art techniques
are primarily focusing on identification of chemically ripened fruits with the help of computer vision-
based approaches, which are less effective towards quantification of chemical contaminations present
in the sample fruits. To solve these issues, a new framework for chemical ripening and contamination
detection is presented, which employs both visual and IR spectrometric signatures in two different
stages. The experiments conducted on both the GUI tool as well as hardware-based setups, clearly
demonstrate the efficiency of the proposed framework in terms of detection confidence levels followed
by the percentage of presence of chemicals in the sample fruit.

Key words: chemical ripening, arsenic contamination, visual features, IR spectral signatures.

1. Introduction

Nowadays health is of important concern for everyone, hence eating good quality fruits
is a primary requirement for sound health. The fruits in general are plant products
containing sugar, vitamin C and water along with minerals, cellulose, protein and photo
chemicals that protect human body against various diseases [6]. In general, fruits obtain
desirable flavor, quality, color and other textural changes during their natural ripening
process. Unfortunately, nowadays it is quite very difficult to obtain naturally ripened
fruits, due to existence of huge numbers of chemically ripened fruits in the markets,
which are being ripened using hazardous chemicals such as calcium carbide (CaC2). For
example, nearly 80% fruits such as mango, papaya and banana are artificially ripened
using different chemicals [16].

In general, though fruit ripening is a natural process, in order to speed up the rate
of fruit ripening, most of the farmers and vendors use artificial ripening agents like
calcium carbide. Specifically, calcium carbide is a dangerous, corrosive chemical and
regular consumption of it leads to vomiting, diarrhoea, eye damage, ulcers, hypoxia
and neurological disorders, and even to cancer due to the presence of arsenic as well as
phosphorous poisoning traces. Due to these reasons, as per PFA (Prevention of Food
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Adulteration) act in 1955, chemical ripening of fruits is strictly banned. Though calcium
carbide is banned, still some traders are employing chemical ripening for profit purposes.

Spacial care must be paid to climacteric fruits. Climacteric fruits are those which,
beginning from a certain developmental stage, continue to develop to full maturity,
even when harvested. Specifically, in India, most of climacteric fruits, such as mango,
banana and papaya are chemically ripened with industrial grade calcium carbide [16].
Specifically, in India, calcium carbide, a carcinogen, is widely used for artificial ripening of
fruits such as banana as well as mango, which is illegal and strictly banned. Therefore,
the identification of artificially ripened fruits followed by the quantification of CaC2

contamination in such fruits is very important in order to safeguard the consumers from
a series of health problems. Based on these aspects, a new framework is introduced in
this paper, which makes use of both computer vision as well as Near-Infrared (NIR)
spectrometric techniques for detecting the artificially ripened fruits, followed by the
computation of chemical contaminations present in the sample fruits.

2. Related Work

In the existing literature, computer vision-based techniques are popularly utilized for
quality determination and grading of fruits by means of automating the grading processes
as well as minimizing the monotonous inspection tasks. Further, computer vision is also
widely employed in the literature for defect detection, and classification of ripeness of
fruits based on their appearance. For example, a comparative study of vitamins A,
B, and C content in different types of tomatoes including ethylene and vine-ripened
tomatoes is presented in [6]. Ahmad et al. [1] analysed the effect of ethylene towards
the speed of ripening as well as the quality of banana fruit; however, they failed to
accurately discriminate between ethylene vs. non-ethylene treated bananas. In [4], the
authors employed acoustic responses, nuclear magnetic resonance and optical properties
in order to estimate the firmness of fruits; yet, the presented method failed to predict
the chemical ripening of fruits. In 2015, Bhosale et al. [3] presented a capacitive sensing
system using color indexing and echo measurements, which can detect different ripening
stages of papaya fruit. Recently, Pratim Ray et al. [15] introduced a monitoring tool for
finding the ripening stage of banana fruit using color indices, which can also send the
ripening information to the monitoring person present in a remote area with the help of
a GSM module.

In [7], the authors introduced threshold-based segmentation method using Haar fea-
tures, to detect chemical ripening of banana fruits. Though the authors employed the
third level of decompositions in wavelet domain for analysis of discriminatory behaviors,
the proposed method suffered due to the variations in the features of ripened bananas.
Thermal imaging framework for chemical ripening was proposed by Ansari in [2], which
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utilized infrared energy emitted by the sample fruit for pre-processing and segmenta-
tion followed by feature extraction stages. However, the performance of this method is
slightly lower when compared to other methods due to the complex nature of neural net-
work strategies used in the system. Further, Sukhesh et al. [9] introduced a cost effective
device using sensors, which was capable of detecting nutrients and chemical contents in
vegetables and fruits and of presenting it in the display on smart phones. Salunkhel
and Aniket [17] presented a computer vision-based system, which could detect various
ripening stages of Mango fruit using RGB and HSV features of images. The proposed
system classified only the ripening stages of mango.

Veena and Bhat [5] designed a simple portable instrument for the detection of chemi-
cally ripened banana fruits using color-based features, which can also find out the specific
ripening stage of the sample banana fruit. Therefore, this method performs better in
terms of detecting chemical ripening, yet it suffers in case of complex banana structures.
In [8], an IR-based sensor system was introduced, which can detect the presence of ethy-
lene, so that different fruit ripening stages are clearly classified. Specifically, the authors
used the thermal emission concept for estimating ethylene release during fruit ripen-
ing process. Although this method provides good reproducibility, yet it concentrates
primarily on discrimination of fruit ripening stages to ensure food safety.

In the existing literature, only few efforts are made towards identifying the chemically
ripened fruits by employing hybrid techniques including computer vision and sensor
techniques [14]. For instance, Verma and Hegadi [20] presented a remote monitoring
system for banana ripening process by employing wireless networks, which helps the
user to monitor the ripening from a remote place. Recently, Srividya et al. [18] proposed
an ethylene measurement system in order to predict correct stage of ripening of fruits
using image-based features. In [13], the authors developed a mobile-based interface for
detecting chemically ripened fruits, which performs histogram comparisons in order to
obtain detection results. Although this method is easy to use, it still performs slightly
low, due to the usage of mere surface features of the sample fruits. Recently, in [11]
and [10], the authors employed NIR spectroscopic method as well as gold nano particle-
based techniques in order to detect chemically ripened mango fruits. However, these
techniques fail to quantify the presence of arsenic in the chemically contaminated fruit,
which is yet to be explored in detail in the existing literature.

To summarize, most of the state-of-the art techniques are primarily focusing on de-
tecting the stages of fruit ripening, as well as on the identification of chemically ripened
fruits with the help of computer vision-based methods. From another perspective, image
features are less effective in quantification of the exact amount of chemical contamina-
tions present in the sample fruits. Due to these issues, promising frameworks are very
much essential, which employ both the image-based features and IR spectrometric signa-
tures in order to detect artificial ripening of fruits followed by computation of chemical
contaminations present in the sample fruits.
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3. Motivation and contributions

In this paper a new framework is introduced for detecting the man-made ripened fruits
followed by the computation of chemical contaminations present in the fruit by employing
both the spectrometric features as well as visual feature descriptors. Specifically, the new
framework named Chemical Ripening and Contamination Detection (CRCD)
is introduced, which first identifies the artificially ripened fruits and then quantifies
the presence of chemical contaminations (in terms of presence of arsenic) in the given
sample fruit. More specifically, the primary contributions of the proposed framework are
as follows.

•A new GUI-based Artificial ripening detector tool for banana fruit is developed which
is used to identify unnaturally ripened banana fruit by making use of edge and
histogram-based visual feature descriptors. Further, the prototype of this GUI tool is
also evaluated in a web-based portal and mobile-based interfaces in order to facilitate
remote access, which is illustrated in detail in Section 7.

•A novel arsenic contamination detection setup is introduced which makes use of IR
signature spectra of fruits for detecting chemically ripened fruits followed by Green
Fluorescent Protein-based turbidity measurements for accurately quantifying the ar-
senic content present in the sample fruit, which is detailed in Sections 6.1 and 7.4.

• Further, chemical contamination rate of the given sample fruit is clearly indicated
in terms of percentages in the specially designed display panel fitted with aqua fruit
chamber, which in future can be employed effectively to protect customers from haz-
ardous health issues. The setup of the aqua chamber and the panel is described in
Sections 6.2, 6.3 and the detection results are described in Sections 7.3 and 7.4.

4. Methodology of the proposed framework

The block diagram for the proposed Chemical Ripening and Contamination Detection
(CRCD) framework, is indicated in Fig. 1. It is implemented in two different mod-
ules, namely the image processing module and the arsenic detection module, which are
detailed as follows.

In the first module of the proposed CRCD framework the captured images of sam-
ple fruit undergo the first stages of processing. The Near Infra-Red (NIR) camera is
employed to capture the images of the sample fruits in different directions and views,
including front and top views. Specifically, in the first stage, convolutional neural net-
work (CNN) based classification algorithms are used to train both ripened and unripened
categories of input banana images. More specifically, visual feature descriptors of input
images including shape, edge and color features (weighted at the ratio 25:25:50) are
extracted and classified by employing Inception v3 algorithm [19], which is one of the
widely-used image recognition models. Initially, the pre-trained neural network extracts
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Fig. 1. Block diagram of the proposed CRCD framework.

the visual features using CNN including fully-connected and softmax layers. Then, the
resultant features are combined to form a feature database named the Visual Features
Database in order to proceed with testing stage.

In the testing stage, initially visual features of query banana image are compared
with the corresponding features of the training database. The results of the comparison
are represented in terms of confidence level metrics. In the proposed framework, 75%
of the samples are utilized for the training stage after random selection whereas the
remaining 25% of the samples are included in the testing part of the database.

In the second module, Green Fluorescent Protein (GFP) [12] based arsenic gas setup
incubated with a water sample is utilized, in which the fluorescence is detected optically
and quantified, so that the concentration of arsenic in the water samples can be measured.
Precisely, the intensity of the fluorescence is a function of the amount of bacteria present
in the water sample, which is further quantified to measure the turbidity of the water
sample. The turbidity measurement enables us to determine chemical contaminations
of the sample fruit in terms of arsenic gas contaminations. The resultant turbidity
values are mapped and analyzed with standard metric values of normal water, in order
to identify whether the fruit is a naturally or chemically ripened one. The comparison
results are combined using the machine learning model and displayed in the LCD display
panel mounted at the front display panel in the setup framework.

These processes are discussed in detail in the further Sections.
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(a)                                                                      (b) 

Fig. 2. (a) Sample snapshots of naturally ripened bananas and (b) sample snapshots of
artificially ripened bananas.

5. Data bases

5.1. Banana fruits database creation

For experimental purpose, 500 banana images from 10 bananas of type Elaichi (species
name: Musa acuminata) are captured under different scenarios including ripened, un-
ripened, individual and group basis of fruits. Specifically, the banana dataset includes
snapshot of bananas, which are captured using Canon 700D DSLR camera with the res-
olution of 4898×3265 pixels. Initially, few samples of unripened bananas are treated for
artificial ripening with the help of calcium carbide. Precisely, the sample bananas are
kept in an air tight container inside a dark room with the presence of calcium carbide
for 8-10 hours, in order to make them ripen at a faster rate. The rest of the bananas are
allowed to undergo natural ripening stages for a waiting period of 24 to 30 hours. Fig. 2a
represents the snapshots of bananas, which were allowed to complete their ripening stages
at normal conditions, whereas Fig. 2b indicates the sample snapshots of bananas, which
were treated with calcium carbide for completing their ripening stage, respectively.

5.2. Mango fruits database creation

To evaluate the performance of the proposed framework towards mango fruits, a mango
fruit dataset consisting of images was generated for both training and testing purposes.
Precisely, 60 mangoes belonging to four different varieties: Alphonso, Badam, Mallika
and Neelam are considered. One set of mango fruits are allowed to ripen naturally
while the other set of mangoes were artificially ripened using artificial ripening agents
like calcium carbide. Fig. 3 shows sample snapshots of mango images in various views.
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Fig. 3. Sample snapshots of mango images in various views.

Further, nearly 950 fruit images were generated for both training and testing datasets,
which were labeled separately as naturally ripened mango fruits as well as artificially
ripened fruits.

6. Experimental setup

6.1. Arsenic contamination detection setup

The basic principle of this setup is based on a fluorescent method, where GMO bacteria-
based Green Fluorescent Protein-based bacterial biosensor (GFP) [12] is used to detect
the presence of arsenic in the test water sample. Then the optical detection of fluores-
cence used to quantify the result in terms of the concentration of arsenic. Specifically,
a vial containing the test water sample is placed on a socket and a fluorescent excitation
LED light is passed through it, which also includes λ = 488 nm needed for enhanced GFP
(eGFP). More specifically, the GFP absorbs blue light (λ = 475 nm) and emits green light
(λ = 504 nm) which is detected by a photosensor in order to deal with the intensity loss.
Then the eGFP fluorescence signal reaches the photosensor with the help of a long-pass
filter. Precisely, the intensity of the fluorescence can be indicated as a function of the
number of bacteria present in the sample. More precisely, the number of bacteria can be
quantified indirectly by measuring the turbidity of the sample [12]. A red LED is placed
in-line with the photosensor so that the transmittance can be measured and converted
into turbidity. The measurement of turbidity makes it possible to normalize the results
with respect to the density of bacteria. Specifically, the measurement of turbidity can be
employed in order to determine the concentration of arsenic present in the water sample
and thereby chemical contaminations in the fruit can be detected. More specifically, the
transmission results are compared against a standard curve of water containing known
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(a)                                                                        (b) 

Fig. 4. (a) Snapshot of the GPF setup including sample water vial, lens and filters.
(b) Snapshot of the setup including the GFP and the Arduino board connectivity.

arsenic concentrations, in order to exactly determine the concentration of arsenic in the
sample. In Fig. 4a the GFP-based arsenic detection setup including sample water vial,
lens and filters are shown, whereas Fig. 4b illustrates the Arduino board connectivity at
the back side of the GFP setup.

6.2. Aqua-fruit chamber setup

In the proposed CRCD framework, in order to obtain a water sample of test fruit, the
aqua-fruit chamber setup is employed, which is shown in Fig. 5. Precisely, in this setup,
the sample fruit is dipped in water, which is circulated continuously with the help of
a water regulatory pump with a push button (On/Off switch) mount assembly. After
dipping the fruit in water for specific amount of time, the water samples of input fruit
is collected in the vial shown in Fig. 5 for further processing. More precisely, Fig. 5a
shows the water pump mount assembly and Fig. 5b indicates the push button setup in
the proposed framework.

6.3. Display panel setup

Fig. 6a shows the front view of the display panel setup, which is used to display the results
of the experiments in terms of chemical contamination measurements. Specifically, the
display panel is fixed inside a metallic compartment in order to avoid external damages
due to dust, heat and water. The display panel is also equipped with a power button,
pump regulatory switch and LED switches shown in Fig. 6a. Fig. 6b. indicates the side
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 Fig. 5. (a) Aqua-chamber setup with pump mount. (b) Push button assembly.

view of the display panel along with the aqua chamber setup mounted on it, in which
slight air ventilation is also provided for experimentation purpose. More specifically,
in the proposed framework, standard HD44780 LCD is used as the display panel for
displaying the outputs, which is 16 characters wide with 2 rows, and displays white text
on blue background. It includes a connection port of 0.1 inch pitch, single row for easy
bread-boarding and wiring and also all the pins are documented on the back of the LCD
to assist in wiring it up to other modules of the setup.

6.4. Main controller setup

The main controller of the experimental setup acts like a heart of the system and con-
sists of an Arduino board. This controller interacts with all the modules of the setup
including the display panel, the GFP setup, the aqua chamber and the sensor camera
module. Therefore, the connectivity of the Arduino plays a major role in determining
the performance of the proposed research work. Fig. 7 shows the main controller setup
including the connectivity of the Arduino board with the display panel, the aqua fruit
chamber and the GFP setup. Further, in the proposed CRCD framework, ArduCam
MT9 MP-CMOS infrared camera module with adapter board is utilized to capture the
images of sample fruits in terms of different views and various dimensions. Precisely,
this camera module is placed inside an outer cabinet in order to enable clear capturing.
The resolution of the camera is 1280×1024 SXGA at 30 fps, whereas the ADC is 10 bits.
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 Fig. 6. (a) Front view of the display panel. (b) Side view of the display panel along with
the aqua chamber setup.

7. Methods and results

7.1. Chemical ripening detection using visual features

In this section, the chemical ripening detection results computed using image processing
module of proposed CRCD framework are discussed in detail. Precisely, Fig. 8 shows
the snapshot of the GUI named Artificial Ripening Detector for Banana Fruit which
supports both the web portal interface as well as the mobile application interface for its
processing. More precisely, Fig. 8 shows the web portal, used in proposed system, for
uploading the banana pictures for processing.

Once the sample fruit image is uploaded in to the server, the proposed CRCD frame-
work proceeds with the next step, in which checking of the input image for ripened
banana/unripened banana is implemented. In the proposed framework, it employs an
Artificial Neural Network (ANN), trained with more than 600 images of ripened and
unripened bananas, in order to proceed with the decision process in terms of probability
scores. Specifically, if the probability score for ripened banana is more than 0.9, then
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Fig. 7. Connectivity of the Arduino with the display panel, the aqua chamber and the
GFP setup.

the system displays the result, as shown in Fig. 9, and proceeds for further processing.
Otherwise, it displays an error message.

Fig. 10 indicates the various steps involved in the proposed CRCD framework, includ-
ing gray scale conversion, noise reduction followed by the edge as well as shape detection
functionalities. Specifically, in the proposed CRCD framework, Canny edge detection
algorithm is employed for extracting the features. After this step, two histograms are
calculated from sample fruit image namely, luminance and RGB curves. More specifi-
cally, in Fig. 11 the first histogram corresponding to the luminance values as well as the
second histogram representing the RGB curves for the input image are shown. Then the
resultant histograms are compared along with the respective feature descriptors of input
images stored in the database. Precisely, in the proposed framework, after the forming
of the histograms, the resultant graphs of input fruit image are compared against the
database images. More precisely, an ANN, which is trained using the histograms having
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Fig 7.2: Choosing a File for upload. 

 

Fig 7.3: Notification from the Portal after successful upload of the image. 
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Fig. 8. Snapshot of the web portal GUI for uploading the sample fruit image.
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Fig 7.5:  Error message for unripened banana. 

 

 

 

Fig 7.6:  Snapshot of Artificial Ripening Detector for Banana Fruit 

 

The system performs the grayscale pass, in order to reduce the workload for edge detection 

and shape detection. And grayscale image will be processed with noise reduction in order to 

lower the confusion for the training or testing phase.  
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Fig. 9. Ripened vs. unripened: detecting unripened fruits.
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Fig. 10. (a) Gray scale conversion, (b) edge and shape detection of the input fruit image.

data size of more than 600 banana images, determines the ripening category of the sam-
ple input image. The confidence level measurements are evaluated for both the naturally
ripened as well as chemically ripened categories, in order to predict exactly, whether the
sample fruit is artificially ripened or not.

7.2. Chemical ripening detection results

Fig. 12a shows the snapshot of output prediction results in terms of confidence levels
of 83.16% for artificially ripened banana fruit whereas Fig. 12b indicates the snapshot
of output results in terms of confidence levels of 81.14% for naturally ripened banana
fruit. After the completion of detection results, the back end results can be transferred
to the application front end, and also to the web portal, so that the end user can view
the results. Further, the mobile application interface version of the proposed CRCD
framework is shown in Fig. 13, which demonstrates the performance of the proposed
system in terms of displaying the results on the mobile application.
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 Fig 7.7:  Snapshot of Edge Detection of Input Fruit Sample 

 

Edge detection uses OpenCV based Canny edge detection algorithm for an acceptable level of              

accuracy for background removal and feature extraction. 

 

Fig 7.8:  Snapshot of Histograms of input Images 

 

The First Histogram shows the Luminance values. The Second histogram shows the RGB             

curves for the input image. The above histograms can be analyzed for further research or for                

feature-based detections. 

 Department of ISE, AIET, Mijar      5  

Fig. 11. Histogram graphs of the sample input fruit image.

7.3. Spectral analysis and chemical contamination computation

In the second module of the proposed CRCD framework, the NIR spectra of sample fruit
image is computed and prediction results are calculated by comparing against the pre-
processed spectra signatures. Specifically, for the purpose of NIR data analysis, a total
of 12 readings are considered for both naturally as well as artificially ripened mango
fruit samples. Further, as a preliminary classification step, principal component analy-
sis (PCA) is performed on the selected spectra and different principal components are
plotted in order to indicate the groups of samples based on their varieties. Specifically,
the signature spectrum of database fruits is computed using PCA approach, before the
analysis of samples, in order to reduce the noise effects as well as to obtain the better
representation of the data. Fig. 14 represents the pre-processed spectra considered in
the proposed framework in terms of the NIR analysis of sample mango fruits. Fig. 15
presents the signature spectra of naturally ripened mango fruit in which huge variations
can be observed in the range of 600-640 nm as well as 700-800 nm wavelength measure-
ments. In Fig. 16 the spectral signature of artificially ripened mango fruit is indicated,
in which more variations are visible in the range of 700-750 nm wavelengths and thereby
clear classification of ripening type of fruits can be achieved. The spectral results are
further analysed with PCA, which clearly indicates that the naturally and artificially
ripened mango samples spectra are falling in different wavelength segments. Further,
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                                      (a) 

  
                         (b) 

Fig. 12. (a) Final detection results for artificially ripened banana fruit. (b) Detection
results for naturally ripened banana fruit.

Fig. 13. Snapshots of artificial vs. natural ripening detection results displayed on mobile
application interface.
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Fig. 14. Pre-processed spectral signature computed for a sample mango fruit.

Fig. 15. Spectral signature of a naturally ripened mango fruit.
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Fig. 16. Spectral signature of an artificially ripened mango fruit.

the resultant spectra graphs also indicate significant amount of variations in the spec-
tral signatures of both fruits and thereby demonstrate the performance of the proposed
CRCD framework in terms of achieving accurate prediction results for calcium carbide
based artificially ripened mango fruits.

7.4. Chemical contaminations quantification and results

In the proposed CRCD framework, in order to quantify the amount of chemical contam-
inations in terms of arsenic contents, five different datasets consisting each of 30 fruit
samples are considered as given below:

S1: Fruit samples treated with 2% calcium carbide,

S2: Fruit samples treated with 4% calcium carbide,

S3: Fruit samples stored in closed container with 1% calcium carbide,

S4: Fruit samples stored in closed container with 3% calcium carbide and

S5:Naturally ripened fruits.

Specifically, in order to confirm the presence of arsenic content in the artificially ripened
fruit samples, the datasets are analysed with turbidity measurements. More specifically,
Table 1 indicates the arsenic content present in chemically ripened fruits in terms of
measurements in ng/g. Specifically, ng/g is equivalent to 1 ppb (parts per billion). The
presence of arsenic content is ranging from 0 to 290 ng/g, in which naturally ripened
fruit samples show the maximum arsenic content of 8 ng/g, whereas the largest amount of
arsenic presence is observed in calcium carbide treated fruit samples, direct consumption
of which is highly dangerous to humans.
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Tab. 1. Presence of arsenic content in terms of levels in ng/g for different datasets: S1,
S2, S3, S4 and S5, respectively.

SET 0-30 ng/g 30-70 ng/g 70-290 ng/g
S1 27 3 -
S2 20 10 -
S3 4 24 2
S4 - - 30
S5 30 - -

 

 

Fig. 17. Result display showing arsenic chemical composition.

Fig. 17 shows the output in the front panel display of the proposed CRCD framework,
in which arsenic composition present in the input fruit is displayed. Specifically, arsenic
composition is 78.23% for the sample input fruit, as shown in Fig. 17, which is higher
than the prescribed threshold limits, hence it suggests that it is harmful to consume the
given sample fruit.

The performance of the proposed CRCD framework is also evaluated in terms of
sensitivity and specificity measures by means of comparisons with ground truth values.
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Precisely, the 200 sample fruits consisting of both natural and artificially ripened cate-
gories are considered for evaluating the performance of the proposed framework. More
precisely, sensitivity of the CRCD framework defining the probability of positive result
for the given set of artificially ripened fruits is indicated as 91.25%. Further, the speci-
ficity of the proposed CRCD framework is also computed as 80.25%, which defines the
probability of negative result for the given set of naturally ripened fruits. In this way, the
reasonable rates of sensitivity as well as specificity rates demonstrate that the proposed
CRCD framework is reliable and hence it can be employed in real-time chemical ripening
detection systems.

8. Conclusion and future work

In this paper, a new chemical ripening and contamination detection framework is in-
troduced, which utilizes both visual as well as infrared spectrometric features. The
experiments conducted on both the software-based and hardware-based setups clearly
demonstrate the efficiency of the proposed framework in terms of confidence levels fol-
lowed by the measurement of presence of arsenic in the sample fruit.

In future, the proposed framework can be extended as real-time detection tool for
analyzing other types of fruits including papaya, tomato and other species.
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Abstract. The goal of this paper is to propose two nonlinear variational models for obtaining

a refined motion estimation from an image sequence. Both the proposed models can be considered

as a part of a generalized framework for an accurate estimation of physics-based flow fields such as

rotational and fluid flow. The first model is novel in the sense that it is divided into two phases:

the first phase obtains a crude estimate of the optical flow and then the second phase refines this

estimate using additional constraints. The correctness of this model is proved using an evolutionary

PDE approach. The second model achieves the same refinement as the first model, but in a standard

manner, using a single functional. A special feature of our models is that they permit us to provide

efficient numerical implementations through the first-order primal-dual Chambolle-Pock scheme. Both

the models are compared in the context of accurate estimation of angle by performing an anisotropic

regularization of the divergence and curl of the flow respectively. We observe that, although both the

models obtain the same level of accuracy, the two-phase model is more efficient. In fact, we empirically

demonstrate that the single-phase and the two-phase models have convergence rates of order O(1/N2)

and O(1/N) respectively.

Key words: optical flow, evolutionary PDE, variational methods, primal-dual, convergence

1. Introduction

Optical flow plays a key role in many advanced Computer Vision applications. It is
a rich source of information on perceptible motion in our visual world. It’s reliable
estimation is thus important and at the same time challenging. Assuming the principle
of local conservation of intensity and small temporal variations, optical flow involves the
recovery of a function u = (u, v) such that

f(x, τ) = f(x+ u, τ +∆τ) ,

where f : Ω × [0, T ] → R is the image sequence, Ω ⊂ R2 is open and bounded. This
establishes a correspondence between pixel motions. Using first-order approximations
the above relation can be written as

fτ +∇f · u = 0 , (1)
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which is widely known as the Optical Flow Constraint (OFC). To recover the velocity
components using a variational minimization approach one writes (1) as

min
u
J1(u) =

∫
Ω

(ft +∇f · u)2 .

This is the simplest least-square minimization. This problem is ill-posed as it leads
to the aperture problem. Additional regularization terms are necessary to ensure well-
posedness. The most common regularization term is the quadratic smoothness penalizing
the gradient of the components of the flow originally introduced by Horn and Schunck [16]
in their seminal work. Cohen [8] and Kumar et al. [17] used the L1 regularization which
is more robust to outliers and preserves important edge information. A new discontinuity
preserving optical flow model with L1 norm on the OFC was proposed and studied by
Aubert et al. [1] in the space of functions of bounded variations BV (Ω)×BV (Ω). The
well-posedness of the Horn and Schunck model, as well as the Nagel model was studied
by Schnörr [23] in the space H1(Ω) ×H1(Ω). Taking a step further, the authors in [5]
proposed a Lp − TV/Lp (p = 1 or 2) model combining both L1 and L2 terms. The
behaviour of their regularization term is similar to the Huber function:

H(x; ϵ) =


x2

2ϵ , 0 ≤ |x| ≤ ϵ

|x| − ϵ
2 , |x| > ϵ .

A detailed review and rigorous analysis of several variational optical flow models within
the framework of calculus of variations can be found in [15].

Though most of the estimation involving rigid or quasi-rigid motion can be handled
by minimizing OFC with a suitable regularization, it is insufficient to provide an accurate
estimation for fluid-based images. Traditional computer vision techniques may not be
suitable to capture these deformations of brightness patterns because of the high spatio-
temporal turbulence in these sequences. These reasons have motivated researchers to
look for an alternative constraint that can not only preserve pixel-correspondence but also
capture certain intrinsic features of the flow. This paradigm shift hints at constraints that
are physics-dependent. A lot of work has been done involving physics-based constraints
for fluid motion estimation [9, 10, 18, 19, 20]. In [12], we have proposed a constraint-based
refinement of optical flow. Using an image-driven evolutionary PDE model resulting
from a quadratic regularization we have shown the well-posedness of such a refinement
principle. An important characteristic of the model is the possibility of a diagonalization
by the Cauchy-Riemann operator leading to a decoupled system involving diffusion of
the curl and a multiplicative perturbation of the laplacian of the divergence of the flow.
For a specific case, it was shown that the model is close to the physics-based model [18]
using a modified augmented Lagrangian method.

The current work proposes a unified framework for a nonlinear evolutionary PDE-
based refinement of optical flow. The first model is a two-phase refinement process.
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A crude pixel correspondence is obtained in the first phase which constitutes a good
starting solution. In the next phase, this estimate is refined using additional constraints.
This constraint is chosen motivated by the non-conservation term f∇ ·u in the physics-
based constraint, (see [12]). The second model estimates the flow directly in a sin-
gle phase. In this case the additional constraint is chosen motivated by the harmonic
constraint-based regularization (see [30]). This approach replaces the oriented smooth-
ness constraint with a weighted decomposition of divergence and curl of flow. We aim
to capture the rotational features better by preserving edge information and improving
the accuracy of the flow. Thus we consider only the curl component in our framework
with an anisotropic weight term.

The total variation regularization leads to ∆1, the 1-Laplacian operator in the Euler-
Lagrange equations. Obtaining a stable convergent scheme is a difficult task because of
the singularity of the operator at the origin. As a result most of the implementation
methods often yield slower algorithms. In this direction important contributions were
made by Chambolle [6] and Zach [27]. Chambolle and Pock [7] proposed a first-order
primal-dual algorithm for solving non-smooth convex optimization problems. This fur-
ther opened up newer directions as a large class of problems in Image Processing could
be solved within this framework. In our work, we use the Chambolle-Pock algorithm for
both of our models. The numerical implementation of the algorithm has two main steps,
namely updating the primal variables by solving a system of equations at each iteration
and updating the dual variables by computing the point-wise projection maps onto the
unit ball. Both of these steps are computationally expensive. As a result the second
model yields a slower algorithm with a convergence rate of order O(1/N2). By O(1/N2)
we mean if ϵ is the error threshold then the number of iterations required to reach this
threshold is 1/ϵ2. The first model splits the above-mentioned steps in two-phases. This
leads to a faster algorithm with a convergence rate of O(1/N).

The organization of the paper is as follows. In Section 2 we give the general formu-
lation and describe our model in detail. Next in Section 3, we study the mathematical
well-posedness of our formulation using an evolutionary PDE approach. Subsequently,
we employ the first-order primal-dual Chambolle-Pock algorithm to our models and
derive the necessary optimality conditions in Section 4. We then discuss the implemen-
tation details, discretization of our models and empirically demonstrate the nature of
convergence in Section 5.

2. Our Model Description

Our general formulation is given as:

J(u) =

∫
Ω

ρ(|ft +∇f · u|) + α

2∑
i=1

∫
Ω

γ(|∇ui|) + β

∫
Ω

ϕ(x, f,∇f)ψ(u,∇u) , (2)
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where ρ : R → R is a function of the optical flow constraint, γ : R → R governs the
regularization of the flow. The functions ϕ and ψ are chosen specific to applications.
A summary of some of the variational models which belong to this framework is listed
in Table 1. Based on the choice functions mentioned in this table, the constraint-based
refinement formulation becomes

(M1) J(u) = α

2∑
i=1

∫
Ω

|∇ui|+ β

∫
Ω

f2(∇ · u)2 , (3)

where | · | is the Euclidean norm. Starting with u = u0, where u0 is the Horn and
Schunck optical flow the above formulation obtains a refinement of u0 driven by the
additional constraint f∇ · u. This term is the non-conservation term in the physics-
based constraint due to non null-out of plane components [14]. This constraint preserves
the spatial characteristics and vorticities of the flow. Thus this model can extract flow
information from fluid-based digital imagery much better.

From the choice functions, our second formulation is given as:

(M2) J(u) =

∫
Ω

(ft +∇f · u)2 + α

2∑
i=1

∫
Ω

|∇ui|+ β

∫
Ω

λ2

|∇f |2 + λ2
(∇H · u)2 . (4)

The additional constraint in this formulation is motivated by the harmonic-constraint
based regularization discussed in [30]. By associating an anisotropic weight term with
the curl in our formulation there are two main advantages. First, we are able to get a
precise estimation of the infinitesimal rotation within the regions. Secondly, we achieve
a better alignment of small vectors in the flow. This leads to an overall improvement in
the endpoint error.

In either case, the choice of ϕ decides the influence of the image term in the reg-
ularization process. If ϕ = 1, then the additional constraint term in the functional is

Tab. 1. Some choices for the functions.

ρ(x) γ(x) ϕ(x, f,∇f) ψ(u,∇u)
Horn and Schunck [16] x2 x2 0 0

Cohen [8] x2 x 0 0

Aubert [1] x
√
1 + x2 c(x) u2

L1 − TV [27] x x 0 0

Our Model (M1) 0 x f2 (∇ · u)2

Our Model (M2) x2 x λ2

∥∇f∥2+λ2 (∇H · u)2
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flow-driven, i.e. independent of the influence of the image data. The weight parameters
α, β play an important role in the regularization process. For rigid-body like motion
which requires important edge-information to be preserved a higher value of α is pre-
ferred. For fluid-based images where there is less edge-prominence, we choose a higher
β value.

3. Well-Posedness

In this section we discuss the mathematical well-posedness of the proposed formulation.
Let us denote u = (u1, u2). The space W 1,p(Ω), p > 1, is the reflexive Banach space

W 1,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ 1}

with the usual norm

∥u∥W 1,p =

( ∑
|α|≤1

∥Dαu∥pLp

)1/p

, 1 ≤ p <∞ .

To study the mathematical well-posedness of the proposed formulation we consider the
following approximation.

Jp,R(u) = β

∫
Ω

ϕ(x, f,∇f)(∇ · u)2 + α

p

∫
Ω

{|∇u1|p + |∇u2|p}, 1 < p < 2 . (5)

This functional being strictly convex in W 1,p(Ω) admits a unique minimizer. For this
discussion we consider ϕ(x, f,∇f) = f2. The first important step is to show that Jp,R
converges to J1,R as p→ 1. For this, we refer to the discussion in Section 3.4 in [21].

Lemma 1.

lim
p→1

1

p

∫
Ω

|∇u|p =

∫
Ω

|∇u| . (6)

Remark 1. As Jp,R(u)→ J1,R(u), p→ 1, the corresponding Euler-Lagrange equations
Ap = ∆p associated with the regularization term also converges to A1 = ∆1.

Remark 2. The case p = 2 leads to a linear diffusion-driven refinement process. We
have previously studied and discussed this case in [12].

The associated parabolic system corresponding to the Euler-Lagrange equations of
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(5) are given as

∂u1
∂t

= ∆pu1 + a0
∂

∂x
[f2((u1)x + (u2)y)] in Ω× (0,∞) ,

∂u2
∂t

= ∆pu2 + a0
∂

∂y
[f2((u1)x + (u2)y)] in Ω× (0,∞) ,

u1(x, y, 0) = u01 in Ω ,

u2(x, y, 0) = u02 in Ω ,

u1 = 0 on ∂Ω× (0,∞) ,

u2 = 0 on ∂Ω× (0,∞) ,

(7)

where (u01, u
0
2) is the starting feasible solution obtained by the Horn and Schunck optical

flow, a0 = 2β/α. Rewriting the system in an abstract form leads us to
du

dt
+Apu = 0, t > 0 ,

u(0) = u0 ∈ H1(Ω)2 .

(8)

Here the operator Ap = Ap + F , where

Apu = −

[
∆pu1

∆pu2

]
, Fu = −a0


∂

∂x
[f2((u1)x + (u2)y)]

∂

∂y
[f2((u1)x + (u2)y)]

 .
We will show that both the operators Ap and F are maximal monotone in W 1,p(Ω) ∩
L2(Ω) and L2(Ω), respectively.

Lemma 2. The operators Ap and F is maximal monotone in W 1,p(Ω) ∩ L2(Ω) and
L2(Ω), respectively.

Proof.The maximal monotonicity of Ap follows directly from the discussions in [26]. To
show monotonicity we show that ⟨Fu,u⟩ ≥ 0. Indeed,

⟨Fu,u⟩ = −a0
∫
Ω

{ ∂

∂x
[f2((u1)x + (u2)y)]u+

∂

∂y
[f2((u1)x + (u2)y)]v

}
,

= a0

∫
Ω

{f2((u1)x + (u2)y)ux + f2((u1)x + (u2)y)vy} ,
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= a0

∫
Ω

f2((u1)x + (u2)y)
2 ≥ 0 ,

proving the monotonicity of F . To show the maximality we have to show that

Ran(I + F ) = L2(Ω)2 , (9)

i.e. there exists u for all f ∈ L2(Ω)2 such that u+Fu = f holds. Let f = (f, g) ∈ L2(Ω)2

and consider the system

u+
∂

∂x
[f2((u1)x + (u2)y)] = f ,

v +
∂

∂y
[f2((u1)x + (u2)y)] = g ,

where f, g ∈ L2(Ω). Applying the Cauchy-Riemann operator

R =

[
∂y −∂x

∂x ∂y

]

on both sides we obtain the decoupled system

(u1)y − (u2)x = fy − gx , (10)

(∆ ◦ k)((u1)x + (u2)y) = fx + gy , (11)

where k is the image-dependent multiplicative function k : f 7→ 1 + a0f
2. The first

equation (10) governs the curl of the flow u = (u1, u2). The second equation (11)
indicates a non-homogeneous weighted diffusion process on the divergence with a weight
k. Let us define h1 = fy − gx and h2 = fx + gy. Solving the second equation gives us
an expression for the divergence of the flow. Let us call this as h3. We thus obtain the
following system

(u1)y − (u2)x = h1 ,

(u1)x + (u2)y = h3/k .

These are the inhomogeneous Cauchy-Riemann equations. In a compact form we rewrite
them as

Ru = f̃ ,

where f̃ = (h1, h3/k). The operator R
−1 is a continuous operator of order -1 in the space

W 1,p(Ω). Hence there exists a unique u such that u+Fu = f holds. This concludes the
proof.
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Now that we have shown the maximal monotonicity let us define a function Φp :
L2(Ω)2 → (−∞,+∞] by

Φp(u) =

Jp,R(u), u ∈ [W 1,p(Ω) ∩ L2(Ω)]2

+∞, u ∈ [L2(Ω) \W 1,p(Ω)]2
.

Then clearly Φp is convex and lower semi-continuous. Also Φp is proper since D(Φp) =
D(Ap)∩D(F ) ̸= ∅. Thus the associated subdifferential ∂Φp(u) ≡ Ap is maximal mono-
tone. Thus there is a unique solution u of the inclusion

0 ∈ u′(t) + ∂Φp(u)

satisfying the initial conditions.

4. The Primal-Dual Framework

The primal-dual method is a numerical tool for solving optimization problems. The
main idea is to replace a primal problem with an equivalent saddle point problem by
introducing dual variables and employ efficient algorithms to obtain the desired con-
vergence. In the recent past several saddle point frameworks have been proposed for
variational problems in image processing and computer vision [7, 28, 29]. As our formu-
lation involves non-smooth convex functionals, the most suitable framework is the one
proposed by Chambolle and Pock [7]. Let Ω ⊂ R2 be an open, bounded set, X ,Y be two
finite-dimensional vector spaces with the scalar product (·, ·) and the norm ∥ · ∥. Denote
the primal variable u = (u1, u2) and the dual variable d = (d1, d2, d3). We first consider
the variational problem in the following form

argmin
u

G(u) + F (Ku) . (12)

where F,G : X → [0,∞] are convex, proper and lower-semicontinuous functionals, K :
X → Y is a continuous, linear operator. The equivalent primal-dual formulation is given
as

argmin
u

argmax
d

G(u) + (Ku,d)− F ∗(d) , (13)

where F ∗ is the convex conjugate of F . Table 2 gives a summary of each term of
our model using the above notations. Given a τ, σ > 0, an initial (u0,d0) ∈ X × Y,
the Chambolle-Pock algorithm solves the saddle point problem (13) by the following
algorithm:

dk+1 = proxσF∗(dk + σKūk) ,
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uk+1 = proxτG(u
k − τK∗dk+1) ,

ūk+1 = 2uk+1 − uk (over-relaxation) ,

where

proxτG(d) = (I + τ∂G)−1(d) = argmin
u

{
1

2
∥u− d∥2 + τG(u)

}
is the proximal or the resolvent operator. This can be thought of as a trade-off between
minimizing G and being close to d. We now employ the above algorithm for our problem
and derive the necessary optimality conditions.

4.1. Optimality Condition for Our Model M1

In this case we have

G(u) = 0, F (Ku) =
1

2

∫
Ω

f2(∇ · u)2 +
2∑

i=1

∫
Ω

|∇ui| .

The Operator K is given as

Ku =

 ∇ 0
0 ∇

f2∂x f2∂y

u1
u2

 .
Therefore,

K∗d = −
[
∇· 0 ∂x(f

2·)
0 ∇· ∂y(f

2·)

]d1d2
d3

 .

Tab. 2. Summary of the terms in the Primal-Dual Formulation.

Model ϕ(x, f,∇f) G(u) F (Ku) K

(M1) f2 0
1

2

∫
Ω

ϕ(x, f,∇f)(∇ · u)2

+

2∑
i=1

∫
Ω

|∇ui|

 ∇ 0
0 ∇
ϕ∂x ϕ∂y



(M2)
λ2

λ2 + ∥∇f∥2
1

2

∫
Ω

(ft +∇f · u)2
1

2

∫
Ω

ϕ(x, f,∇f)(∇H · u)2

+

2∑
i=1

∫
Ω

|∇ui|

 ∇ 0
0 ∇
ϕ∂y −ϕ∂x
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Using standard dual identities the convex conjugate F ∗(d) is computed as

F ∗(d) =
1

2
∥d3∥22 + α

2∑
i=1

δB(L∞)(di/α) ,

where B(L∞) denotes the unit ball in L∞(Ω) and

δB(L∞)(x
∗) =

{
0, if x∗ ∈ B(L∞)

+∞, otherwise
.

Thus the primal-dual formulation is given as

argmin
u

argmax
d

(u,K∗d)− 1

2β
∥d3∥22 − α

2∑
i=1

δB(L∞)(di/α) .

Accordingly, the Chambolle-Pock algorithm for this primal-dual problem is given as:

d̃
k+1

= dk + σKū ,

dk+1
1,2 = argmin

d

{
1

2
∥d− d̃

k+1

1,2 ∥22 + ασδB(L∞)(d/α)

}
,

dk+1
3 = argmin

d

{
1

2
∥d− d̃k+1

3 ∥22 +
σ

2β
∥d∥22

}
,

ũk+1 = uk − τK∗dk+1 ,

ūk+1 = 2uk+1 − uk .

To derive the optimality condition for the dual variables d3, consider the functional

J(d3) =
1

2

∫
Ω

(d3 − d̃3)2 +
σ

2β

∫
Ω

d23 .

Therefore, setting dθJ = 0 we get

d3 − d̃3 +
σ

β
d3 = 0 .

Rearranging we get

dk+1
3 =

β

β + σ
d̃k+1
3 .

The solution for the indicator function δ is given by the point-wise projections of d̃
k+1

,

projα(d̃
k+1

) onto the unit ball, see [5, 11]. Thus, the iterative scheme for the Chambolle-
Pock is given as

d̃
k+1

= dk + σKū ,
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dk+1
1,2 = projα

(
d̃
k+1

1,2

)
,

dk+1
3 =

β

β + σ
d̃k+1
3 ,

ũk+1 = uk − τK∗dk+1 ,

ūk+1 = 2uk+1 − uk .

4.2. Optimality Condition for Our Model (M2)

In this case we have

G(u) =
1

2

∫
Ω

(ft +∇f · u)2, F (Ku) =
1

2

∫
Ω

ϕ(f,∇f)(∇H · u)2 +
2∑

i=1

∫
Ω

|∇ui| .

The Operator K is given as

Ku =

 ∇ 0
0 ∇
ϕ∂y −ϕ∂x

u1
u2

 .
Therefore,

K∗d = −
[
∇· 0 ∂y(ϕ·)
0 ∇· −∂x(ϕ·)

]d1d2
d3

 .
As before, the convex conjugate F ∗(d) is computed as

F ∗(d) =
1

2
∥d3∥22 + α

2∑
i=1

δB(L∞)(di/α) ,

Thus the primal-dual formulation is given as

argmin
u

argmax
d

1

2

∫
Ω

(ft +∇f · u)2 + (u,K∗d)− 1

2β
∥d3∥22 − α

2∑
i=1

δB(L∞)(di/α) .

Accordingly, the Chambolle-Pock algorithm for this primal-dual problem is given as:

d̃
k+1

= dk + σKū ,

dk+1
1,2 = argmin

d

{
1

2
∥d− d̃

k+1

1,2 ∥22 + ασδB(L∞)(d/α)

}
,
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dk+1
3 = argmin

d

{
1

2
∥d− d̃k+1

3 ∥22 +
σ

2β
∥d∥22

}
,

ũk+1 = uk − τK∗dk+1 ,

uk+1 = argmin
u

{
1

2
∥u− ũk+1∥22 +

τ

2

∫
Ω

(ft +∇f · u)2
}
,

ūk+1 = 2uk+1 − uk .

The optimality conditions for the dual variables follow directly from above. For the
primal variable u the optimality condition can be obtained directly by a quadratic min-
imization, see [11] for more details. The equations are given as

(1 + τf2x)u1 + τfxfyu2 = ũk+1
1 − τfxft ,

τfxfyu1 + (1 + τf2y )u2 = ũk+1
2 − τfyft .

Thus the iterative scheme for the Chambolle-Pock is given as

d̃
k+1

= dk + σKū ,

dk+1
1,2 = projα

(
d̃
k+1

1,2

)
,

dk+1
3 =

β

β + σ
d̃k+1
3 ,

ũk+1 = uk − τK∗dk+1 ,

uk+1 =

(
b1c3 − c2b2
c1c3 − c22

,
b2c1 − c2b1
c1c3 − c22

)
,

ūk+1 = 2uk+1 − uk ,

where c1, c2, c3 are the elements of the coefficient matrix given by c1 = 1 + τf2x , c2 =
τfxfy, c3 = 1+τf2y , b1, b2 are the right hand side values given by b1 = ũk+1

1 −τfxft, b2 =

ũk+1
2 − τfyft. In the next section we will look at the numerical discretization and other

implementation details.

5. Results

Having obtained the Chambolle-Pock algorithm for solving the saddle-point problem,
we now look at the implementation details. Algorithm 5.1 shows the Chambolle-Pock
algorithm for our nonlinear constraint-based refinement model.
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Algorithm 5.1

1: Initialize τ, σ ← 1/
√
8, 1/
√
8

2: Initialize u0 ← HS(f1, f2), d
0 ← 0

3: Initialize matrix K
4: repeat
5: uold ← u
6: Update matrix K
7: d̃← d+ σKū
8: d1,2 ← projσ/α(d̃1,2)

9: d3 ← β
β+σ d̃3

10: Compute matrix K∗

11: ũ← u− τK∗d
12: u← ũ
13: ū← 2u− uold

14: until convergence

As mentioned previously this model works in two phases wherein the first phase
we obtain a crude-pixel correspondence and subsequently refine this estimate in the
next phase driven by additional constraints. The initial Horn and Schunck flow was
computed using the Chambolle-Pock algorithm, see [7, 11]. Here we observed that using
a forward difference scheme for both spatial and temporal image derivatives fx, fy and ft
respectively does not yield a stable discretization. Instead, a forward difference scheme
for ft and a central difference scheme for fx, fy does yield a stable numerical scheme.
In the next step, the operator matrix K is constructed for updating the dual variables
d1, d2, d3 shown in steps 9 and 10. This requires solving two sub-problems, one for d1, d2
and the other for d3.

Now ∇ui = (uix , uiy ), i = 1, 2. The associated dual variable is di = (di,1, di,2). The
primal formulation comprises of the total-variation regularization. Accordingly,

|∇ui|L1 = |uix |+ |uiy | .

Thus the associated dual norm for the variable di gives

∥di∥L∞ = max{|di,1|, |di,2|} .

The solution for this minimization is the point-wise projection onto the unit ball cor-
responding to the dual norm. As shown previously, the convex conjugate of the total
variation term is the indicator function δL∞(di/α). The associated convex set is defined
by

{di : ∥di/α∥ ≤ 1} = {di : ∥di∥ ≤ α}, i = 1, 2 .
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Thus the dual update for d1,2 can be obtained by the point-wise projection of d̃1,2 onto
[−α, α] (see [11]) as

d1,2 = projσ/α(d̃1,2) = min(α,max(−α, d̃1,2)) .

The sub-problem for d3 is a linear quadratic minimization problem as discussed in the
previous section. In the next step the adjoint operator K∗ is constructed to update the
primal variable u. The subsequent over-relaxation step ū ← 2u − uold is a particular
case for θ = 1 in [7] for easier estimates of the convergence. The algorithm is further
simplified if the regularization term is linear. In this case the only difference that occurs
is the updation of the dual variable d1,2 leading to the optimality condition

d1,2 =
α

α+ σ
d̃1,2 .

The stopping criterion is determined by computing the normalized error from the primal
and dual residues. This error metric was introduced by the authors in [13] and is numer-

ically less expensive. Let u(k),d(k) be the primal and the dual updates after k iterations
respectively. Then the primal and dual residues at the kth iteration are computed by
the formula:

p(k)res : =

∣∣∣∣∣u(k) − u(k+1)

τ
−K∗(d(k) − d(k+1))

∣∣∣∣∣ ,
d(k)res : =

∣∣∣∣∣d(k) − d(k+1)

σ
−K(u(k) − u(k+1))

∣∣∣∣∣ .
Therefore, the normalized error at kth step is obtained as:

e(k) =
p
(k)
res + d

(k)
res

µ(Ω)
,

where µ(Ω) refers to the measure of the domain Ω. Chambolle and Pock [7] also showed
that the convergence criterion is fulfilled when τσ∥K∥2 < 1, θ = 1. Thus τ and σ
need to be chosen accordingly. An optimal numerical upper-bound was obtained by
Chambolle [6] which satisfies the above criterion. Accordingly we set τ = σ = 1/

√
8.

The Chambolle-Pock algorithm for the angular accuracy model follows in a similar
manner. The main difference lies in the primal update step 12 because of the explicit
presence of the data term in the functional. The primal variable u is updated by solving
a quadratic minimization problem discussed previously leading to the following update
step,

uk+1 =

(
b1c3 − c2b2
c1c3 − c22

,
b2c1 − c2b1
c1c3 − c22

)
,
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where c1 = 1+ τf2x , c2 = τfxfy, c3 = 1+ τf2y , b1 = ũk+1
1 − τfxft, b2 = ũk+1

2 − τfyft. We
now show the results for obtained by implementing the algorithm. The first sequence is
the Oseen vortex pair. For more details on the sequence we refer to [18].

Figure 2 shows the velocity magnitude plot obtained for the Oseen vortex pair. The
algorithm produces dense flow fields while correctly estimating the vortex cores. We now
empirically demonstrate the rate of convergence of both models.

Table 3 shows the number of iterations required by the algorithm to reach the error
threshold of ϵ. By an order O(1/N) convergence we mean that the number of iterations
required to reach a tolerance ϵ is O(1/ϵ). This is validated from the above table. For
Model (M1), for ϵ = 0.1, the number of iterations required to reach the threshold of 0.1 is
a multiple of 10. For Model (M2) it requires a multiple of 102 iterations. The table also

Fig. 1. Oseen vortex pair [18].

Tab. 3. Total numbers of iterations required by the algorithms to reach the threshold of ϵ.

ϵ = 0.1 ϵ = 0.01
Model (M1) Model (M2) Model (M1) Model (M2)

Oseen vortex pair 78 627 755 53753
Cloud sequence 20 99 450 16068
Sphere sequence 10 316 561 18009
Hydrangea 103 346 937 12574
Rubberwhale 42 351 617 13590
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Fig. 2. Velocity plot for the Oseen vortex pair with α = 0.1, β = 0.01, iter = 50.

shows that roughly it requires a multiple of 100 iterations for the Model (M1) algorithm
to reach the threshold of ϵ = 0.01 and a multiple of 1002 iterations for Model (M2). The
reason for this efficiency can be explained from the fact that in phase 1, the Horn and
Schunck initialization brings the solution within a close error range. As a result in the
second phase we observe a O(1/N) convergence as mentioned in [7].

5.1. Modern Implementation Principles

Recent developments in optical flow computation reveal that the flow estimates can be
significantly improved by incorporating certain established implementation principles.
To accommodate these principles in our framework, Algorithm 5.1 is suitably modified
to make it a part of a larger implementation procedure.

The computation of image derivatives follows a weighted averaging principle [4, 24].
The current flow estimates are used to warp the second image towards the first using
bi-cubic interpolation. The time derivative is the difference between the first image and
the warped image. The spatial derivatives are obtained as a weighted average of the first
image and the warped image. The weight coefficient is called the blending ratio chosen
between 0 and 1.

To account for large displacements of pixel motions, a coarse-to-fine pyramidal scheme
is employed [4, 11, 25]. The flow field is first computed at the coarsest level. This
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Fig. 3. Estimated flow field for the rubberwhale sequence with α = 10, β = 1.

estimate is upsampled to the next finer level via interpolation and is used to warp the
second image towards the first image. The flow increments at this finer level are then
computed between the first image and the warped image. This process continues till the
finest resolution level is reached. At each pyramid level, 10 warping steps are performed.
after each warping iteration, a 5 × 5 median filter is applied on the flow estimates to
remove outliers. Figure 3 shows the obtained flow field for nonlinear refinement using
Algorithm 5.1 for the rubberwhale sequence.

An improvement is seen in the average angular error (AAE) and the end-point error
(EPE) for the nonlinear refinement compared to the linear refinement for the rubber-
whale sequence as shown in Table 4. The improvement however is not significant which
indicates that incorporating the modern implementation principles like coarse-to-fine
warping, median filtering and so on also improves the accuracy of the linear refine-
ment process. There are however image sequences for which edge-information are not

Tab. 4. Comparison of the Average Angular Error (AAE) and End Point Error (EPE) for rubberwhale
sequence († refers to the algorithm implemented with the modern principles).

Model 1† Model 2†

AAE EPE AAE EPE
Linear Refinement 3.412 0.105 3.410 0.105
Nonlinear Refinement 3.397 0.104 3.355 0.103
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Fig. 4. Sphere sequence [22].

(a) Linear Refinement (b) Nonlinear Refinement

Fig. 5. Estimated flow fields of the sphere sequence from [22] using Algorithm 1† with α = 1, β = 0.1
(† refers to the algorithm implemented with the modern principles).

well-preserved by the linear refinement process. We demonstrate this with the sphere
sequence [22] (Fig. 4).

Figure 5 shows the color-coded flow estimate for the sphere sequence using the Mid-
dlebury color coding [2, 3]. The isotropic behaviour is seen in the linear case because of
which the edges are not well preserved.
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6. Conclusion

In this paper we have proposed two nonlinear variational models for obtaining an accu-
rate estimation of physics-based flow fields such as rotational and fluid flow. The first
model is a novel two-phase refinement process where in the first phase a crude estimate
is obtained and subsequently refined using additional constraints in the second phase.
We have studied the well-posedness of this model using an Evolutionary PDE approach.
The second model performs the same refinement using a single functional. We used the
first-order primal-dual Chambolle-Pock algorithm for the numerical implementation of
the above models. We further empirically demonstrated that the two-phase model leads
to a faster convergence rate of the order O(1/N) compared to the second model which
has a convergence rate of the order O(1/N2).
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