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Abstract. This study used stick model augmentation on single-camera motion video to create a mark-
erless motion classification model of manual operations. All videos were augmented with a stick model
composed of keypoints and lines by using the programming model, which later incorporated the COCO
dataset, OpenCV and OpenPose modules to estimate the coordinates and body joints. The stick model
data included the initial velocity, cumulative velocity, and acceleration for each body joint. The ex-
tracted motion vector data were normalized using three different techniques, and the resulting datasets
were subjected to eight classifiers. The experiment involved four distinct motion sequences performed
by eight participants. The random forest classifier performed the best in terms of accuracy in recorded
data classification in its min-max normalized dataset. This classifier also obtained a score of 81.80% for
the dataset before random subsampling and a score of 92.37% for the resampled dataset. Meanwhile, the
random subsampling method dramatically improved classification accuracy by removing noise data and
replacing them with replicated instances to balance the class. This research advances methodological
and applied knowledge on the capture and classification of human motion using a single camera view.

Key words: vision, single camera, markerless, stick model, human motion, motion classification,
data mining.

1. Introduction

Human motion analysis entails sensing the human body and extracting static or dynamic
data from it in the form of gestures, behaviors, and actions [34]. It emerges as a critical
component in operation studies to evaluate performance, such as in sports performance
analysis [16], medical rehabilitation [61], video surveillance [18], and virtual reality gam-
ing [28]. In industrial engineering, motion classification aids in verifying the presence
of operator action, and the absence of specific actions can lead to process defects and
incompletion [1], as well as safety concerns [22].

Fixed-axis and parallel projection are used in vision-based motion classification mod-
els to calibrate feature points relative to the previous position of human body parts [53].
The general framework of a vision-based motion classification model includes movement
scene capture, human tracking, humans and motion representation, motion recognition,
and classification into its respective class [37]. In general, the model processes each frame
of the motion video in accordance with its frame sequences. When a human is detected
in a video frame, the frame image is segmented to obtain the region of interest [41]. The
motion can then be visualized by combining a stick-figure model, a volumetric model, 2D
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4 Vision-based biomechanical markerless motion classification

blobs, and a geometric drawing [2]. Among these methods, the stick-figure model pro-
vides a simple but effective solution for estimating a human posture at a specific frame.
The stick-figure model is a skeleton-like model composed of several keypoints, each of
which represents a coordinate of a body part. These body parts function as moving
joints, and their motion vectors are compared with those of the previous frame [10]. The
motion is classified by comparing the movement of the person between frames [52].

Most motion capture methods place markers on the body parts of the subject to
track the change in motion. However, such a setting necessitates a planned experiment
environment with informed subjects, which makes it impractical in a real-life scenario
where preparation or interference with the observed activity is not permitted. Several
studies used multi-camera recording to reconstruct the 3D view of moving human bodies
in the absence of motion capture markers. Nakano et al. [38] used multiple video cam-
eras from different angles to capture frames from various perspectives, which they then
merged into 3D visualization using the direct linear transformation method. Meanwhile,
Hasler et al. [23] used audio synchronization to conventional video camera recordings
and then 3D mesh reconstruction using a feature-based approach.

Kanko et al. [26] used a single 2D camera view to perform gait analysis and move-
ment estimation using a deep learning approach. Tsuji et al. [49] used a single camera
to capture video of general movements of infants and identify abnormalities in those
movements. Then, they utilized a framework that begins with feature extraction using
computer vision and progresses to movement analysis using formula calculations. Fi-
nally, they conducted movement classification using a feedforward-type network known
as a log-linearized Gaussian mixture network. Zult et al. [63] demonstrated that a con-
ventional video camera could extract the valid keypoints of body parts in the video
frame based on the markers using a low-cost 2D camera system. Using a computer vi-
sion module such as OpenPose [6], the markers could be replaced by virtual coordinate
points [57]. For example, Kim et al. [27] used the OpenPose module to predict knee and
hip movement angles in a video captured with a smartphone camera. The validity of
this OpenPose-based system with the automated post-processing algorithm has shown
early promise, but it may require further verification.

This study investigated the markerless motion classification approach, with motion
video captured using a single 2D camera view. The markerless motion classification
model classified manual operations extracted from motion video by using the stick model
augmentation. This study has two objectives. The first objective is to develop a descrip-
tive model for motion classification based on the overlay of a stick-figure model onto
the motion of the operator in video frames. The second objective is to determine the
best motion classification strategy by assessing the accuracy of the motion classification
model using data mining classifier algorithms. The research advances methodological
and applied knowledge on the capture and classification of human motion using a single
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camera view. The use of a single camera has cost, configuration, and maintenance ben-
efits. The method can be used in real-world industry applications, such as in analyzing
operator performance during a repetitive manufacturing process.

The structure of the manuscript is provided. It begins with an overview of the
research context, followed by a brief review of the literature on human motion segmenta-
tion, stick-figure models, and motion classification. The following section 3 describes the
research methodology, which includes the experiment setup, motion data extraction and
computation, and motion classification. Section 4 contains the results and discussion.
The final section 5 elaborates the conclusion.

2. Literature review

Motion segmentation is a preprocessing stage of motion analysis that is used to cluster
long frame sequences depicting human actions into several shorter, non-overlapping video
segments. Subspace clustering and temporal data clustering are two popular clustering
methods in the literature. Subspace clustering works by searching a dataset for subspaces
and clusters and categorizing data into new distinct spaces based on similar features.
For example, Xia et al. [55] combined sparse subspace clustering and a robust kernel low-
rank representation method for motion recognition. However, the method ignores the
temporal correlation between successive frames. Temporal data clustering divides large
amounts of sequential data into non-overlapping chunks. Wang et al. [51] highlighted the
importance of temporal information in achieving accurate model performance. However,
transfer learning is required to overcome the unpredictability of the results because the
temporal clustering method is unsupervised.

Several recent studies used transfer learning to visualize object motion using existing
datasets, which is due to that prior knowledge from related source data improves feature
identification. Several works partially, such as [62] or fully adapted transfer learning
by using deep neural network classifier parameters. They are useful, particularly for
detecting multiple people in the same image frame [45].

Rubino et al. [42] proposed semantic motion detection, which uses semantic informa-
tion to identify object matches between two views. Its underlying principle is similar to
that of the convolutional neural network model, which uses patterns from training data
to identify features in target data. Simonyan and Zisserman [46] proposed a two-stream
convolutional network model with spatial and temporal networks. With prior knowledge
of training data from the optical flow model, this model identifies the moving action in
the testing video. Meanwhile, Zhou and He [60] used the recurrent network model to
estimate the human body region in the image by transforming the image into a pose
heatmap. The heatmap would be used to evaluate the coordinates of body joints, and
these coordinates are critical for building the stick-figure model.

A stick-figure model is a skeleton-like structure used to represent important body
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6 Vision-based biomechanical markerless motion classification

joints and track body motion patterns [21]. Annotations of keypoints from the body
pose estimation are used to accomplish this model. Handcrafted features, such as his-
togram of oriented gradient, are used in the previous stick model. However, the accuracy
of the identified keypoints is below the acceptable range [13]. Single-person or multi-
body human body position estimations are used in modern times. The single-person
approaches locate body parts through direct regression and heatmap conversion [14].
Chan et al. [9] used a mathematical regression coefficient model to simplify the 2D stick
model of human motion for direct regression. Figure 1 depicts the construction of the
2D stick model, which is composed of several points of body parts and lines. The model
presents a more straightforward interpretation by using joints as calculation points.

However, the regression-based stick model construction always necessitates additional
procedures to accurately map the feature points onto the subject in an image. Carreira
et al. [8] added a corrective measure to the neural network model structure by including
a simple error feedback connection. The predicted error was fed back into the network in

Fig. 1. A simple two-dimensional stick model.
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the form of backpropagation to gradually improve keypoint location prediction. Luvizon
et al. [35] presented the soft-argmax operation, which is an improved method. After
this operation is integrated into the deep convolutional neural network, it can convert
the feature maps directly to joint coordinates by finding the maximum values from the
target functions. This new method produces results that are comparable to those of the
heatmap-based framework. However, unlike the heatmap-based approach, expanding
this method into multi-person cases is problematic.

The detection-based framework is typically built on deep learning datasets that have
been pre-trained using thousands of human images. Sun et al. [47] used a convolutional
neural network with two-stride convolutions to reduce resolution and a main body that
outputs feature maps to implement their approach. At the network’s end, the regressor
estimates the keypoint positions by evaluating the loss function of the heatmap using
comparisons between predicted and ground-truth heatmaps.

Various motion classification techniques have been proposed. Switonski et al. [48]
investigated data mining for markerless motion extraction in motion capture data. They
used dynamic time warping (DTW) technique to classify the human motion data into gait
patterns. In time-series data, the model identifies variations in the orientation of motion
capture and subject for motion recognition. It calculates the angles in the joint data
and the classification probability with the minimum distance classifiers (MDC). MDC is
combined with k-nearest neighbor classifiers to maximize the accuracy and consistency of
both types of classifiers. Schneider et al. [44] used the DTW approach to evaluate warping
distance after annotating the skeleton model using the OpenPose module dataset. Prior
to applying the classifier, the image data in coordinates were normalized to condense the
data range into a smaller number. Thereafter, nearest neighbor classifiers were used to
classify the warping distance of time-series data. The results still have some limitations,
such as reliance on the representativeness of the dataset, poor recognition precision when
noise reduction is required, and the need for motion capture marker setup.

Qian et al. [40] evaluated multi-class support vector machine (SVM) classifiers by
removing the background and extracting the centroids and instantaneous speed of hu-
man motion. The frame sequence comparison produces a contour coding of motion
energy image with a square-to-circular coordinate transformation, which converts plane
coordinates to polar coordinates. SVMs were also used as classifiers in the study by
Choi et al. [11] study to classify the gait motion pattern. The joint angle and distances
between body parts are among the parameters used. SVM is an excellent option for
accurately recognizing motion, but many more classifiers have yet to be tested in motion
classification.

Yang and Zhao [58] used decision tree classifiers to determine the motion class of
firefighters, but string-type descriptions rather than numbers were utilized as attributes.
Zhang et al. [59] employed an interactive system to classify six different motions using
three classifiers: näıve Bayes, SVM, and random forest. The results showed that the
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Tab. 1. Descriptions for experimental motion activities.

Motion Activity Description
Moving box Bend down the body, lift the box with two hands, stand upright,

walk a few steps, bend down the body, put down the box, resume
to a standing position.

Moving pail Bend down the body, lift pail by its handle with one hand, stand
upright, walk a few steps, bend down the body, put down the
pail, resume to a standing position.

Sweeping Grasp a broom with one hand, move the broom down until its
brush touching the floor, pull the broom to sweep the dirt, lift
the broom up.

Mopping Bend down the body, lift the box with two hands, stand upright,
walk a few steps, bend down the body, place the box down,
and resume standing. Bend down the body, lift the pail by the
handle with one hand, stand upright, walk a few steps, bend
down the body, set the pail down, and resume standing. Grasp
a broom with one hand, lower the broom until the brush touches
the floor, pull the broom to sweep the dirt, and then raise the
broom. Grasp a mop with two hands, slightly bend the body,
move the mop in one direction until it touches the floor, then
reverse the mop movement.

random forest classifier has the highest classification accuracy when using position and
vector data. Li et al. [31] investigated the motion recognition model using the random
forest algorithm and the difference in normalized joint coordinates between keyframes.
Fong et al. [17] agreed that the random forest classifier performs the best using position
and vector data from the skeleton model. It outperforms the neural network approach
and other traditional classifiers in terms of classification accuracy.

3. Methodology

3.1. Experimental motion selection

The experiment was designed to involve activities observable in common full body op-
erations. As described in Table 1, the motion activities featured in the experiment are
moving carton box, moving pail, sweeping floor, and mopping floor. Moving carton box
and moving pail are highly similar operations, as well as sweeping and mopping floor.
The intention is to create complexity in learning when the system is being presented
with highly similar datasets.
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The variation in human action influences pose recognition. Eight participants be-
tween the ages of 23 and 24 volunteered for the motion video collection to account for
the abovementioned effect. Each participant was required to complete a series of afore-
mentioned activities in various settings. Different backgrounds (outdoor and indoor) and
light conditions were used in the video sample collection given that video backgrounds
affected motion recognition using a markerless system [5]. The outdoor used natural
light, whereas the indoor light conditions could be bright or dim.

The motion classification samples were collected at the university student hostels.
The motion recording was conducted with a digital single-lens reflex (DSLR) camera,
specifically a Nikon DSLR D3200 model, with a frame rate of 60 frames per second and
a video frame size of 7201080 pixels in three color channels. During video capture, a
camera tripod stand supports the camera and fixes its position. Figure 2 depicts and
labels the camera setup parallel to the motion activity. During video capture, each
participant was required to face the camera parallelly.

A participant repeated each motion activity 10 times, which were recorded all in the
same video. All sample videos were manually trimmed into individual activity videos
by using video editing software. The first three segmented videos of each sample video
were considered motion warm-up and were excluded from the subsequent processing
stage. A total of 100 videos from each motion class were chosen at random for further
processing. All 400 videos were uploaded to Google Drive in folders named after the
motion class to be processed by programming.

The stick model augmentation estimates body part position using the COCO da-
taset [33]. By associating joint coordinates with individuals, the COCO dataset has
been used in multi-person tracking and keypoint annotations [30]. The COCO dataset
contains over 200,000 labeled object instances and at least 250,000 human samples. The
dataset includes annotations and information for all body part instances, which aid in
segmentation and estimation of keypoint coordinates. The COCO dataset was used to
train the model for object detection and estimation using transfer learning. As shown
in Table 2, 18 points per person had to be recognized from the COCO dataset onto each
human image. Python was used to annotate the stick model keypoints and lines onto
the human body in the video frames for the stick model overlay. The body joint position
was estimated using OpenPose [24], which has been integrated with OpenCV [36].

With 4D blobs, the image was converted into image data. The blobs were fed into
the trained neural network, which identified the maximum points in the object area and
detected the objects. The architecture of the pre-trained network was divided into two
branches: the top branch, which predicts the confidence map, and the bottom branch,
which estimates the affinity field. Affinity field refers to the storage of unstructured
pairwise relationships between body parts in a field [7].

The code was written in Python and executed in Google Colab [20] using the Python 3
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10 Vision-based biomechanical markerless motion classification

Fig. 2. Motion video capturing scene setup.

Tab. 2. Representation of each number for body joints.

Number Body Joint Number Body Joint
0 Nose 9 Right knee
1 Neck 10 Right ankle
2 Right shoulder 11 Left hip
3 Right elbow 12 Left knee
4 Right wrist 13 Left ankle
5 Left shoulder 14 Right eye
6 Left elbow 15 Left eye
7 Left wrist 16 Right ear
8 Right hip 17 Left ear

Google Compute Engine Tensor processing unit backend [19] with 35.25 GB of high-
RAM. All videos were saved in Google Drive folders. The COCO dataset was imported,
and the keypoints were sequentially paired (Table 3) with a different number to represent
the various body joints identified in Table 2.

The flowchart (Figure 3) summarized the algorithm for overlaying the stick figure. To
save computation power, all experimental motion videos were annotated with keypoints
and line connections based on specified body part pairings every half a second.
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Fig. 3. Flowchart for programming model augmentation using stick figures.

3.2. Data collection and calculation for motion

Keypoint estimation in the stick model overlay was used to calculate the position coor-
dinates for each body joint in a frame. Positions, velocity, and acceleration were among
the data extracted from the stick-figure model. Eyes and ears were irrelevant to motion
evaluation. Thus, only the first 14 body joints were counted in the extracted data. Ow-
ing to the single 2D view of the video, the initial velocities of body parts were calculated
for the x- and y-axes only in the motion classification model. Meanwhile, the cumula-
tive velocity and acceleration were used to account for the time-series effect of the video.
Table 4 lists the extracted motion variables with n, which indicates the representation
number of body joint plus one. The representation number of body joint can be found in
Table 2. The initial velocities of body joints were calculated using Equations (1) and (2)
for x- and y axes, respectively.
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12 Vision-based biomechanical markerless motion classification

uxn
=

x1n− x0n

t
, (1)

uyn
=

y1n− y0n
t

, (2)

where:
x1n – x-axis coordinate at the first instance for body joint n,
x0n – x-axis coordinate at the start for body joint n,
y1n – y-axis coordinate at the first instance for body joint n,
y0n – y-axis coordinate at the start for body joint n,
t – time interval, here equal to 0.5.

Equations (3) and (4) were used to calculate the cumulative velocity of a body part
in the x and y directions, respectively. Meanwhile, (5) and (6) defined the equations for
calculating the cumulative acceleration of body parts in the x and y-axes, respectively.

Tab. 3. Body joints pairing with the number indication.

Number
Pair

Body Joints Pairing Number
Pair

Body Joints Pairing

1,2 Neck – Right shoulder 11,12 Left hip – Left knee
1,5 Neck – Left shoulder 12,13 Left knee – Left ankle
2,3 Right shoulder – Right elbow 1,0 Neck – Nose
3,4 Right elbow – Right wrist 0,14 Nose – Right eye
5,6 Left shoulder – Left elbow 14,16 Right eye – Right ear
6,7 Left elbow – Left wrist 0,15 Nose – Left eye
1,8 Neck – Right hip 15,17 Left eye – Left ear
8,9 Right hip – Right knee 2,17 Right shoulder – Left ear
9,10 Right knee – Right ankle 5,16 Left shoulder – Right ear
1,11 Neck – Left hip

Tab. 4. Initial variables and vector variables for motion data extraction.

Initial
Velocity
Variables

Description Vector
Variables

Description

uxn Initial velocity of nth body
part at x-axis.

vxn Cumulative velocity in the x-
direction of nth body part.

uyn Initial velocity of nth body
part at y-axis.

vyn Cumulative velocity in the y-
direction of nth body part.

axn Cumulative acceleration in the
x-direction of nth body part.

ayn Cumulative acceleration in the
y-direction of nth body part.
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vxn =

m∑
i=1

xin− x(i−1)n

ti − ti−1
ti , (3)

vyn
=

m∑
i=1

yin− y(i−1)n

ti − ti−1
ti , (4)

axn
=

m∑
i=1

xin− x(i−1)n

(ti − ti−1)2
ti , (5)

ayn =

m∑
i=1

yin− y(i−1)n

(ti − ti−1)2
ti , (6)

where:
i – the instance index,
m – total number of frames in the video divided by 30,
t – time interval, here equal to 0.5,
n – body joint number (0 to 13) + 1,
xin – x-axis coordinate at ith instance for body joint n,
x(i−1)n – x-axis coordinate at the previous instance for body joint n,

yin – y-axis coordinate at ith instance for body joint n,
y(i−1)n – y-axis coordinate at the previous instance for body joint n.

These formulas were then incorporated into the programming algorithm. Each posi-
tion and vector variable had 14 attributes to represent different body joints. Thus, the
total number of attributes was 84, and a motion type class attribute was added at the
end. All attributes were extracted and saved in a comma-separated values (CSV) file for
use in data preprocessing and mining.

Several issues contribute to value errors from the annotation of the stick model,
and they would be addressed differently. One of the issues in estimating coordinates
is the inability to detect body parts due to a blocked view. Motion videos feature
human subjects interacting with objects to perform the required activity. As a result,
the interacted object is likely to become an impediment to viewing body parts from
the motion video. An example is undetected feet by the programming algorithm due
to the carton box obscuring its view. Aside from being blocked by objects, some body
parts for keypoint detection are kept out of camera view by the pother body parts of
the participant. The most notable occurrences involve sweeping and mopping, in which
some participants choose to turn their bodies in different directions while performing the
action. In both cases, missing coordinate data were replaced with estimated vector data.
The COCO keypoint dataset uses a large amount of image data to detect human body
part positions and estimate missing keypoints by comparison with other body parts [32].
This estimation method is valid only for common gestures like parallel standing and
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lifting objects. The reason is that the dataset only has a few images for each pose. The
issues were resolved by assuming that body part movement momentum continued from
the previous frame to the current frame. The position of an undetected body part was
estimated using the coordinates of the previous frame plus the instantaneous velocity of
that body part.

Another error is mistaking unrelated objects for body part keypoints. These objects
are identified as human body parts by Setjo et al. [45]. Using the multi-person dataset
for keypoint estimation, multiple sets of keypoints are detected. However, separating
humans from false positives is required. Thus, the bottom-up approach [6] of associating
joints to people was used to reduce misidentification.

3.3. Data preprocessing

Data preprocessing steps are critical for preparing data for an effective data mining
process. Several techniques were used to normalize the data extracted from the stick
model. Then, the outliers and extreme values of normalized data were calculated before
reacting. Duplicate instances were also identified in the preprocessing stage.

Motion data are normalized to standardize the range of different units or scales in
the attributes. It simplifies large-number numeric attributes and improves data quality
without affecting the final data classification result [25]. Three popular normalization
techniques were used in this study: min-max normalization (MMN), Z-score normaliza-
tion (ZSN), and decimal scaling normalization (DSN). MMN reduces the un-normalized
data to a specific lower and upper boundary, which is typically 0 to 1 or -1 to 1. The
formula in Equation (7) was used to calculate MMN [43].

v′i,n =
vi,n −min(vn)

max(vn)−min(vn)
(maxnew −minnew) + minnew , (7)

where:
v′i,n – new normalized variable data at ith instance,
vi,n – original variable data at ith instance,
min (vn) – minimum value of variable data in the nth attribute,
max (vn) – maximum value of variable data in the nth attribute,
minnew – new minimum value, usually -1 or 0,
maxnew – new maximum value, usually 1.

The ZSN method uses mean and standard deviation to normalize data into a scaled
value ranging from -1 to 1, with zero mean and unit variance. ZSN is expressed by (8).

v′i,n =
vi,n − µn

σn
, (8)
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where:
v′i,n – new normalized variable data at ith instance,
vi,n – original variable data at ith instance,
µn – mean of all data in the nth attribute,
σn – standard deviation of all data in the nth attribute.

DSN measures the maximum values of an attribute and rescales them by moving the
decimal point of instance values. This method of normalization is useful for data with
logarithmic variation in the attribute. In (9), the DSN formula is written as follows.

v′i,n =
vi,n

10j
(9)

where:
v′i,n – new normalized variable data at ith instance,
vi,n – original variable data at ith instance,
j = log10 (max(vn)).

Google Colab was loaded with the CSV file containing the extracted motion data
from the stick-figure model. The three normalization methods were applied using the
Python Scikit-learn (Sklearn) module [12], which resulted in three different normalized
CSV dataset files.

The normalized datasets were then resampled in the WEKA interface [54] (version
3.8.5) under the supervised instance filter section using a random subsampling method.
Its goal was to improve the instances by removing noise from the motion data. The imbal-
anced result from different subsets created during cross-validation could be due to noise
instances. With or without replacement, the random subsampling method generated
a random subsample of a dataset. The data were balanced with replicated instances
from the remaining data to maintain the same class bias as the original unprocessed
dataset without compromising the total sampling number for the experiment. The three
datasets were preprocessed and saved to new CSV files before the motion classification
experiment was started.

3.4. Motion classification

The WEKA Experimenter was used to run the motion classification experiment, which
included all three normalized datasets and eight different classifiers (Table 5). The
default WEKA settings were used except for the options in brackets that required manual
input. Each classifier was run 10 times. The 10-fold cross-validation option was used to
divide the training and validation data into 10 sets, with each set serving as the testing
set iteratively in 10 rounds of validation. For each data preprocessing technique, the
experiment was repeated with resampled datasets. A total of 4800 experimental trials
were conducted.
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Tab. 5. Classifiers used in the experiment.

Classifier Description
ZeroR The most basic rule-based classifiers predict the majority class

while ignoring all predictors or attributes [15].
OneR Selects the single most informative attribute and classifies in-

stances solely on the basis of this attribute’s criteria [39].
J48 Decision
Tree (pruned)

Produces pruned trees that begin at the root node and classify
instances into branches by sorting them according to attribute
values [29].

Random
forest

Building many individual decision trees with each random forest
tree results in a class prediction, and the class with the most votes
becomes the final model’s prediction.

Random tree The decision tree and Random Forest approaches are combined
to predict the class by fitting several decision tree classifiers on
different sub-samples of the dataset and averaging to improve pre-
diction accuracy and avoid over-fitting.

k-Nearest
neighbors
(k = 5)

A lazy learner method that classifies instances based on evaluated
Euclidean distances that define the closeness to each class, where
k represents the number of neighbours considered to find the ma-
jority of a class label [29].

Näıve Bayes Calculates the conditional probability of the classes based on the
assumption that each attribute is independent of the others [56].

Multilayer
perceptron

It is made up of neural network layers, which include input, hid-
den, and output layers. Back-propagation is used to train neurons
to process data and recognize patterns [50].

4. Results and discussion

4.1. Stick model overlay

The stick model was used to annotate all 400 videos, and body part keypoints and lines
indicated the connection between body joints. Figure 4 depicts video frames with human
body parts augmented by the stick model when moving a carton box, moving a pail,
sweeping, and mopping, in that order.

A set of 100 videos from the same motion class took an average of 27min to com-
plete the stick model overlay process. A motion video contains 8 to 10 frames that are
designated for stick model processing and data extraction. As a result, a single frame
took between 1.62 and 2.03 s to complete the stick model augmentation process.
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Fig. 4. Sample video frame with stick model overlay.

Fig. 5. Graph of average accuracy for all motion classification experimental trials.

4.2. Motion classification

A total of 4800 data mining experimental trials were conducted, which involved variable
permutations of eight classifiers, three normalization techniques, and the use of resam-
pling prior to classification. The average accuracies for each classifier and normalization
technique permutation, with or without resampling, were evaluated. They are recorded
in Table 6 and plotted as a graph in Figure 5.

Except for the ZeroR classifier, the average classification accuracy for the datasets
after resampling is higher than that for the datasets before resampling. ZeroR classifier
maintains an accuracy of 25% regardless of normalization methods or resampling. The
reason is that the ZeroR classifier frequently identifies the majority class. However, the
majority class does not exist in these datasets because of the motion data distribution.
As a result, the accuracy for all normalized datasets with a ZeroR classifier is the same.
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Tab. 6. Classification accuracy of different classifiers and normalization technique used before and after
the resampling.

Classifier
Normalization
Technique

Average Accuracy with-
out Resampling (%)

Average Accuracy with
Resampling (%)

ZeroR Decimal scaling 25.00 25.00
Min-Max 25.00 25.00
Z-score 25.00 25.00

OneR Decimal scaling 47.15 63.45
Min-Max 47.13 63.70
Z-score 46.97 63.70

J48 Decision
Tree (pruned)

Decimal scaling 72.38 85.52
Min-Max 72.47 85.62
Z-score 72.57 85.65

Random
forest

Decimal scaling 81.25 92.10
Min-Max 81.80 92.37
Z-score 81.40 92.15

Random
tree

Decimal scaling 67.78 85.20
Min-Max 67.00 86.80
Z-score 66.08 85.55

k-Nearest
neighbors
(k = 5)

Decimal scaling 64.53 67.30
Min-Max 64.53 67.30
Z-score 64.53 67.30

Näıve
Bayes

Decimal scaling 70.30 77.20
Min-Max 70.52 77.05
Z-score 70.62 76.55

Multilayer per-
ceptron

Decimal scaling 54.58 62.32
Min-Max 54.58 62.32
Z-score 54.58 62.32

Figure 5 shows that the random forest classifier method achieves the highest accu-
racy in the datasets before and after resampling categories. The random forest classifier
with MMN and resampling has the best performance of the knowledge discovery method
combination, with an average accuracy of 92.37%. The finding echoes previous studies
on movement or gait analysis [17, 59]. The random forest classifier avoids overfitting
in large datasets like the motion dataset. The motion dataset has 84 attributes, which
can easily cause overfitting using other classifiers. The normalization techniques pro-
duce insignificant differences in classification accuracy while using the same classifiers.
Thus, the normalization scale difference insignificantly affects the classification result.
Nevertheless, the random forest classifier performs best with the min-max normalized
dataset.

The resampling method increases classification accuracy by removing noise or mis-
classified data and replicating the remaining data to fill the void [4]. Confusion matrices
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Fig. 6. Confusion matrix for classification result of the min-max normalized dataset using Random
Forest classifier.

for classification results of datasets with and without resampling confirm this explana-
tion. As shown in Figure 6a, the random forest classifier and MMN produce a confusing
confusion matrix for the dataset. Figure 6b shows the classification result of the same
data mining technique for resampled data, which has a higher accuracy.

According to confusion matrices, sweeping and mopping are more likely to be mis-
classified due to their high similarity. The experimental motion capture does not impede
movement execution. It affects the classification accuracy, especially for motions with
similar characteristics. Resampling increases correctly classified instances in mopping
and sweeping. The resampling method replaces incorrectly classified instances with
replicated instances from correctly classified instances. Arbelaitz et al. [3] agreed that
random subsampling improves accuracy. However, they recommended using synthetic
minority oversampling technique (SMOTE) to obtain significant statistical differences
between class instances. Future research should examine the effect of the SMOTE tech-
nique on the dataset.

5. Conclusion

This study develops a descriptive model for markerless motion classification using a single
camera view. The stick model overlay uses OpenCV and OpenPose modules as well as
COCO datasets. In motion classification, the best data mining strategy is determined by
classifier and normalization accuracy. The best classifier is the random forest classifier,
which achieves an accuracy of 81%-82% without resampling and an accuracy of 92%-
93% with resampling. Using the same classifier, normalization techniques have little
to no effect on classification accuracy. The developed algorithm of stick-figure model
augmentation and data mining strategy complete the markerless motion classification
model. This study can be extended to more complex and variable motion activities in
manufacturing, such as manual operations.
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Abstract. Open, broken, and improperly closed manholes can pose problems for autonomous vehicles
and thus need to be included in obstacle avoidance and lane-changing algorithms. In this work, we
propose and compare multiple approaches for manhole localization and classification like classical com-
puter vision, convolutional neural networks like YOLOv3 and YOLOv3-Tiny, and vision transformers
like YOLOS and ViT. These are analyzed for speed, computational complexity, and accuracy in order
to determine the model that can be used with autonomous vehicles. In addition, we propose a size de-
tection pipeline using classical computer vision to determine the size of the hole in an improperly closed
manhole with respect to the manhole itself. The evaluation of the data showed that convolutional neural
networks are currently better for this task, but vision transformers seem promising.

Key words: computer vision, object detection, size detection, Convolutional Neural Networks,
Vision Transformers, autonomous vehicles

1. Introduction

The development of manholes is an ongoing trend spurred by urban growth. Though the
construction of manholes is such an integral part of road development in the country,
we see many incidents where the improper construction and maintenance of manholes
have led to many road accidents, even resulting in the loss of lives. In India, at least two
people die every day due to open manholes, according to [22]. These accidents occur due
to broken manhole lids, improperly placed lids, or disproportional manhole lids which
do not cover the manhole entirely. This problem is especially worsened during heavy
rains wherein waterlogged roads can hinder even human driving.

Autonomous vehicles are not a reality yet in developing countries like India for many
reasons as seen in [5, 27]. However, even seemingly trivial problems to human-driving
could pose major obstacles to autonomous vehicles. One such problem that has not been
accounted for in prior research is the existence of open or broken manholes which can
lead to costly damages to the vehicle and pose a hindrance to public safety. Potholes are
also a major problem, however the cost of damage to the vehicle would not be as high
as that for open manholes. Thus, the focus of our research is manholes. Autonomous
vehicles will soon be a reality even in developing countries [27] so assuming that the roads
will have no problems with manholes could be catastrophic. Therefore, the inclusion of
detection of open/broken manholes is imperative in obstacle avoidance and lane-changing
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algorithms for self-driving vehicles. Humans can identify open manholes easily, however
for autonomous vehicles this devolves into a computer vision problem.

In this paper, we focus on manhole detection and classification using computer vi-
sion. Autonomous vehicles have a camera and GPS for path planning and localization
respectively. Using a camera, open or broken manholes can be localized and classified
within an image, and using a GPS, the location of the manhole can be recorded to send
to the concerned authorities. We collected a dataset of road-surface images and a few
aerial images from Google Street View, Google Images, and [39]. A lot of the images
in the dataset are from [39] and these images were collected using a moving vehicle and
a GoPro HERO6 Black RGB camera with resolutions of 1280×720 pixels. Since the
road-surface images were collected from a camera attached to a moving vehicle, it makes
it very close to what an autonomous vehicle would encounter. The images include varied
lighting conditions and can hence be used for real-time detection and classification of
manholes on roads by self-driving vehicles.

The training images of the deep learning vision models we have trained, can also
be used for detection on video streams. We also take this research one step ahead
to further classify open and broken (improperly closed) manholes into high and low
importance for determining the priority order of fixing the manhole. This can be used
by private organizations or government authorities to easily find the faulty manholes,
thus preventing unfortunate accidents.

In the past, image segmentation and classification based approaches have proven use-
ful for crack detection [28] and pothole detection [21]. Considering this, and the fact
that autonomous vehicles have cameras for driving, we focus on an object detection ap-
proach to manhole classification and localization. In this paper we evaluate and compare
the different object detection models on the same dataset based on the computational
complexity. The first approach we tested was classical computer vision for localization
of the manhole in the images followed by a simple neural network for classification. This
method is favorable for autonomous vehicles as it does not require a GPU or much com-
putational power. In addition, our dataset was minimal with only 1032 images, thus
we expected this method to be advantageous. However, it was not close to the ex-
pected benchmark, so we attempted simultaneous object localization and classification
(object detection) using Convolutional Neural Networks (CNNs). Specifically, we first
attempted YOLOv3-Tiny [1] which we hypothesized would give decent results without
a heavy dependence on computational power. To compare the performance and the
tradeoff between time and computational complexity, we applied YOLOv3 [37]. Vision
Transformers (ViTs) [9] have gained a lot of popularity in object detection tasks in recent
research (see [7]), thus we used YOLOS [12]. The results were similar to the classical
computer vision approach, thus we implemented a simple, non-hierarchical vision trans-
former for just classification without localization, to evaluate its accuracy especially after
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recent research reported in [24] highlighting its promising applications as a backbone for
object detection tasks.

In this paper, we go a step further than just object detection for localizing and
classifying manholes. We propose a classical computer vision pipeline to measure the
size of the hole in a broken manhole with respect to the manhole itself to analyze the level
of damage done to the manhole. We take the images classified as open and improperly
closed using the object detection model and crop them around the bounding box drawn
by the object detection model. We then filter and find the maximum contour in the
image and compare it with the smaller contour found. If any of the smaller contours
are greater than 50% of the total manhole area, we determine that the vehicle should
stop or definitely avoid the manhole. This is proposed because although broken and
open manholes pose a risk of damage to autonomous vehicles, all of them cannot be
avoided, especially when the traffic is heavy and speed of the vehicle is high. This
pipeline acts as a form of direction to classify the level of damage into high and low
importance, which would be useful for obstacle avoidance in autonomous vehicles, and
it could even be useful for the respective authorities to determine which manholes are
in need of immediate attention to prevent major accidents. As autonomous vehicles are
a reality these days (though a minority), automation in reporting the improper manholes
to the authorities in charge using the vehicles’ camera and GPS itself is possible.

Thus, the main contributions and novelty of this research work are as follows:

1. In prior research work on autonomous vehicles, the problems that manholes pose,
especially in developing countries, are not taken into account. Our work highlights
this problem and proposes solutions for it. Open manholes are a tangible risk to
public safety, hence, we focus on improperly closed and open manholes in this paper.

2.We conduct a thorough literature review on previous work in manhole detection
in road surface images. We also include a theoretical review of object detection
algorithms.

3.We propose and evaluate multiple approaches to manhole localization and classifica-
tion considering the trade-off between computational complexity and accuracy.

4.We propose a novel pipeline for elliptical object localization, classification, and bound-
ing box prediction using classical computer vision.

5. In prior art, only Convolutional Neural Networks (CNNs) have been considered till
now for the purpose of manhole detection. We test Vision Transformers specifically
for manhole detection in self-driving vehicles.

6. Using classical computer vision techniques, we propose a pipeline to determine the
size of the hole in a broken manhole with respect to the manhole image itself (size
detection).

7. The results of our research show that Vision Transformers are promising as back-
bones for object detection, however currently Convolutional Neural Networks can be
integrated in obstacle avoidance techniques of autonomous vehicles.
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The rest of this manuscript is structured as follows: Section 2 reviews the state-of-the-
art research about manhole detection using computer vision approaches. This section
discusses the primary research gaps identified and describes the role of our research. Our
decisions regarding the approaches chosen for the methodology are also elaborated upon
in this section. Section 3 investigates the methodology of the various object detection
methods we attempted for manhole object detection and size detection. Section 4 dis-
cusses the results of the paper and summarizes the outcomes of the training and testing
process. The results are analyzed based on computational complexity, accuracy, and
speed. Section 5 reiterates the main results of this work and concludes the manuscript
by identifying the future avenues of work.

2. Review of literature

Research on manhole covers has been done over the years, and the methods of research
are ever-changing with the emergence of new technologies. The commonality between
existing and upcoming research on manhole cover detection is that all the methods are
based on digital imagery. Though traditionally, broken and open manhole covers are
detected and fixed through manual surveys and crowd reporting, this method is labori-
ous, time-consuming, and ill-planned. For this reason, there is a demand for methods of
automation like classical computer vision and deep learning. The papers are organized
by the date of publication to understand the flow of research methodologies.

2.1. Classical computer vision approaches for manhole detection in road-
surface images

A morphological method (dependent on the structure) was developed in [42] (2000) for
detecting round-shaped manhole covers. It involved a black top-hat transform for feature
extraction designed with disc-shaped structuring elements. A masking operation with
a thresholded input image was then done on the extracted round components. The small
regions and the areas without any holes were eliminated from the final resulting manhole
image.

Detection of obscure and textured circular objects were challenges faced by conven-
tional methods of object detection. In [30] (2009), this drawback was overcome without
the cost of learning patterns. This method was valid for even images with inhomogeneous
contrast and noise as it analyzed the separability and uniformity of intensity distribu-
tions using the Bhattacharyya coefficient filter, rather than the conventional method
at the time, i.e., analyzing the difference in intensity levels of the object interior and
surroundings. Separability in this paper is defined such that it can handle image feature
distributions that are not normal distributions.

Machine GRAPHICS & VISION 32(1):25–53, 2023. DOI: 10.22630/MGV.2023.32.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.1.2


S. Rao, N. Mitnala 29

In [17] (2014), manhole cover detection using vehicle-based multi-sensor data combin-
ing multi-view matching and feature extraction was developed. Close range images using
GPS/IMU and LIDAR data were obtained. It involved two main steps – edge detection
and texture recognition. Scene segmentation to eliminate cars and pedestrians was done,
and on the segmented data, a custom edge detection algorithm based on Canny edge
detection [6] (1986), which was sensitive to arcs and ellipses, was used. Arc-containing
regions were fitted to an ellipse.

An algorithm for automatic recognition of manhole covers based on images from the
Mobile Mapping System (MMS) was proposed in [8] (2016). The images were collected
using the MMS and preprocessed by image enhancement using gray-scale transformation
and filtering technology, followed by the double threshold method in Canny operator edge
detection. Hough transform based on the rough localization of ellipse geometry was used
to locate the accurate positions of manhole covers in the preprocessed images.

In [50] (2020) the author concentrated on the detection of manhole covers using
texture-based image segmentation and elliptical fitting. To extract textural features,
the Laplacian of Gaussian filter’s performance was contrasted with that of the Gabor
filter. To divide the pixels in the image into distinct regions, the K-means technique
with sum of square error was employed, and the least-squares approach was utilized to
process the ellipse fitting.

In all of the above papers, only the localization of a manhole in the image is provided.
Additionally, classification of manholes or differentiating between the various objects
within the image is not attempted. The true sense of object detection as we know it now,
is classification+localization. The above papers do not focus on this and thus, our paper
attempts to fill this research gap by implementing a classical computer vision approach
to manhole detection in road surface images. Our approach models conventional deep
learning based approaches by providing a bounding box and coordinates for localization,
and classifies the manholes too. Multiple bounding boxes are predicted in the localization
step as in deep learning models, but the mean of the best fits is taken for the final
classification. Additionally, like in all of the papers reviewed above, we extract the
shape of the manhole from the image using ellipse fitting.

2.2. Machine and deep learning approaches for manhole detection in road-
surface images

In [43] (2011), a multi-view method implementing 2-D and 3-D techniques for manhole
mapping based on vision and GPS was presented. The position and inclination of the
ground plane were estimated to generate front-to-parallel 2-D views. Single-view pro-
cessing involved the application of a cascaded framework composed of mean-shift color
segmented area, aspect ratio, intensity variance, radial symmetry, and texture-based
filters to the 2-D views. The object detection system used for identifying manholes in
single-view processing was Local Binary Pattern feature vectors [31] and Discriminatively
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Trained Part-Based Model [14]. Multi-view processing involved fusing and grouping the
results of single-view processing into 3-D hypotheses which were then fed into a graph-cut
segmentation filter, and finally used for accurate localization of the manholes.

Automated detection of manholes using Mobile Laser Scanning (MLS) data was put
forward in [52] (2015). The road surface images were segmented by detecting curbs in
the images and using them as reference points for segmentation. These images were
converted to raster images with georeferencing and intensity information using Inverse
Distance Weighted (IDW) Interpolation. The high-order features of images were depicted
by a multilayered feature generation model which was built on a vision based deep
learning model. A random forest model was then trained to learn how these features
are mapped to the probability of existence of manhole covers at specific locations. The
manhole covers were then detected in the previously rasterized images using both models.

In [51] (2019), deep learning was suggested for the autonomous extraction of tiny
objects in urban environments. A Mobile Mapped System was used to gather a dataset
for Urban Element Detection (UED) that included manholes, milestones, and license
plates. The faster R-CNN framework was tuned for small object identification, and
a feature extraction CNN network named SlimNet with six convolutional layers and
three max-pooling layers was developed. The performance of these networks on the
collected dataset was compared to other existing deep networks. The findings of this
paper concluded that the SlimNet model had the highest accuracy.

In [4] (2019), the Automated Localization of urban drainage infrastructure from
public-access street-level images was done. A dataset of manhole and storm drain images
was captured using the Google Street View API and annotated. The Faster R-CNN deep
learning meta-architecture with Resnet 101 as the feature extractor backbone was tested
on this dataset. Localization was done to project the coordinates from image space to
geographical coordinates.

Mapping manholes using the deep learning method RetinaNet in road-level RGB
images was done in [39] (2020). ResNet-50 and ResNet-101, being the two different
feature extractor networks for the RetinaNet method, were used to experimentally test
the method. The results of this test were then compared with the Faster R-CNN method.
However, the findings of the paper concluded that the RetinaNet method was far more
effective than the Faster R-CNN method for mapping manholes.

A method was proposed in [10] (2020) to convert RGB image data and extracted
contours using an object detection algorithm. Pavement distress was classified using
the YOLOv3 (You Only Look Once) algorithm which is a one-stage detection algorithm
that does not need the region proposal phase. A large-scale dataset was prepared,
containing images taken in various weather and illumination conditions. The image
data was analyzed effectively by using Average Precision (AP) as the indicator on the
data.
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In [15] (2021), two deep learning techniques were implemented for automated pave-
ment distress detection and classification, namely Faster Region-based Convolutional
Neural Networks (R-CNN) and YOLOv3. These deep learning frameworks were trained
on a dataset the authors collected and validation accuracy was indicated using Average
Precision (AP) and Receiver Operating Characteristic (ROC) curves. By contrasting
the suggested model with manual quality assurance and quality control (QA/QC) re-
sults received on automated pavement data, the models were assessed.

In all of the above papers, only convolutional neural network based architectures
have been researched for the task of manhole detection. In our paper, we also focus on
manhole detection with vision transformers as they have gained popularity for object
detection tasks. Additionally, the networks modeled in the above papers have not been
tested for the detection speed. Since in this paper we attempted the task of manhole
detection for autonomous vehicles, the computational power requirement and speed is
a significant factor we took into account. This is the main reason why we attempted
YOLOv3 and YOLOv3-Tiny object detection networks in our paper.

2.3. Theoretical review of object detection algorithms

Since we adopt deep learning based object detection approaches, we also include a review
of the state of the art object detection models. The three main approaches towards object
detection are:

1. Classical Computer Vision,

2. Convolutional Neural Networks,

3. Vision Transformers.

We attempt networks from all three of these categories in our paper.

Localization algorithms using classical computer vision have been explored to a large
extent as seen from all the previous papers reviewed. The following papers give examples
of classical computer vision being used for object localization and classification including
bounding box calculation. In [26], the authors use a variant of Hough Transform for
localization and Machine Learning for classification to perform object detection. Max
Margin Hough Transform was used for localization and bounding box prediction, and
classification was done using an SVM based classifier. In [20], classical computer vision
was combined with machine learning to create a fully automated hybrid cell-detection
model named CIRCLE. The images were first processed to extract various tiles from
them. MaskRCNN was then applied to them to detect the cells. These works encouraged
us to test classical computer vision approaches especially to focus on the detection speed
for autonomous vehicles. However, we do not follow the same methodology for object
detection as the above two papers; instead we propose a novel pipeline.

Convolutional Neural Networks have been popular in object detection for a long
time now. The YOLO algorithm [35] is popular and YOLOv3 is the model we chose
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for our research. YOLOv1 [35] is a one-stage detector which uses the Darknet frame-
work [2] and is trained on the ImageNet-1000 dataset [13]. It splits a given image to
a grid of S×S cells. For every cell in the grid, it computes confidence for n bounding
boxes. The predicted result is encoded into a tensor of dimensions S × S × (5n + p),
wherein the input image is divided into S×S sub-images, the 5n term corresponds to
five attributes of the bounding box that must be detected (center coordinates, height,
weight, and confidence score). The p term represents the probability of the object in
the image belonging to a particular class. YOLOv1 had difficulty with detecting small
objects and when the dimensions of the testing images varied when compared to the
training images [1]. YOLOv2 [36] improves upon this by introducing batch normaliza-
tion in every convolutional layer. YOLOv3 [37] further improves upon this by using
independent logistic classifiers for multilabel classification instead of multiclass classi-
fication when using softmax. This improves the model as using softmax imposes the
assumption that each box has exactly one class which is often not the case. The key
novelty of the YOLOv3 algorithm is that it makes its detections at three different scales.
YOLOv4 [3] furthers upon YOLOv3 to introduce a new architecture with a backbone,
neck, dense prediction, and sparse prediction. The backbone and dense prediction net-
works are similar to that of YOLOv3 (the backbone is changed to Cross Stage Partial
Network (CSPNet) [47, 48]), and the neck is a novel idea to add layers in between the
backbone and dense prediction block. The layers added to the neck are a modified Path
Aggregation Network (PANet) [25], a modified spatial attention module, and a modified
spatial pyramid pooling, which are all utilized to combine the data in order to increase
accuracy. The CSPDarknet53 backbone [47] eliminates repetitive gradient information
in big backbones and incorporates gradient change into a feature map that speeds up
inference, improves accuracy, and shrinks the size of the model by reducing the number
of parameters. YOLOv5 [18,19] utilizes the same CSPDarknet53 as backbone. The Path
Aggregation Network in YOLOv5 is different and adopts a new feature pyramid net-
work (FPN) that includes several bottom up and top down layers. The model’s low level
feature propagation and localization precision are both enhanced by this PANet. The
localization accuracy of the object is increased because of PANet’s improved localization
in lower levels. In YOLOv7 [46], the PAnet is replaced by Extended Efficient Layer
Aggregation Network (EELAN) which uses group convolution to enhance the features
learned by different feature maps and improve the use of parameters and calculations.
In addition, compound model scaling is used. This is scaling the width (number of
channels) and depth (number of layers) in coherence for concatenation based models.
A summary of the architecture of these models can be found in Table 1.

Transformers were first proposed for Natural Language Processing tasks in [45]. In [9],
the authors propose a Vision Transformer called ViT which closely models the original
transformer architecture of [45] as closely as possible for image classification tasks. Im-
ages are first flattened into 2D patches to be passed to the transformer’s encoder network.
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Tab. 1. Table from [29] with an additional column added for YOLOv7.

YOLOv3 YOLOv4 YOLOv5 YOLOv7

Neural
Network

FCNN FCNN FCNN FCNN

Backbone
Feature Extractor

Darknet-53 CSPDarknet53 CSPDarknet53 CSPDarknet53

Loss
Function

Binary Cross
Entropy Loss

Binary Cross
Entropy Loss

Binary Cross
Entropy Loss and

Logits Loss Function

Binary Cross
Entropy Loss

Neck FPN SSP and PAnet PAnet EELAN

Head YOLO Layer YOLO Layer YOLO Layer YOLO Layer

The transformer’s encoder consists of alternating layers of Multi-headed Self Attention
(MSA) and Multi Layer Perceptron (MLP) blocks. Layernorm (LN) and residual con-
nections are applied respectively before and after every block. The MLP contains two
layers with a GELU non-linearity. Due to its accuracy on ImageNet, in [7], a Vision
Transformer was used for object detection to develop the DETR model. The DETR
model uses the feature maps extracted by a CNN backbone as input for the transformer
encoder-decoder architecture for transforming feature maps to features, followed by a sin-
gle feed forward neural network for prediction. It uses a bipartite matching loss function
for matching between the predicted tokens and ground-truth objects. In [24], instead
of using a CNN backbone for object detection as done in [7], the authors explore using
a plain Vision Transformer like vanilla ViT as a backbone for object detection. In [12],
the authors propose YOLOS, an object detection model which uses plain Vision Trans-
formers ViT and DeiT [44] as the backbone. While YOLOS chose a Transformer with
an encoder-only architecture similar to ViT, DETR used a Transformer encoder-decoder
architecture. For each encoder layer, YOLOS always examines a single sequence without
making a distinction between the tokens in terms of operations, where the tokens are
the learnable embeddings in the image.

For our work, we chose YOLOv3 and YOLOv3-Tiny as the networks to compare
to YOLOS. We wanted to compare the performance of a tiny object detection model
as it can be used for autonomous vehicle research. YOLOv4 and YOLOv3 have tiny
object detection networks and as seen in the above figure, the authors of YOLOS also
released a YOLOS-Tiny model. That is why these networks were chosen for our research
work. Also, YOLOS is a completely transformer based architecture with a transformer
backbone, and YOLOv3 is a completely CNN based architecture which makes it a good
point of comparison.
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3. Methods

3.1. Functional Block Diagram

Fig. 1 and Fig. 2 describe the proposed methodology’s general flow. A visual explanation
of some of the methodology’s key decision points is provided by the flowchart. This
modular structure makes it simple to plan for future changes to functionality and flow
that will boost efficiency and allow integration with additional methods.

3.2. Dataset

We mainly used road surface images for this study due to its application in autonomous
vehicles. However, few close-up aerial images were added to the dataset as well. Also
in support of road-surface images, in [4] it was indicated that street-level imagery could
provide useful information to identify manholes that could not be detected in aerial
images. In this dataset, we focus only on round manhole covers. This is as most manhole
covers are round, for the purpose that orientation when placing the cover is not an issue.
At the same time since manholes weigh around 250 pounds [11], it is easy to roll them
in case of replacement.

We have used the dataset publicly provided in [38] and described in [39].

A total of 1032 images were collected and annotated. Data augmentation in the form
of 90° rotation, and saturation value change were performed in the dataset to obtain
a dataset containing 2673 images. This was carried out to balance the number of images
per class, avoid overfitting, and enhance the deep neural networks’ performance during
model training. The images were split into three different classes in an unbalanced
fashion: closed manhole improperly closed manhole open manhole

Since we used the same dataset for classification and object detection, it is available
in two different formats. In the format for classification, all the images have been divided
into folders based on the class label without any annotation file as required in the classical
computer vision object detection method. The drawback of this dataset is that images
which have multiple objects each of different classes, the objects cannot be classified
separately in the same image. All of the images were manually annotated in the format
for deep learning-based object detection by marking rectangles (bounding boxes) around
the manholes and categorising each rectangle by the corresponding class. This was done
using the labelImg tool [23]. Images which have multiple objects, each of different
classes, can be classified separately in the same image.

For training, these images were divided into three groups for training, testing, and
validation. The train-test-validation split is done randomly with no manual intervention.
As the dataset is minimal already, we increased the number of training samples to
contribute to a more robust evaluation. The number of images in each of the sets are as
follows:
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Fig. 1. Block diagram of the methodology
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Fig. 2. Block diagram of the size detection algorithm

1. Training – 2469

2. Testing – 71

3. Validation – 133

Fig. 3 depicts an example of an image which has been annotated with a bounding box
drawn around the manhole.

3.3. Methodology

3.3.1. Object Detection

In Section 2 in the Review of Literature, we elaborated on the architectural differences
between the three main approaches towards object detection. As described in the re-
view of literature, we implemented classical computer vision approaches, CNN-based
YOLOv3 and YOLOv3-Tiny, and Vision Transformer based YOLOS. We evaluated the
performance of each of these models on our dataset to determine the best for man-
hole detection and classification specifically for autonomous vehicles. A summary and
comparison of the different methods used in this paper is available in Table 2.
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Fig. 3. Example of an annotated image.

Classical Computer Vision approach to manhole detection

In this method, we propose a novel pipeline for manhole detection in road-surface images.
This method was attempted as it does not require specialized hardware like a GPU and
the computational complexity of the algorithms is not high especially in comparison to
deep learning approaches. Since we are evaluating the performance of the algorithms
for self-driving vehicles, we expected this method to be advantageous. In addition, the
dataset collected is minimal for deep learning tasks so we proceeded with this approach.
The code for this approach was implemented with MATLAB.

1.Pre-processing

In classical computer vision approaches, the filtration and preprocessing stage is an
essential part of object detection. We combined multiple approaches in order to get
a high level of accuracy. For filtering, we employed the Laplacian filter [16]. This
filter was chosen since it preserved the edges while reducing the noise. This filtering
was followed by histogram equalization to improve the overall contrast of the image
as low contrast regions are brought closer to the average contrast value. Next, Canny
Edge Detection [6] was done to detect the edges of objects in the images. We applied
this technique to extract the morphological information from the images while also
reducing the data to be processed before performing manhole localization.

Fig. 4 shows an example of how an image looks after preprocessing.

2.Manhole Localization

The geometrical circular detection filter is based on the approach proposed in [30] and
adapted in [32]. However, since the manholes in road surface images have a mostly

Machine GRAPHICS & VISION 32(1):25–53, 2023. DOI: 10.22630/MGV.2023.32.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.1.2


38 Exploring automated object detection methods for manholes. . .

a b

Fig. 4. An example of the effect of preprocessing. (a) Original image; (b) pre-processed image.

elliptical shape, we used an elliptical filter. The code for the ellipse detection is
adapted from [41]. It can be used for circle detection also. The theory behind this
approach is that for an ellipse, there are five unknown parameters, (x0, y0) for the
center, (a, b) for the major and minor axes, and α for the orientation. In [49], the
author proposes a method using only a 1D accumulator array to accumulate the
length of the minor axis of the ellipse. Using this method, the four coordinates of the
major and minor axes of the ellipse were calculated.

The shapes that were the best fit as per the definition of an ellipse were taken. In
the case of more than one best fit, the mean of the best fits was taken to be the final
ellipse. Once the ellipse was identified, two rectangles were identified taking each of
the major and minor axes of the ellipse as diagonals. In order to make sure that no
part of the ellipse is cut out, the final rectangle was taken so that it bounds both
of the rectangles created. The coordinates of the rectangular bounding box drawn
around the manhole in the images are obtained. Multiple manholes in the same image
can be localized this way.

A mask was created such that the pixels in the area covered by the final bounding
rectangle all had a value of 1, and those not covered by the rectangle all had a value
of 0. The original image and the mask were combined, finally showing only the
manhole. There were some cases in which the model failed to identify a rectangle
showing only the desired part of the image. To ensure that this was not a problem,
we allowed the original preprocessed image itself to be taken as the final product in
such a case wherein the image was already cropped enough and the manhole was in
the region of interest. Fig. 5 shows examples of ellipses drawn around manholes in
each case: closed manhole, open manhole and broken manhole.

In our attempt to ensure that as much as possible of the manhole is retained while the
unnecessary information is deleted, we had chosen to take the mean of the best fits
(as many possible ellipses were found) as the final ellipse, and used these coordinates
to draw a bounding box. Using the mean of the best fits may have resulted in the
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a b c

Fig. 5. Samples of the ellipse drawn by the algorithm around each class: (a) closed, (b) broken, and
(c) open manhole.

a b

Fig. 6. Bounding box drawn around the manhole using the ellipse coordinates. (a) Original image;
(b) manhole detected (the bounding box is the region with white background).

inclusion of some extra pixels, as seen in Fig. 5; the ellipses drawn were not perfectly
accurate to the edge. However, this does ensure that none of the necessary information
for training the deep learning model was deleted, while a majority of the unwanted
material was effectively removed.

Instead of drawing an ellipse around the manhole as done in Fig. 5, we can use the
coordinates of the ellipse directly to obtain the coordinates for the bounding box. In
the algorithm we used, the pixels inside the bounding box are left unchanged while
the values of the pixels outside the bounding box are all equated to zero.

The resulting image after the bounding box is defined is shown in Fig. 6 for another
manhole from our dataset. The left and right most x-coordinates and top and bottom
most y-coordinates were calculated from the major and minor axes coordinates of the
ellipse defined. As seen in the image, the pixels inside the box are left as they were
while all the other pixels in the image were made black. The time taken for localization
of all of the images was around 6 hours on a CPU.

3.Manhole Classification

The images obtained after localization were taken for the deep learning model. Since
it was for simple classification, we used a basic Convolutional Neural Network ar-
chitecture. We used 3 convolutional layers, 2 max pooling layers followed by a fully
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connected layer. ReLu was taken as the activation function for the convolutional layer
and softmax for the final classification. Batch Normalization is used after every Con-
volutional Layer as used in YOLOv3 [37]. The number of epochs was set to 100 and
the number of iterations per epoch was set to 6. The training time was 68 minutes.

Convolutional Neural Networks approach to manhole detection

In this method, we used YOLOv3 and YOLOv3-Tiny for manhole detection. As the
performance of the classical computer vision algorithm could be improved greatly, we
implemented a convolutional neural network based approach notwithstanding the com-
putational intensity. There are many other state-of-the-art object detection models,
however we chose to analyze the performance of YOLOv3 as it has a YOLOV3-Tiny
model in conjunction. We hypothesized that the YOLOv3-Tiny model would especially
prove useful for self-driving technology as it has a higher FPS (frames per second) rate
as per [35]. In addition, YOLOv3-Tiny was attempted as it is not computation intensive
and is a small model meant for constrained environments. The code for this method was
implemented in Python.

YOLO is a deep Convolutional Neural Network based one-stage object detector.
YOLO only looks at an image once to predict whether the object is present and where
it is located in the image. YOLO implicitly encodes contextual and visual information
about classes as it views the entire image during training and test. Object detection
in YOLOv3 is framed as a logistic regression problem to separate the bounding boxes
in the image and associate class probabilities with each bounding box [35]. A single
neural network predicts the coordinates of the bounding box using dimension clusters as
anchor boxes. YOLOv3 uses K-means clustering on the dataset to determine bounding
box priors automatically rather than manually. The probability of the object class and
the confidence of the object in the bounding box is captured in one evaluation itself. The
probabilities for each class are calculated using independent logistic classifiers rather than
the softmax function; thus, each bounding box can belong to several classes. Thus, as
the detection pipeline is a single network and end-to-end optimizations is performed
to improve detection, the unified architecture of YOLOv3 is extremely fast and robust
running at 100 FPS (frames per second). YOLO v3 uses upsample, downsample, and
fusion methods to independently detect objects on multiple scales of fusion feature maps.
This method is especially effective in detecting small and near-distance target objects;
thus, it’s suitable for manhole detection.

We adopted the DarkNet-53 (53 convolutional layers) neural network framework as
the backbone for YOLOv3. We adopted transfer learning, so our models’ weights were
initialized with weights from the network trained on the MS COCO dataset [37]. We
adopted this approach in our project as transfer learning enables training of neural
networks with lesser data, the accuracy is high, and the training time is reduced. We
used the source code available in [2] for our implementation. The model was trained and
tested on Google Colaboratory with an NVIDIA Tesla T4 Graphics Card (2560 Compute
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Unified Device Architecture (CUDA) cores and 16GB graphics memory). The number
of iterations was set to 6,000 (as specified in [2]) for both YOLOv3 and YOLOv3-Tiny.
The classes, number of filters, steps, jitter, etc., were also customized to our requirements
in the config file. As it’s an open-source framework, we tuned a few hyperparameters
to customize the network to our task as documented in [2]. However, we adopted early-
stopping to prevent overfitting. Also, due to the time it takes to run the program, and
because of the desirable mAP value obtained, we stopped training the model at 3000
iterations for both networks. The only difference in training between the two models
YOLOv3 and YOLOv3-Tiny was the configuration file used. The YOLOv3 model ran
for 3035 iterations. YOLOv3 took 5 hours and 15 mins for it to train, even with a GPU
that supports fast computation. Thus, it’s a very time-consuming process to train.
YOLOv3-Tiny ran for 3020 iterations.

Vision Transformer based approach to manhole detection

In this method, we used YOLOS [12], a Vision Transformer based model for object de-
tection. Vision Transformers have recently gained a lot of popularity in object detection
tasks, according to [7]. Out of all of the Transformer based object detection models, we
chose YOLOS as it uses a Transformer as the backbone. Also since it is a single sequence
based architecture, we wanted to compare it to the YOLO which is also a one-shot object
detector. The code for this method was implemented in Python.

YOLOS uses a plain vanilla Vision Transformer (ViT) as its backbone [12]. The dif-
ference between ViT and the backbone for YOLOS is that YOLOS drops the CLS token
used for image classification and adds 100 randomly initialized detection tokens [DET]
to the input patch embedding sequence. The CLS token indicates that the training task
is classification. The [DET] token is a learnable embedding for object binding. Posi-
tion embeddings are added to all of these input tokens to retain positional information.
Another difference between ViT and YOLOS’ backbone is that the image classification
loss used in ViT is replaced with a bipartite matching loss to perform object detection
similar to DETR [7]. During training, YOLOS produces an optimal bipartite matching
between predictions from the one hundred [DET] tokens and the ground truth objects.
During inference, YOLOS directly outputs the final set of predictions in parallel.

The randomly initialized detection [DET] tokens are used as substitutes for object
representation. This is done to avoid inductive bias and any prior knowledge of the task
that can be introduced during label assignment. When YOLOS models are fine-tuned
on the COCO dataset, an optimal bipartite matching between predictions generated by
[DET] tokens and the ground truth is established for each forward pass. This serves the
same purpose as label assignment but is completely unaware of the input 2D structure,
or even that it is 2D in nature. These steps to reduce the inductive bias are imperative as
some of the YOLO algorithms’ (CNN based YOLO family) performance reduces when
the dimensions of the testing images vary when compared to the training images, as
stated in [1].
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We trained YOLOS for 150 epochs for batches of 8 and monitored the validation loss
when training. The images were tested for a box confidence score of 0.2. The model was
trained and tested on Google Colaboratory with an NVIDIA Tesla T4 Graphics Card
and it took around 9 hours to train. The accuracy of YOLOS is not very accurate, as
stated in [12], and we noticed this too. Thus, we attempted plain Vision Transformer
ViT with no hierarchical backbone as the authors of [24] pointed out that vanilla ViT
could be used as a backbone for classification in object detection networks with good
accuracy. We tried ViT on our dataset to check if Visual Transformers were promising
for manhole classification as YOLOS uses this as its transformer backbone. We trained
the ViT model for 30 epochs in a batch size of 20. The total time taken for training was
around 15 minutes with a Tesla T4 GPU.

3.3.2. Size Detection

The manholes which were detected as improperly closed through the object detection
model were run through a size detection algorithm. The algorithm detects the size of
the hole in a broken manhole with respect to the size of the manhole itself in an image.
We used classical computer vision using python and OpenCV for size detection.

1.Preprocessing

The manually annotated images from the dataset were first converted from the YOLO
to the COCO annotation format. Using those coordinates, we automated the process
of cropping the manholes identified as improperly closed around their bounding box
to avoid unnecessary visual information.

The cropped images were then Gaussian blurred. This step was done to reduce
the extraneous visual information in the image. The image was then converted to
grayscale to apply Canny edge detection which enabled us to outline the manhole and
the broken hole. After this, the image was opened (dilation+erosion).

2.Algorithm

Canny edge detector detects all of the edges in an image, but we need only the
manhole and the broken hole. Hence, we applied contour detection methods. This
method was preferred over ellipse detection methods like the Hough Transform as
a broken manhole is not elliptical in shape anymore. Additionally, the broken part
of the manhole is also not necessarily elliptical in shape. The manhole was identified
by detecting the maximum contour in the image. We draw a bounding box around
the contour of the manhole. Using the coordinates of the ordered bounding box, we
compute the midpoint of the top left and top right coordinates and the midpoint of
the bottom left and bottom right coordinates. We calculate the Euclidean distance
between the midpoints using the distance formula in terms of pixels. We follow the
same steps for all of the contours found in the image except the max contour. If any
of the contours found in the image are greater than 50% of the max contour (i.e. the
entire manhole), we classify that manhole as a High Importance manhole in need of
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Tab. 2. Summary and comparison of the object detection methods used in this paper.

Approach
Automated
Method

Localization
Method

Classification
Method

Pros of the
Approach

Cons of the
Approach

Classical
CV

Automatic
Annotation

(just
classified

images into
classes)

Classical
CV

Custom
Neural
Network

– Localization is
done in the
shape of the

manhole before
drawing the
conventional
bounding box.

– The images are
pre-classified into

the classes.
Automated
annotation

of the dataset.

– Time taken
was around
7 hours
for all of

the images.

– Not very
accurate.

– Localization
works for
multiple
manholes
in the

same image.
Cannot classify

each of the
manholes in the

localized
image with
the deep
Neural
Network
however.

YOLOv3
and

YOLOv3-
Tiny

(CNN)

Manual
Annotation

Simultaneous
localization

and
classification

(CNN)

Simultaneous
localization

and
classification

(CNN)

– Accurate.

– Can localize
and classify
multiple

instances of
manholes in

the same image.

– Gives the
probability of the

object class
in the box.

– Time taken to
train was 3, 6, 9
hours respectively

to train the
3 models.

– Requires
specialized
hardware
(GPU).

– Annotation
is manual.

YOLOS Manual
Annotation

Simultaneous
localization

and
classification

(Vision
Transformer)

Simultaneous
localization

and
classification

(Vision
Transformer)

immediate attention by the concerned authorities. The rest of the improperly closed
manholes are classified as low importance. Thus the method of ranking according to
safety is:

Open manholes > Improperly closed manholes whose broken parts are greater than
50% of the entire manholes > Rest of the Improperly closed manholes.

Size detection did not take a lot of time. Contour detection methods are fast and
have already proved useful in developing computer vision algorithms for real-time
autonomous vehicles [34].
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4. Results

4.1. Object Detection

Classical Computer Vision approach to manhole detection

The metrics used to evaluate the classification accuracy of the neural network were Test-
ing/Validation Accuracy and Loss. An image of the graph at the end of 100 epochs and
6 interactions per epoch is shown in Fig. 7. According to the graph, Testing/Validation
Accuracy is 63.23%. The images chosen for evaluating the accuracy were randomly se-
lected 150 images from the validation and test datasets. As there was no hyperparameter
tuning and the the images from the validation dataset were not shown to the model more
than one time, this served as the Testing Accuracy though the images from the validation
dataset were used. The model was trained as the accuracy percentage increased and the
loss percentage decreased. Training accuracy finally reached 100%.

Convolutional Neural Networks and Vision Transformer approach to Man-
hole Detection

The performance of DarkNet YOLOv3, YOLOv3-Tiny, YOLOS (for object detection),
and ViT (for just classification) were assessed by precision–recall curves and the average
precision (AP). The Intersection over Union (IoU) was calculated in order to evaluate the
precision and recall. According to well-known competitions in object detection, a true
positive (TP) is for IoU ≥ 0.5 and a false positive (FP) for IoU < 0.5. Based on the
above metrics, precision (P) and recall (R) are estimated. The average precision (AP)
is estimated by the area under the precision–recall curve. The Mean Average Precision
(mAP) was used as the primary indicator to analyze the accuracy of the models as
seen in Fig. 8. The AP is calculated for each of the classes and it is averaged over all
of the categories to get the mAP. We trained the models while the mAP percentage
increased and the validation loss decreased. The mAP percentage value was calculated
during training. The loss curves also indicate accuracy, however, mAP is considered to
be a better indicator [37].

The weights files were generated for every 1000 iterations. The best weights obtained
were saved and can be used for further testing and manhole classification of all 3 object
detection models. At some points in the graph even though the mAP percentage reduces,
we still continued training as the recall values were still increasing [35]. The average
precision (AP [%]) and its mean values (mAP [%]) obtained from the area under the
curve for both of the models are illustrated in the above figure. Table 4 displays the
results at an IoU cutoff at 0.5 (AP50). The FPS rate was calculated as given in [40] with
a batch size of 1. The size of the images in the image stream was taken as 256×256 for
testing purposes.

Thus we realized that the YOLOv3 model had the best accuracy but YOLOv3-Tiny
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a

b

Fig. 7. (a) Training and validation accuracy and loss curves for the classification network of the classical
CV approach. (b) Key for (a) and other information.

seems like the best model for manhole detection from the autonomous vehicles stand-
point. Though the accuracy of the YOLOS model is not large, the ViT classification
network gives good results. This indicates that further research into object detection
models using transformers could prove promising. In terms of the computational re-
quirement and speed too, CNNs and classical computer vision could be used.

Fig. 11 and Fig. 12 show examples of detected and classified manholes.

Since the accuracy of YOLOS was not high, we trained ViT on the same dataset just
to evaluate the classification accuracy. The results in the form of the confusion matrix
are shown in Fig. 13.
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Fig. 8. mAP graph for YOLOv3.

Fig. 9. Loss Graph for YOLOS.

4.2. Size Detection

We tested the size detection model on 26 improperly closed manholes which contained
partially open manholes and broken manholes. We also included 2 open manholes and 2
closed manholes for testing purposes. The evaluation of this system model was done by
manual classification as in, we cross verified if what we determined as high importance
matched the size detection model’s output. We determined that out of the 26 improperly
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Tab. 3. Results of object detection models tested.

Network
Confidence
Threshold

Precision Recall
F1

score

mAP@0.5
or

Accuracy

FPS
rate
with
GPU

FPS
rate
with
CPU

Classical
CV

- - - - 0.63 - 30

YOLOv3 0.25 0.98 0.98 0.98 0.994 33 -
YOLOv3
-Tiny

0.25 0.82 0.82 0.82 0.92 62 7

YOLOS 0.2 0.59 0.77 0.6 0.67 5 -
ViT* 0.2 0.84 0.81 0.83 0.91 - -

* Not an object detection network, just tested for classification accuracy, thus does not have an FPS rate.

closed manhole images, 20 of them could be classified as high importance. Out of the 30
images the accuracy percentage of the method is as follows in Table 4.

Figs. 14, 15 and 16 depict the various predictions of the open manhole. If even one of
the predictions was > 50% of the area, then it’s a high importance manhole that needs
to be fixed.

Fig. 10. GPU, CPU utilization and power consumption of YOLOS model.

Fig. 11. Test result of YOLOv3.
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Fig. 12. Test result of YOLOS. Fig. 13. Confusion matrix for ViT model.

Tab. 4. Results of size detection algorithm tested.

Class
Size Detection

Algorithm Accuracy
FPS Rate

tested with CPU

Open manholes 100% 30 fps
Closed manholes 100% 30 fps

Improperly closed manholes 90% * 30 fps

* There were 20 high importance manhole images from the 26 images of the improperly closed manhole
class. 22/26 were classified as high importance.

5. Conclusion and Future Work

Including manhole detection models in obstacle avoidance and lane changing algorithms
could improve the suitability of autonomous vehicles for use on the roads of developing
countries. This research presented three different ways that autonomous vehicles may
use for detecting manholes. We tested a classical computer vision approach involving
image processing algorithms like Canny edge detection and ellipse detection. We also
tested YOLOv3 and YOLOv3-Tiny to try Convolutional Neural Networks, and tested
YOLOS and ViT to attempt vision transformer based approaches. The results of our
research point to the conclusion that YOLOv3-Tiny would be the most suitable model
for deploying on autonomous vehicles. Since self-driving vehicles have a drive-by-wire
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Fig. 14. Sample of a broken manhole.

Fig. 15. Sample of a partially open manhole.

system and are equipped with cameras for computer vision, then the speed, computa-
tional complexity, and accuracy are the metrics that are taken into consideration when
evaluating the three approaches to manhole detection. The GPU power consumption is
low and FPS (frames per second) rate is very high for YOLOv3-Tiny, further reinforcing
our conclusion. Vision Transformers also seem promising for this purpose with future
research advancements.

In addition to manhole detection, our research presents a pipeline for size detec-
tion using filters and a contour detection method. The size of the hole in the bro-
ken/improperly closed manhole with respect to the manhole itself is determined and

Fig. 16. Sample of a broken manhole that looks closed.
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classified as high or low importance to determine a priority order for fixing them. Tech-
nology is designed to meet the requirements of different locations and the aim of science
and development is to improve the standard of living in the places where they are used.
This size detection model provides a method to not only detect manholes to avoid pave-
ment distress and improve the standard of driving, but also enables the vehicle to aid
in solving the problem of fixing an open, broken, or improperly closed manhole. With
this in mind, we propose a future course of action. Autonomous vehicles are equipped
with GPS and this system can be used to record the coordinates of the open or broken
manhole along with its priority order from the size detection model. This information
can then be used to alert the authorities for damage control.

In the future, we intend to work on aspects of research on autonomous vehicles that
bring us one step closer to making self-driving vehicles a reality even in developing
countries.
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Abstract. Leaf diseases may harm plants in different ways, often causing reduced productivity and,
at times, lethal consequences. Detecting such diseases in a timely manner can help plant owners take
effective remedial measures. Deficiencies of vital elements such as nitrogen, microbial infections and other
similar disorders can often have visible effects, such as the yellowing of leaves in Catharanthus roseus
(bright eyes) and scorched leaves in Fragaria×ananassa (strawberry) plants. In this work, we explore
approaches to use computer vision techniques to help plant owners identify such leaf disorders in their
plants automatically and conveniently. This research designs three machine learning systems, namely
a vanilla CNN model, a CNN-SVM hybrid model, and a MobileNetV2-based transfer learning model that
detect yellowed and scorched leaves in Catharanthus roseus and strawberry plants, respectively, using
images captured by mobile phones. In our experiments, the models yield a very promising accuracy on
a dataset having around 4000 images. Of the three models, the transfer learning-based one demonstrates
the highest accuracy (97.35% on test set) in our experiments. Furthermore, an Android application is
developed that uses this model to allow end-users to conveniently monitor the condition of their plants
in real time.

Keywords: convolutional neural network, transfer learning, leaf disease detection,
image classification

1. Introduction

Visually observing the condition of the leaves of a plant is a good way to monitor its
health and well-being. Yellowing and scorching of leaves are often symptoms of serious
underlying conditions such as the deficiency of vital elements like nitrogen, surplus of
chloride particles [14], or microbial infections caused by viruses, bacteria and fungi [25].
When such changes occur, it becomes necessary to identify and address the underlying
issues as soon as possible. Microbial infections may often be contagious [29] and hence
an early detection and removal of infected plants and leaves is crucial. Unless infected
plants and leaves are identified and isolated in a timely manner, the infections may
spread through a large number of plants in the vicinity, leading to drastically reduced
production and having dire financial consequences [28].
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Scientific evidence suggests that C. roseus leaves can be used for medicinal pur-
poses [20], while the ubiquitous demand for strawberry as a fruit has led to its widespread
industrial production [5]. Thus, both these plants are commonly cultivated in gardens
and plantations, quite often in large amounts. Hence, manually monitoring these leaves
for possible diseases is not a trivial task for gardeners and farmers. Automated tools
can help in continuous monitoring of the health of these plants and in giving warning
their users about signs of malnutrition and infectious diseases. The proposed approach
takes a step in this direction and identifies signs of yellowing in the leaves of C. roseus
and scorching in Strawberry plants. Our proposed system leverages machine learning
techniques to detect signs of disease in plant leaves from their images.

1.1. Motivation and contribution

Machine learning is increasingly being applied to sectors like economy [19], social well-
being [23], and agriculture [3]. Developing machine learning, in particular, deep learning
models to identify leaf defects has been an area of interest in computer vision research
for many years [8]. Despite this, to the best of our knowledge, there remains a lack of
computer vision approaches that specifically focus on the detection of leaf damage in
Bright Eyes and Strawberry plants. With a specific focus on detecting signs of yellowing
and scorching in the leaves of these plants, we design, train, validate and compare the
efficacy of multiple deep learning approaches for classifying plant leaves based on their
images. The three approaches that we investigate are based on: (1) Convolutional Neural
Network (CNN), (2) a hybrid architecture that combines CNN and Support Vector
Machine (SVM), and (3) a transfer learning-based approach in which a MobileNetV2
model [13] pre-trained on the ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) dataset [17]. The experimental evaluation conducted on a real-world
dataset consisting of both pre-existing and self-taken images shows the transfer-learning
model to be the most effective among the three. The model is then loaded into an
android application that facilitates easy offline access to plant owners around the world.

In this paper, a transfer-learning based approach is exploited for automated detec-
tion of yellow leaves in Catharanthus roseus (bright eyes) plants and scorched leaves in
Fragaria×ananassa (strawberry) plants from camera images. The key contributions of
this paper are as follows:

•A novel dataset consisting of 3804 images is developed, 2239 of which are manually
captured by us.

•Three approaches are designed to identify yellow and scorched leaves in Bright Eyes
and Strawberry plants respectively. The approaches are: a vanilla CNN model,
a CNN-SVM hybrid model, and a MobileNetV2-based transfer learning model. We
also examine the effect of varying the number of training epochs on the accuracy of
each approach.
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•An Android application is developed that facilitates gardeners and farmers to easily
utilize the transfer learning model for identification of unhealthy leaves in their plants.

Of the three models, the transfer learning-based one demonstrates the highest accu-
racy in our experiments which is 97.35% accuracy on test dataset.

The remainder of this paper is organized as follows. In Section 2 we provide a re-
view of the relevant existing literature. Section 3 provides an overview of the proposed
approach and describes the dataset and models. Section 4 describes the experimental
results. Section 5 concludes the paper with directions for future research.

2. Related works

Use of deep learning models for detecting plant diseases has been a major focus of
computer vision research over the years [3]. Sladojevic et al. [24] propose an approach
based on CNN for detecting a variety of plant diseases. Das et al. [9] employ SVM to
recognize leaf diseases in plants. Regarding hybrid architectures, CNN and SVM have
been used in tandem by Ahlawat et al. [2] to identify handwritten characters.

In parallel with such generalized approaches, other techniques that are tailored to suit
applications on particular species of plants are also studied in the literature. Kurtulmucs
et al. [16] use three deep learning architectures, namely AlexNet [15], GoogLeNet [26]
and ResNet [12], to classify sunflower seed images. Chen et al. [7] successfully use deep
learning models to identify diseases in rice plants with satisfactory accuracy. Mokhtar
et al. [18] compare different kernel functions in SVM for detecting tomato leaf diseases.
Zhong et al. [30] use deep CNN for detecting leaf diseases in apple trees. Amara et al. [4]
use CNN for detecting leaf diseases in banana trees.

Often, pre-processing the images before the training phase is vital for increasing the
accuracy of machine learning models. Extracting features from datasets before training
and testing models for image classification has been shown to be useful for improving the
accuracy of the trained models. For example, Tiwari et al. [27], improve the accuracy of
logistic regression model by using transfer learning-based feature extraction for potato
disease classification. A summary of such specialized approaches which are designed to
identify leaf diseases in specific types of plants is given in Table 1.

As Table 1 shows, deep learning models trained specifically to detect diseases in cer-
tain types of plants have shown relatively high levels of accuracy. Despite this, we think
that the benefits of deep learning and transfer learning models are not fully harnessed in
the existing literature. This research aims to bridge this gap by designing and evaluating
several such models to identify yellow and scorched leaves in Bright Eyes and Strawberry
plants respectively.
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Tab. 1. Existing approaches to identifying leaf diseases in different types of plants.

Author Algorithm Plant Name Accuracy
Kurtulmucs et al. [16] DCNN Sunflower 95%
Chen et al. [7] Deep transfer learning Rice 98.63%
Mokhtar et al. [18] SVM Tomato 99.83%
Tiwari et al. [27] Transfer learning Potato 97.8%
Zhong et al [30] DCNN Apple 93.71%
Amara et al. [4] CNN Banana 92%

3. Learning models

As with most typical machine learning-based prediction systems, our employed models
consist, broadly, of two phases: (1) dataset preparation and processing, and (2) training
and testing the models. This section discusses these details.

We prepare the dataset by first acquiring images of Bright Eyes and Strawberry
leaves, by manually taking photographs using mobile phone cameras (2239 images) and
from publicly available online sources (1565 images). Some sample images are shown in
Figure 1. The images are resized and then compiled into a single dataset. Afterwards,
the images are partitioned into training and test sets. Then, three CNN-based models are
trained on this dataset: a vanilla CNN, a hybrid of CNN and SVM, and a transfer learn-
ing model, specifically, the MobileNetV2 model pre-trained on ILSVRC2012 dataset. All
models are trained using the images in the training set and used to classify images in
the test sets. The flowchart of the data preparation process along with learning modules
is shown in Figure 2.

3.1. Data collection and preparation

As mentioned above, the dataset used in the experiments consists of 3804 images of
C. roseus and strawberry leaves, of which 2239 are captured by us, and the rest 1565

a b c d

Fig. 1. Sample images of leaves from the dataset: (a) green C. roseus; (b) yellow C. roseus; (c) healthy
strawberry; (d) scorched strawberry.

Machine GRAPHICS & VISION 32(1):55–71, 2023. DOI: 10.22630/MGV.2023.32.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.1.3


A. Mimi, S. F. T. Zohura, M. Ibrahim et al. 59

Fig. 2. Flow chart of the proposed methodology.

images are selectively chosen from the Internet. The images are then manually labeled
by us into four types – green and yellow C. roseus leaves, and healthy and scorched
strawberry leaves. Table 2 shows the number of images in each type of the dataset.

Data Augmentation

Since large training datasets help improve the accuracy of deep neural networks, we
expand the size of the dataset using simple data augmentation techniques. Aside from
increasing the number of training instances, data augmentation helps to diversify the
dataset thereby allowing the trained model to be more robust to unnecessary variations
and perturbations. All the images are re-scaled to 224×224 pixels before training using
the ImageDataGenerator API provided in the Keras package [10]. These raw images are
sheared, zoomed in, rotated and/or horizontally flipped. To do this, for every image of

Tab. 2. Statistics of different types of leaves in the dataset.

Image Type Class Label Number of Images
C. roseus Green C0 1053
C. roseus Yellow C1 1186
Strawberry healthy leaf C2 456
Strawberry scorched leaf C3 1109
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Fig. 3. Structure of employed vanilla CNN model (Model 1).

the dataset, we create three real-time tensor images using Keras platform: shear range,
zoom range, horizontal flip. However, the actual dataset does not contain these
sheared, zoomed, and flipped images, rather we create those augmented images in real-
time just before training.

All the images have three channels denoting red, green, and blue intensity levels of
each of their pixels. Thus the total size of the dataset stands at 3804 images. The dataset
is split into the training and test sets in 90-10 percentages (3426-378 images) respectively.
We note here that in this paper we do not perform any hyper-parameter tuning using
a separate validation dataset (which is left for future work). However, the platform
we use for implementing the algorithms, namely Keras, uses the term validation set to
indicate the test set. Therefore, throughout the paper we use the two terms validation
and test interchangeably as there is no difference between these two terms in this paper.

3.2. Employed models

As mentioned earlier, in this investigation we utilize three machine learning models which
are described below.

3.2.1. Model 1: CNN

The structure of the employed CNN model is illustrated in Figure 3 where a 3× 3
convolutional layer followed by a 2×2 max-pooling layer are used. In total, four 3×3
convolutional layers and four 2×2 max-pooling layers are used. The popular activation
function ReLU is used where a neuron is only activated when the output is greater than
zero, so it does not activate all the neurons simultaneously. ReLU is popular because it
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reduces the chance of facing the vanishing gradient problem, and often achieves better
performance. Mathematically, ReLU is defined as y = max(0, x).

At the later stage, a hidden dense layer of 128 neurons is used with ReLU activation.
Finally, as loss function the SoftMax activation along with the categorical cross entropy
is utilized at the dense layer because it is able to re-scale the output. The formula for
SoftMax activation function is

SoftMax(i) =
ei∑
j e

j
,

where j stands for the total number of neurons in the last layer. The model is compiled
using a categorical cross-entropy loss function, to classify among multiple classes. The
Adam optimizer is used to reduce the losses by its stochastic optimization approach.

The pseudo-code of the training phase of CNN is described below in Algorithm 1.
The data preparation phase includes resizing the input image in 224×224 pixels and
applying data augmentation to the input data.

Algorithm 1: CNN

begin
for i← 1 to 4 do

pass the augmented and resized data into convolutional layer;
pass the output of the last convolutional layer into max pooling layer;

end
pass the output of the previous layers into a flatten layer;
pass the output of the flatten layer into a hidden later with 128 neurons;
pass the output of the hidden layer using SoftMax activation function;
calculate the loss using the categorical crossentropy function;

end

Here is how it works: every input image is passed through four slices of convolutional
and max pooling layers. Each slice consists of a 3×3 convolutional layer and a 2×2
max pooling layer. The output of these slices is passed through a flatten layer which
converts the 2D array into a 1D array. After that the array is passed through a hidden
layer consisting of 128 neurons. Finally, the output is passed through the final dense
layer with 4 neurons.

3.2.2. Model 2: Hybrid of CNN and SVM

A hybrid of model consisting of an SVM with a mixture of a deep neural network is
developed. Although there are some research on the hybrid CNN–SVM learning model
in the existing literature, this research is still in an early phase, so it can be further
improved by fine tuning its structure and parameters [21]. The features of input images
are extracted using a CNN model and then fed into an SVM classifier in the last layer as
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Fig. 4. Structure of hybrid CNN-SVM model (Model 2).

shown in Figure 4. The algorithm of the CNN-SVM training is described in Algorithm 2.
The data preparation phase includes resizing the input image in 224×224 pixels and
applying data augmentation to the input data.

Algorithm 2: Hybrid CNN-SVM

begin
for i← 1 to 4 do

pass the augmented and resized data into convolutional layer;
pass the output of the last convolutional layer into max pooling layer;

end
pass the output of the previous layers into a flatten layer;
pass the output of the flatten layer into a hidden later with 128 neurons;
pass the output of the hidden layer using SoftMax activation function;
calculate the loss using the squared hinge function (i.e., SVM loss) function

with L2 regularizer;

end

Here is how it works: the images are passed through four slices like the previous
CNN model. The output of these four slices are passed through a dense layer of 128
neurons. In this layer the ReLU is used as an activation function. In the last layer
SoftMax activation function is applied.

The squared hinge loss function – also known as the SVM loss – is used, which
enables us to draw a fine-tuned decision boundary between the classes. The formula of
the squared hinge function is

L2(y1, y2) =

n∑
i=1

{max(0, 1− y1i · y2i)2} .
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3.2.3. Model 3: Transfer Learning (MobileNetV2)

Transfer learning is a method through which the knowledge gained by training a model
in one application area is utilized for classifying data in a different but related domain.
The advantages of using pre-trained models include reduced training time and transfer of
domain knowledge in terms of learnt weights of the network. Transfer learning models are
particularly useful in scenarios where the target application contains a limited amount of
training data. As a popular approach employed in various fields of data science, transfer
learning has also been found to be effective in automated plant disease detection [30].

Our employed transfer learning model is based on the MobileNetV2 architecture [13].
The model is pre-trained on the ImageNet (ILSVRC-2012-CLS) dataset. The Mo-
bileNetV2 architecture is chosen due to its suitability for usage in mobile devices. The ar-
chitecture minimizes the number of mathematical operations required, thus lessening the
requirement of computational power. It uses Depthwise Separable Convolutions which
makes it more efficient in comparison to other neural network architectures [22]. Thus
MobileNetV2 is used to create a base model, and then a convolutional layer, dropout
layer, global average pooling layer, and a dense layer are added on top of this model.

In the first layer, the pre-trained MobileNetV2 architecture model is invoked. A 2D
convolution layer is then added on top of it. In the convolutional layer ReLU is used
as a non-linear activation function. A dropout layer is then added in the model with
a dropout rate of 0.2. On top of that was a 2D global average pooling layer which is
used in lieu of a fully-connected layer. The final layer is a dense layer consisting of 4
neurons and a softmax function used for the activation. The dense layer produced the
final output. We use the implementation of Keras library.

Pseudo-code of the transfer learning-based model is described below in Algorithm 3.
The data preparation phase includes resizing the input image in 224×224 pixels and
applying data augmentation to the input data.

Algorithm 3: Transfer learning (MobileNetV2) based model

begin
load the MobileNetV2 as a base model and execute the top layer;
apply convolutional layer to the output of the top layer;
drop 20% of neurons by applying a dropout layer;
pass the output of the last layer into a GlobalAveragePooling2D layer;
pass the output of the global average pooling layer using SoftMax activation function;

end

The intermediate layer of MobileNetV2 is used for feature extraction. After that
a classifier is added on top of it. The model consists of a 3×3 convolutional layer,

Machine GRAPHICS & VISION 32(1):55–71, 2023. DOI: 10.22630/MGV.2023.32.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.1.3


64 Identifying selected diseases of leaves. . .

Fig. 5. Architecture of the employed transfer learning model (Model 3).

a dropout layer, a global average pooling layer and a dense layer consisting of 4 neu-
rons. Adam optimizer and categorical-cross-entropy loss are applied while compiling this
model.

3.3. Android application for leaf disease detection

After training and testing the transfer learning model, an Android application named
“Go Greener” is implemented and deployed which allows users to easily use the system
in their day-to-day gardening activities. The trained model is loaded into the mobile
application using the Tensorflow Lite model. The application is developed using JAVA
15.0.1. The basic user interface of the application is shown in Figure 6.

The classification of the leaf’s image is shown along with a confidence score. To
detect the yellow leaves in Catharanthus roseus (bright eyes) plants and scorched leaves
in Fragaria×ananassa (strawberry) plants from the “Go Greener” application, the user
will simply have to open the app and place the phone on the plant leaf. The app shall
then redirect the user to an interface where details on the status of the health of the leaf
will be shown. Figure 7 pictorially presents the scenario.

4. Experimental results

All models are implemented in TensorFlow platform [1] which is an open source frame-
work for developing machine learning projects in Python language. The number of
training epochs varies from 1 to 10. A batch size of 64 is used. The training process is
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Fig. 6. Smartphone application layout.

Fig. 7. Use case diagram of the application.

accomplished on the Radeon Vega Mobile Gfx with CPU AMD Ryzen 5 3550H. All the
three models are trained in the Windows 10 operating system, the CPU utilization is
varying from 88% to 96% and the CPU clock speed is 2.19GHz.

4.1. Model 1: CNN

Our CNN model gains a training accuracy of 96.47% and a validation accuracy of 95.77%
after training for 10 epochs. The training phase takes 2 seconds per step. 10 training
epochs are applied in the model. The influence of the number of epochs is displayed in
Figure 8.
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a b

Fig. 8. CNN model – evolution of quality metrics during training: (a) accuracy; (b) loss.

a b

Fig. 9. Hybrid CNN-SVM model – evolution of quality metrics during training: (a) accuracy; (b) loss.

4.2. Model 2: Hybrid CNN-SVM

The CNN-SVM model gives us 96.12% training accuracy and 93.12% validation accuracy
for 10 epochs. The validation loss also significantly changes in this model, as shown in
Figure 9 where the Squared Hinge loss function mostly reduces the large errors and it
gives a computationally effective result.

4.3. Model 3: Transfer Learning (MobileNet)

The employed transfer learning approach based on the MobileNetV2 architecture, out-
performs the previous models. A training accuracy of 99.97% and validation accuracy
of 97.35% are obtained using this model, making it the most effective among all three
models. Table 3 describes the configuration of this model.

Figure 10 describes the changes in training and validation accuracy and loss with
respect to the number of epochs for the transfer learning approach.
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Tab. 3. Configuration of employed transfer learning-based model.

Parameter Value
Convolutional Layer 1 (filter size: 3×3)
Global Average Pooling Layer 1 (filter size: 2×2 )
Activation Function (Dense) Softmax
Batch Size 64
Loss Function categorical crossentropy

Dropout 0.2
Number of Epochs 10

a b

Fig. 10. Transfer learning model – evolution of quality metrics during training: (a) accuracy; (b) loss.

4.4. Comparison among all three models

The training time taken by the vanilla CNN, hybrid CNN-SVM and the MobileNetV2-
based transfer learning approach are recorded to be 15, 17 and 22 minutes, respectively.
The resulting training and test accuracy metrics acquired using each model are compared
in Table 4 and visualized in Figure 11.

All three investigated models perform impressively, achieving test accuracy of over
90%. However, the pre-trained transfer learning model outperforms the other two as
can be seen in Figure 11a. Figure 11b shows how the training and test accuracy of each
model varies with the number of training epochs.

Tab. 4. Accuracy comparison between the three models.

Algorithm CNN SVM Transfer Learning
Training accuracy 96.47% 96.12% 99.97%
Test accuracy 95.77% 93.12% 97.35%

Machine GRAPHICS & VISION 32(1):55–71, 2023. DOI: 10.22630/MGV.2023.32.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.1.3


68 Identifying selected diseases of leaves. . .

a b

Fig. 11. Comparisons across three models, CNN, hybrid CNN-SVM, and transfer learning: (a) evolution
of training accuracy versus training epochs; (b) final training and validation accuracies.

Based on precision, recall, F1-score, and accuracy, the performances of each model
have been measured. Precision refers to the number of true positives divided by the
total number of positive predictions. Recall is the number of true positives which are
detected. F1-score is the balance between the precision and the recall which is computed
by the following formula:

F1-score =
2 · Precision · Recall
Precision + Recall

.

These metrics are shown in Table 5.

If N is the number of classes to predict, the confusion matrix is an N × N matrix
which is used to evaluate the performance of the classification of a model. As shown in
Figure 12, using this matrix we can compare the actual target values with the predicted
ones. In the case of the CNN model (Figure 12a), it is found that the rate of true
positive value is high. It can be concluded that the rate of wrong predictions of the
CNN model is quite acceptably low. In Figure 12b it is found that the SVM-CNN model
results in good performance though it has a lower accuracy than the CNN model. The
confusion matrix for MobileNetV2 is shown in Figure 12c where it is found that the
transfer learning model gives us wrong predictions 10 times. All of these three models
work satisfactorily as the true positive value is high for all the models.

Tab. 5. Precision, recall and F1-score measures of each model.

Algorithm CNN SVM Transfer Learning
Precision 96.00% 95.00% 97.00%
Recall 96.00% 93.00% 97.00%
F1-score 96.00% 93.00% 97.00%
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a b c

Fig. 12. Confusion matrices for (a) CNN model, (b) SVM model, (c) transfer learning model.

5. Conclusion

Computer vision is increasingly proving itself to be very effective to enhance the qual-
ity and production of plants. In this paper, a MobileNetV2-based transfer learning
model is employed along with two other CNN-based models to classify the green and
yellow leaves in Catharanthus roseus (bright eyes) leaves and also to classify healthy and
scorched leaves of Fragaria×ananassa (strawberry) plants. Satisfactory accuracy has
been achieved in the experiments. Once trained, the models can be loaded and used in
smartphone applications, which can be used by end-users to classify images of leaves in
real time using their mobile phone cameras. The model is expected to be helpful for cul-
tivators in detecting diseases within bright eyes and strawberry plants. Future research
in this field may generate several interesting directions. The deployed transfer learning
approach can be tweaked further to improve performance and can be trained to identify
diseases in other plants with even greater economic significance. Other transfer learning
approaches can be considered including ResNet, GoogLeNet and EfficientNet [11]. Since
the developed dataset is somewhat imbalanced in terms of class distribution, re-sampling
techniques [6] can be applied to improve the accuracy.
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Abstract. Important information perceived by human vision comes from the low-level features of the
image, which can be extracted by the Riesz transform. In this study, we propose a Riesz transform based
approach to image fusion. The image to be fused is first decomposed using the Riesz transform. Then the
image sequence obtained in the Riesz transform domain is subjected to the Laplacian wavelet transform
based on the fractional Laplacian operators and the multi-harmonic splines. After Laplacian wavelet
transform, the image representations have directional and multi-resolution characteristics. Finally, image
fusion is performed, leveraging Riesz-Laplace wavelet analysis and the global coupling characteristics of
pulse coupled neural network (PCNN). The proposed approach has been tested in several application
scenarios, such as multi-focus imaging, medical imaging, remote sensing full-color imaging, and multi-
spectral imaging. Compared with conventional methods, the proposed approach demonstrates superior
performance on visual effects, contrast, clarity, and the overall efficiency.

Key words: image fusion, Riesz transform, polyharmonic spline, Laplacian wavelet, pulse coupled
neural network, PCNN.

1. Introduction

Image fusion aims to integrate images obtained by different focusing positions or dif-
ferent kinds of sensors into one new image containing better description of the scene.
Different focusing positions result in different sharpness for different areas of an image.
In order to obtain clear images and more information, image fusion methods are usually
adopted to solve this kind of multi-focus problem [9]. In addition to multi-focus problem,
there are many other image fusion problems. With the development of new technology,
there are more and more types of imaging sensors. Different sensors have different capa-
bilities of acquiring different information. For example, for multi-band remote sensing
images, full-color images and multi-spectral images can be collected by remote sens-
ing satellite imaging equipment, in which full-color images have structure information
with high spatial resolution, and multi-spectral images contain color information. Fused
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74 Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion

images of these two kinds of images can be used to better describe actual ground infor-
mation [21, 22]. At present, image fusion can be performed in either spatial domain or
transform domain. Image fusion in spatial domain directly operates on the gray value of
an image. This method cannot extract edge information, which results in low contrast
for fusion results. Image fusion in transform domain attracts a lot of attention currently,
including pyramid decomposition, wavelet transform and other multi-scale transforms.
The pyramid-based image fusion method can retain the edge details of the original image
and make the fusion image stable and anti-noise. But in the multi-scale structures of
pyramid decomposition, the details of different resolutions are strongly correlated, so the
fusion results are not satisfactory [18]. Wavelet transform is the most commonly used
method in transform domain since it reduces the correlation between sub-band coeffi-
cients in terms of time-frequency local characteristics [2]. Leveraging these two methods,
we develop an image fusion approach. In image fusion applications for either different
focusing positions or different kinds of sensors, our proposed approach demonstrates
superior performance on visual effects, contrast, clarity, and the overall efficiency.

2. Related works

Image can be fused at pixel-level, feature-level, or decision making-level. Most of studies
focus on pixel-level and feature-level fusion [4, 17]. This structure information are often
extracted in the transform domain instead of the spatial domain for image fusion since
it is easier to separate this information by directly operating image gray values in the
transform domain to obtain clearer and higher contrast images. Most of related studies
in the transform domain focus on multi-resolution transform, such as pyramid decom-
position, wavelet transform, super-wavelet transform, etc. [2, 18, 22]. Compared with
pyramid-based decomposition, wavelet decomposition performs well in local frequency
analysis, and reduces the correlation between sub-band coefficients [14]. The contourlet
transform, one of the super-wavelets, has multi-directionality feature and can represent
singular lines and surfaces in natural scenes better than wavelet transform [8]. Addition-
ally, non-subsampled Contourlet Transform (NSCT) uses a sub-band separation method
to avoid spectrum aliasing caused by up-down sampling process [21] but space and time
complexity are increased. The common goal of this series of improvements is to better
decompose images and gather related features to facilitate separation. In order to solve
this problem, in this paper a fusion method of Riesz transform is proposed for unfused
image, which can express the local structure information of an image well and maintain
the consistency of low-level feature space [22]. Riesz transform has been widely used in
computer vision and image processing, such as image quality evaluation based on image
structure similarity after this transform [3,10]. Because Riesz transform is isotropic and
relatively easy to calculate, it is more efficient for detecting the edges of an image based
on phase consistency in Riesz transform space than that in Hilbert transform space [11].
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Fig. 1. Riesz-Laplace wavelet pyramid combined with PCNN image fusion process block diagram.

In this study, we propose a Riesz transform based image fusion approach by leveraging
important characteristics of this transform, such as low-level feature preservation, locality
and directionality. An image is first transformed into Riesz transform space. After
this operation, the transformed images are further transformed into Laplacian wavelet
transform space, so that the image has multi-resolution characteristics. The Laplacian
wavelet transform not only reduces a large amount of redundant information in a single
pyramid transform, but also has good spatial and frequency domain locality in the
transform space, which can be used to well retain high-frequency information of the fused
image [18]. Then, the unfused images of each layer are input into Pulse Coupled Neural
Network (PCNN). PCNN is an improvement of the neuron model proposed by Eckhorn
et al., which is based on the phenomenon of cerebral cortex sync pulse distribution in
cats [12, 13]. It has the characteristics such as spatio-temporal summation, dynamic
pulse release, vibration, and fluctuation caused by synchronous pulse release. It has
been widely used in image denoising, enhancement, segmentation, edge detection, and
fusion. In this paper, the multi-resolution image is processed by PCNN, and the neurons
ignition frequency graph describing feature clustering is obtained. Then, based on the
size of the ignition frequency graph, each scale of the original image is fused [13]. Finally,
the results from PCNN are inversely transformed into the Riesz transform domain by
Laplacian pyramid. The inverse transform of Riesz (here multiplied by the conjugate
coefficient of Riesz transform) finally produces the fused image.

3. Riesz transformation principle

Since Gabor proposed analytic signal in 1946, Hilbert transform has been widely used
in one-dimensional signal analysis. One-dimensional analytic signal is a complex signal
composed of two parts. The first part is the real part, the original signal, and the second
part is the imaginary part derived from Hilbert transform of original signal. Local
amplitude and phase can be obtained based on one-dimensional analytic signal analysis.
Before Riesz transform was developed, there have been many studies on two-dimensional
extension of Hilbert transform. However, analytic signals obtained in these studies have
the problem of information loss [11].
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Riesz transform can be regarded as an extended Hilbert transform of one-dimensional
signal in multi-dimensional space. It has similar properties to those of Hilbert transform.
The representation of Hilbert transform kernel in frequency domain is as follows:

H(w) = −j · sign(w) = −j w

||w||
, (1)

where w is the frequency of an one-dimensional signal. The transform kernel of the
Riesz transform in frequency domain is a two-dimensional vector (Rx, Ry) containing
two parts:

(Rx, Ry) =

(
wx

||w||
,
wy

||w||

)
, (2)

where w stands for for the two-dimensional vector w = (wx, wy) , ||w|| is the modulo

value of the vector |w| = (w2
x + w2

y)
1
2 .

When an image is defined as f(x, y), any point on the image is defined as P = (x, y),
the Riesz transform kernel in space domain can be described by

(rx, ry) =

(
x

2π ||p||3
,

y

2π ||p||3

)
. (3)

Riesz transform of an image can be expressed by equation (4), where ∗ represents
a convolution operation. The image in spatial domain is convolved with two Riesz
transform kernels separately.

fr(P ) =

(
frx
fry

)
=

(
f(P ) ∗ rx
f(P ) ∗ ry

)
. (4)

In the frequency domain, the image is first transformed by Fourier transform. Then,
it is multiplied by the frequency domain Riesz transform kernel:

FR(w) =

(
FRx

FRy

)
=

(
Rx · F (w)
Ry · F (w)

)
. (5)

The second-order transform of the Riesz transform is expressed as follows:
Rxx[f ](P ) = Rx[Rx[f ](P )](P )

Rxy[f ](P ) = Ry[Rx[f ](P )](P )

Ryy[f ](P ) = Ry[Ry[f ](P )](P )

. (6)

The first-order feature map can well express the edge contour features of the image,
and the second-order feature map can express more complex features, such as corner
points. As shown in Fig. 2, Rx and Rxx highlight the horizontal contour of the image,
Ry and Ryy the vertical contour, and Rxy the diagonal profile [14,17]. The higher-order
Riesz transform is directional [8].
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Fig. 2. First and second order Riesz transform image schematic diagram, the first row of images (source
images) comes from the TestingImageDataset in the image fusion standard database [16], and
the second row of images is the first-order feature map and second-order feature map after Riesz
transformation.

4. Laplacian wavelet transform based on Riesz transform

Based on the Riesz transform, Laplacian spline wavelets are used for multiresolution
decomposition. The fractional Laplacian operator (−∆)α, α ∈ R+, is an isotropic dif-
ferential operator of order 2α. In Fourier domain it is defined as:

(−∆)αf(x)
FT−−→ ||w||2α f̂(w) . (7)

The multi-harmonic spline is a spline function related to the fractional Laplacian
operator, and the γ-order multi-spline function φγ(x) satisfies:

s(x) =
∑
k∈Z2

s[x]φγ(x− k) , (8)

where s[x] = s(x)|x=k is the integer sample of s(x) at k. The Fourier response of φγ(x)
is described as:

φγ(x)
FT−−→ φ̂γ(w) =

||w||−γ∑
k∈Z2 ||w + 2πk||−γ . (9)

With the above concepts of fractional differential operators and multi-harmonic
splines, a symmetric fractional order (γ > 1

2 ) Laplacian spline wavelet can be defined as:

ψ(x) = (−∆)
γ
2 φ2γ(Dx) , (10)
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where φ2γ is the 2γ order multi-harmonic spline interpolation operator; the parameter
of D is the down-sampling matrix. The basis function defined by ψ(x) is:

ψi,k(x) = |det(D)|
i
2 ψ(Dix−D−1k) , (11)

where the parameters i, k are the scaling and translation coefficients, respectively. The
Riesz transform is performed on the Laplacian wavelet base to obtain complex Riesz
Laplacian wavelets of order γ(γ > 1

2 ):

ψ′(x) = Rψ(x) = R(−∆)
γ
2 φ2γ(Dx) . (12)

5. The fusion process

We observe that low-level features of an image are separated well by Riesz Laplacian
wavelet transform. Additionally, the selection of proper fusion rules is also important in
the whole process of image fusion. This paper uses the Pulse Coupled Neural Network
to perform image fusion at each layer of the Riesz-Laplace wavelet transform pyramid.

Pulse Coupled Neural Network is a bionic model proposed by Eckhorn in the 1990s,
and is based on synchronous pulses in the cerebral cortex of animals such as cats and
monkeys. PCNN is a simplified neural network which imitates the principle of cat vision.
It is a feedback network composed of several interconnected neurons and has the effect
of synchronous pulse release [12,13].

The traditional PCNN fusion rules are:

IkF.l(x, y) =

{
IkA.l(x, y) T k

A.l(x, y) ≥ T k
B.l(x, y)

IkB.l(x, y) T k
A.l(x, y) < T k

B.l(x, y)
, (13)

where IkA.l(x, y) and I
k
B.l(x, y) are the wavelet coefficients of the source image A and the

source image B, and T k
A.l(x, y) and T k

B.l(x, y) are the numbers of firings corresponding
to the wavelet coefficients.

The steps of PCNN image fusion based on Riesz-Laplace wavelet transform are de-
scribed as follows:
a) Riesz-Laplace wavelet transform is applied to the unfused image A and B to obtain

the pyramid structures of the images. Laplacian wavelet transform based on Riesz
transform has the coefficients of each layer are IkA.l(x, y, i) and I

k
B.l(x, y, i).

b) The wavelet coefficients of each layer obtained from a) are input into the PCNN
network separately, and iterate Nmax times to obtain the respective ignition maps of
each layer, called also signature maps, denoted as MFA.i and MFB.i.

c) The pixel points with a larger ignition time at each layer are taken as the fusion
coefficients for image fusion.

d) The inverse Riesz Laplacian wavelet transform is finally performed on obtained coef-
ficients to recover the fused image.
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6. Experiment and result analysis

6.1. Experimental description

The quality of fused images can be evaluated subjectively and objectively. In order to
objectively test the method of this paper, to verify the universality and accuracy of the
algorithm in this paper, in this experiment multiple images in different scenes from the
image fusion standard database for fusion testing are randomly selected, and compared
with LP-PCNN [5] (its preliminary version can be found in [6]) and NCST-PCNN [23]
algorithms. Among them, the selected image data comes from TestingImageDataset
from [15] (mainly including multi-focus image fusion data), Harvard [7] (mainly includ-
ing medical image fusion data), and three Gaofen data bases: GF-1, GF-2 and GF-3
from [1] (mainly including remote sensing image fusion data) in the image fusion stan-
dard database [16].

The experimental environment of this article is 11th Gen Intel(R) Core (TM) i7-11700
@ 2.50GHz, memory 16GB, 64-bit Win10 operating system, and Matlab R2018b pro-
gramming environment [20] in which multi-spectral and full-color remote sensing images
have multiple bands. For this kind of images, first, they are converted from RGB space
to HIS space. The I component (I represents the I component of HIS image) containing
the main structure information is fused with full-color remote sensing image using the
method proposed in this paper. Then the new I component and the multispectral H
and S components with spectral features are transformed back to the RGB space. The
images to be fused in this paper have been initially registered. The results of image
fusion are shown in Fig. 3.

6.2. Subjective evaluation

Subjective evaluation mainly depends on human visual effects. Three methods includ-
ing Laplacian pyramid decomposition and restoration(, LP-PCNN [5] (also [6]), NCST-
PCNN [23] and our method have been used to fuse three different types of images. For
multi-focusing clock image, the decomposition of the Laplacian pyramid produces ar-
tifacts. NSCT-PCNN and our method perform well. For medical images, Laplacian
decomposition produces artifacts, which is not good for medical diagnosis. The fusion
effects of NSCT-PCNN and our method are similar. For remote sensing images, images
fused by the Laplacian pyramid method are dark. The fusion effects of NSCT-PCNN
and our method are superior to LP-PCNN.

In particular in Fig. 3, the images in the first row are the two images to be fused, and
the images in the second row represent images generated by fusion of three different meth-
ods, where (1) represents Laplacian Pyramid decomposition and restoration using Pulse
Coupled Neural Network fusion strategy (LP-PCNN) method. The result map gener-
ated by fusion (2) represents the result map generated by the fusion of non-downsampled

Machine GRAPHICS & VISION 32(1):73–84, 2023. DOI: 10.22630/MGV.2023.32.1.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.1.4


80 Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion

a b c

Fig. 3. Image fusion results. (a) The Clock fusion; (b) Medical CT, MRI fusion; (c) Remote sensing full-
color and multi-spectral image fusion. Laplacian Pyramid decomposition and restoration using
Pulse Coupled Neural Network fusion strategy (LP-PCNN) (1), non-downsampled contourlet
transform decomposition and restoration (NSCT-PCNN) (2), and Riesz fractional Laplacian
Pyramid decomposition and restoration (Ours) (3) fusion methods test for the above multi-
scenario application. The white window is to focus on the details to illustrate the comparative
advantages of the fusion results of this method and the fusion results of other methods. Taking
the multi-focus clock image as an example in Fig. 3(a), the method of LP-PCNN will produce
artifacts, while NSCT-PCNN and the method proposed in this paper perform well.

contourlet transform decomposition and restoration (NCST−PCNN) method, and (3)
represents the result map generated by the fusion method of this paper.

6.3. Objective evaluation

In order to evaluate the fusion results more comprehensively, objective indexes are used
in this paper. Objective evaluation of the effect of image fusion is standard and deter-
ministic. For this reason, in this paper the information entropy (IE), standard deviation
(SD), and average gradient (AG) defined in the literature [19] were chosen to evaluate
the fusion results objectively. This kind of evaluation index is to use the fused image
itself or some feature statistics to measure the quality of the fused image, and then make
an objective evaluation of the performance of the image fusion technology. The specific
meanings of each evaluation index are as follows. 1. Information entropy is an important
index to measure the information richness of an image. The larger the entropy value, the
more information the image contains. 2. The larger the standard deviation, the more
dispersed the gray level distribution of the image, the greater the contrast, and more
information can be seen, the better the image quality; the smaller the standard devia-
tion, the worse the image quality. The smaller the contrast of the image, the image is
closer to an image with single and uniform tone, and not much information can be seen.
3. The average gradient can sensitively reflect the clarity of the image, and the larger
the average gradient, the richer the information obtained from the source image of the
fused image, and the better the fusion.

Machine GRAPHICS & VISION 32(1):73–84, 2023. DOI: 10.22630/MGV.2023.32.1.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.1.4


S.F. Sun, Y.H. Tang, Z.J.S. Mei, M. Yang, T.L. Tang, Y.R. Wu 81

Information Entropy (IE)

Information entropy reflects the richness of image information.

IE = −
L−1∑
i=0

Pi lnPi . (14)

In the formula, Pi represents the ratio of the number of pixels with gray value i in
the image to the total number of pixels in the image, which reflects the probability
distribution of pixels with gray value i in the image. The larger the value of IE, the
richer the information and the better the quality of the fused image.

Standard Deviation (SD)

The standard deviation indicates the degree of dispersion of the data. The larger the
standard deviation, the more discrete the data, and the larger the standard deviation,
the larger the contrast is reflected in the image.

SD =

√√√√ 1

X × Y

X∑
x=1

Y∑
y=1

(p(x, y)− µ)2 . (15)

In the formula, µ represents the mean value of the gray value of the image, which reflects
the average brightness of the image, and the standard deviation reflects the sharpness
and contrast of the image. The higher the SD value, the better the contrast and the
clearer the fusion result.

Average Gradient (AG)

Average Gradient (AG) reflect the clarity of the image, The larger the AG value, the
clearer the fused image and the better the quality.AGv =

∑X−1
x=0

∑Y −2
y=0 |p(x+1,y)−p(x,y)|
(X−1)×Y

AGh =
∑X−2

x=0

∑Y −2
y=0 |p(x,y+1)−p(x,y)|
X×(Y−1)

AG =

√
AGv

2 +AGh
2 . (16)

In practical applications, time complexity is an important factor in decision making
for algorithm selection. In this study, the efficiency of algorithms is also one of the
criteria to evaluate the quality of algorithms. The statistical results are described in
Table 1, in which the multi-spectral and full-color image results are the mean of three-
channel results. The values of IE, SD, and AG are positively correlated with the fusion
effects; the higher the values, the better image fusion effects. In multi-focus image fusion
and CT/MRI image fusion, our method performs better than NSCT-PCNN method,
especially in time complexity analysis. Compared with the Laplacian decomposition
method, our method produces higher IE values, the image results are shown in Fig. 3(a)
and Fig. 3(b). In multi-spectral and full-color image fusion, our method produces higher
index values than other algorithms, the image results are shown in Fig. 3(c).
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Tab. 1. Image fusion evaluation statistics.

Unfused Images Fusion method IE SD AG Time [s]

LP-PCNN [5] 7.060268 0.016244 42.227196 1.6965
Multi-focus NSCT-PCNN [23] 7.040197 0.015665 40.550226 216.167

Ours 7.104631 0.016058 41.508493 6.754

LP-PCNN [5] 5.690078 0.082494 63.087874 0.331
CT/MRI NSCT-PCNN [23] 6.838788 0.077755 58.903765 46.815

Ours 6.969029 0.080016 60.576231 1.425

multi-spectral LP-PCNN [5] 6.479447 0.209883 35.579854 34.625
and NSCT-PCNN [23] 7.227013 0.232942 46.672342 4710.249

full-color Ours 7.227010 0.232942 46.672549 116.220

7. Conclusion

In this study, we propose a Riesz transform based approach to image fusion. Specifically,
an image is decomposed by Riesz Laplacian spline wavelet pyramid to derive a new
representation, with which PCNN optimization is employed to obtain fused images.
Through subjective observation and objective index analysis, we observe that our method
demonstrates superior performance in image fusion with low time complexity. Through
experiments, we find that our method can be further optimized by selecting PCNN
parameters adaptively. Another future work is to choose Riesz transform as the objective
function of fusion rules to improve fusion effects further.
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Abstract. Cancer is a deadly disease that has gained a reputation as a global health concern. Further,
lung cancer has been widely reported as the most deadly cancer type globally, while colon cancer comes
second. Meanwhile, early detection is one of the primary ways to prevent lung and colon cancer fatalities.
To aid the early detection of lung and colon cancer, we propose a computer-aided diagnostic approach
that employs a Deep Learning (DL) architecture to enhance the detection of these cancer types from
Computed Tomography (CT) images of suspected body parts. Our experimental dataset (LC25000)
contains 25 000 CT images of benign and malignant lung and colon cancer tissues. We used weights
from a pre-trained DL architecture for computer vision, EfficientNet, to build and train a lung and
colon cancer detection model. EfficientNet is a Convolutional Neural Network architecture that scales
all input dimensions such as depth, width, and resolution at the same time. Our research findings showed
detection accuracies of 99.63%, 99.50%, and 99.72% for training, validation, and test sets, respectively.

Key words: cancer detection, efficientNet, CT images, healthcare.

1. Introduction

Cancer is one of the leading causes of death globally causing about 10 million deaths or
one out of every six deaths in the year 2020. Of the various types of cancer, lung cancer
accounts for the highest number of deaths, accounting for about 18% of cancer deaths in
the year 2020; the second highest being colon and rectum cancer, which account for 9%
of cancer deaths [4,22]. The presence of cancer in the body is often medically confirmed
by medical imaging techniques such as Computed Tomography (CT) scan or Magnetic
Resonance Imaging (MRI) which are then analyzed and interpreted by medical experts.
To improve detection accuracy and reduce doctors’ burdens, Machine Learning (ML)
and Deep Learning (DL) techniques have been employed to accelerate the detection of
cancer in such medical images. This enables researchers to analyze a large number of
patients in much less time and at a lower cost [18]. The accuracy of these models on
real-world data has been limited largely because of insufficient datasets available for
experimentation, yet, near-perfect accuracy is highly desirable in medical systems.
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86 Lung and colon cancer detection from CT images using Deep Learning

DL models, especially for computer vision, thrive on large volumes of data. When
these are not available, model performance may be unsatisfactory. Until 2019, freely
available cancer image datasets have only contained a few thousand images. However,
since the release of the LC25000 dataset [3], the research community has seen consistent
progress in the accuracy of cancer detection and classification models. However, our
major observation is that most published works have performed experiments on subsets
of the dataset (either lung cancer or colon cancer). This may be because of the relatively
large size of the entire dataset which makes attempts to build a single model to detect
both lung and colon cancers not achieve near-perfect accuracy. In this work, a single
DL model was developed to detect and classify lung and colon cancer with improved
classification accuracy over existing models. We used the pre-trained EfficientNet [19]
model to build a lung and colon cancer detection/classification model and obtained
99.72% accuracy on a hold-out (out-of-training) test set of 5000 images in only 44 training
epochs. The introspection results of our training and validation also reveal a good
training progression and “goodness of fit”. Our motivations for developing a single
model for lung and colon cancer classification include (i) the fact that both diseases
have the highest cancer fatalities, and (ii) the possibility of achieving better accuracy in
medical predictions when large datasets are available.

Our research contribution is to develop a novel DL model based on EfficientNet
for accurate and robust lung and colon cancer detection. This model is designed to
automatically extract the most important features from medical images for accurate and
reliable cancer detection. Furthermore, the proposed model is capable of achieving high
accuracy and robustness in the detection of lung and colon cancer. Additionally, we have
evaluated the proposed model on the LC25000 dataset to demonstrate its effectiveness
in detecting both types of cancer.

The rest of this paper is organized as follows. In Section 2, we review literature
related to the application of DL in cancer detection. The materials and methods used
in the research are given in Section 3. This includes the dataset used, the network
architecture, and applicable experiments. Section 4 presents our results and discussions.
Finally, conclusions and future work are given in Section 5.

2. Review of related literature

The growing success of ML and DL has made it applicable in several walks of life in-
cluding cancer detection. In this section, we present a review of recent relevant works in
lung and colon cancer detection.

A ML-based lung and colon cancer detection using hybrid model comprising deep
feature extraction and ensemble learning was introduced by [18]. Their hybrid model
which evaluated the histopathological (LC25000) lung and colon datasets achieved accu-
racy rates of 99.05%, 100%, and 99.30%, respectively. This feature extraction approach
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(a hybrid ensemble feature extraction model that combines deep feature extraction and
high-performance ensemble learning for cancer images) is anticipated to be helpful for
the diagnosis of lung and colon cancers in medical sectors.

In [8], eight different pre-trained models for lung and colon cancer classification were
employed, also using the LC25000 dataset. Five of the eight pre-trained models (Incep-
tion V2 & V3, MobileNet, Xception and DenseNet169) achieved 100% accuracy, while
the rest (VGG-16, ResNet50 and NASNetMobile) achieved more than 95% accuracy.
While this may be a pointer to the effectiveness of these pre-trained models in classi-
fying lung and colon cancer images, it must be stated that the reported results are for
binary classifications on subclasses of the dataset with the largest subclass containing
10 000 images. [14] proposed research directions to assist in early-stage detection of can-
cer while identifying gaps for future development of lung cancer detection in medical IoT
devices based on various ML algorithms utilized for detecting a number of diseases.

In [15], a Convolutional Neural Network (CNN) model was proposed that was char-
acterized by its speed of diagnosis and high accuracy with few parameters for diagnosing
colon cancer. The model consists of two paths where each path is responsible for creating
256 feature maps to increase the number of features at different levels in order to im-
prove the accuracy and sensitivity of the classification. They compared the performance
of their CNN model with VGG-16 model on the 10 000 colon CT images of the LC25000
dataset and reported classification accuracies of 99.6% and 96.2%, respectively.

Having developed a lung cancer detection model using InceptionV3, Histogram of
Gradients (HoG) and Daisy feature extraction, [6] obtained 99.6% accuracy in classi-
fying benign and malignant lung tissues using 15000 lung CT scans from the LC25000
dataset. [12] introduced a lung cancer classification using Particle Swarm Optimiza-
tion (PSO), Genetic Algorithm (GA), and Support Vector Machine (SVM). In terms of
classification, PSO-GA-SVM outperformed SVM without parameter optimization. The
accuracy, precision, recall, and F1-score values for the PSO-GA-SVM, were discovered
to be 97.69%, 98.46%, 98.82%, and 97.66%, respectively.

A DL-based classification framework for lung and colon cancer diagnosis using ML
was presented in [11]. A framework was proposed that can help medical professionals
identify as well as differentiate among five types of lung and colon tissues. A supervised
learning approach with a DL model was used to identify three cancerous and two non-
cancerous lung and colon tumors. In that research, pathological images were obtained,
relating to these types of cancers from the LC25000 dataset, which was also used to train
and validate the approach. After obtaining approximately 96% accuracy and proving the
superiority of this method over other similar cancer detection methods, it was concluded
that this computer-based identification method would allow less costly pathologists’
diagnoses of lung and colon cancer cases with minimal effort and time.

In [20], three CNN models were trained and tested for colon cancer detection using
the 10 000 colon CT images of the LC25000 dataset. Two of the three CNN models
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were built from scratch while one of them was a pre-trained CNN (MobileNetV2). Of
the two models built from scratch, one used average-pooling and reported an accuracy
of 95.48%, while the other used max-pooling and reported an accuracy of 97.49%, but
the pre-trained MobileNetV2 outperformed them both with a classification accuracy of
99.67%. All accuracies were reported on 20% of the dataset while the remaining 80%
were used to train the models.

In [2], a framework was proposed based on multiple lightweight DL models (Shuf-
fleNet, MobileNet and SqueezeNet) for the detection of lung and colon cancer from
CT images in the LC25000 dataset. Following the extraction of deep features by these
lightweight DL models, features transformations such as Principal Component Analysis
(PCA) and Fast Walsh-Hadamard Transform were employed to reduce the dimension
of the features and extract a relevant subset of dense features. The resulting feature
subsets from the two transforms were then used to train four ML models out of which
Support Vector Machine had the best accuracy of 99.6%.

In [9], seven different DL architectures were tested on the colon images subset of
the LC25000 dataset. One of the DL architectures was a 9-layer CNN consisting of
convolution layers, max-pooling layers, a flatten layer, a dropout layer, and dense layers.
The other six models were pre-trained models (VGG-16, EfficientNetB0, ResNet101V2,
ResNet50, DenseNet121, and MobileNetV2). All the models were trained with 80% of
the data, and validated with 10% of the data while the remaining 10% was held out for
testing. The authors reported that their 9-layers CNN had the best accuracy of 99.8%
and thus outperformed all the pre-trained models. While this is commendable, it is
not justifiable from a computational standpoint, especially because they did not provide
details of how the pre-trained models were used for transfer learning (hyperparameter
tuning, whether layers were added, retrained etc.). However, the performance of this 9-
layer CNN is commendable, the training and validation plots show good generalization,
yet we believe that the accuracy of this 9-layer architecture is likely to drop when used
for a multi-class classification like ours.

To develop a transfer-learning model for detecting lung and colon cancer using
LC25000 histopathological images, [13] tuned and used a pre-trained model, AlexNet, to
classify the CT images of lung and colon tissues. Initially, the model achieved an overall
accuracy of 89.9%. A so-called class-selective image processing method was employed to
identify the underperforming class and selectively preprocess the images in that class.
This method improved the model accuracy to 98.4% showing that simple and efficient
image processing methods can improve ML model performance.

In [17], an analysis of lung cancer using a deep neural network was presented. 15 000
samples of histopathological photographs of lung adenocarcinoma, lung squamous cell
carcinoma, and benign lung tissue from three different types were used. Histopathological
photographs of lung tissues were classified using a Computer-Aided Diagnostic (CAD)
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method. Using various pre-trained models with hyper-tuning, the best accuracy was
achieved from ResNet 101, a CNN network, at 98.67%.

In [23], a method for detecting and classifying colon cancer was proposed, using
what was called MA ColonNET. This MA ColonNET was built from a 45-layer CNN
architecture consisting of 2D convolution layers and max-pooling layers. MA ColonNET
achieved a 99.75% accuracy on 2000 lung CT images which were used for testing the
trained model.

From the reviewed works, it has been observed that achieving very high accuracies
(over 99%) on “out-of-training” samples has been relatively difficult when building a
single model to predict both lung and colon cancer, compared with separate models for
lung and colon cancer detection. This is most likely due to the differences in the image
structures between the different disease types. However, considering the computational
demand of training, validating, testing, and deploying DL models, it is more expensive
to train two separate models on one dataset than it is to train a single model. More
so, since the LC25000 dataset has come as an answer to a request for larger datasets
for medical image analysis, it is sensible for the computer vision research community to
take advantage of its large size to develop better predictive models.

3. Materials and methods

In this work a DL approach for cancer detection from CT images is proposed. We have
experimented with a relatively large dataset of 25 000 images, details of which can be
found in section 3.1. Our DL architecture employs the pre-trained EfficientNet-B7 [19]
as the backbone and adds a few dense layers on top of it. The details of the architecture
are presented in section 3.2. The experimental setup is presented in section 3.3.

3.1. Dataset

The dataset used in this work is the lung and colon cancer histopathological dataset [3]
which is also referred to as LC25000. It originally contains 250 images each of Lung be-
nign tissue (Lung n), Lung adenocarcinoma (Lung aca), Lung squamous cell carcinoma
(Lung scc), Colon adenocarcinoma (Colon aca), and Colon benign (Colon n) tissue to-
taling 750 images which were then augmented to 25 000 images with a total of 5000
images in each of the five classes. For the purpose of testing the performance of our net-
work, we created a hold-out test set that contained 20% of the total size of the dataset
(i.e. 5000 images). The remaining 20 000 images were used for training and validation
in order to experiment and improve the architecture before finally testing it on the test
set. The validation split is 10% of the remaining 20 000 images (i.e. 2000 images), while
the remaining 18 000 images were used for training.

It is noteworthy that the hold-out test set was created with an equal number of
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Fig. 1. Samples of CT images from the LC25000 dataset [3].

Fig. 2. Architecture of the top layers attached to EfficientNet-B7 for cancer detection from CT images.

images (1000) from each of the five classes. In the same vein, the validation split was
done so that equal quantities (400) of images from each class are present in the split.
This balance is important to ensure that class imbalance does not bias the classification
probabilities of each class at training. Figure 1 shows samples of images in the dataset
– one from each of the five classes.

3.2. Network Architecture

The EfficientNet-B7 architecture was developed by the Google Research Brain team. It
was first presented in the paper by [19] in which a family of neural network models (B0
to B7) was developed by uniformly scaling all convolution dimensions of depth, width,
and resolution using compound scaling with a fixed ratio.

While EfficientNet-B7 showed improved accuracy on the ImageNet dataset [7] at
that time (84.4% accuracy), the architecture also had fewer mode parameters compared
to the state-of-the-art. This means that it can be trained in less time and with fewer
computing resources and these are desirable features for transfer learning.

To create our cancer detection architecture, we reused the pre-trained EfficientNet-
B7 without its top layer. Then, we added 4 dense layers on top of the pre-trained
architecture as shown in Figure 2. The EfficientNet model architecture is very deep due
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Tab. 1. Hyperparameter settings.

Hyperparameter Value
Input image size 224× 224× 3
Base learning rate 5 · 10−5

Batch size 128
Optimizer Adam
Seed 42
Loss function Categorical cross entropy
Evaluation metric Accuracy

Tab. 2. Accuracy and loss values.

Training Validation Testing
Accuracy [%] 99.63 99.50 99.72
Loss 0.0124 0.0145 0.0103

to the compound scaling method adopted. The architecture was trained with images of
dimension 224 × 224 × 3, thus, that is the input dimension specified in the input layer
of the architecture.

The final dense layer of the network has five units for classifying the input image into
one of the five classes. The network was trained with a base learning rate of 5·10−5, using
the Adam optimizer and a categorical cross-entropy loss function. We also included a
dropout layer to drop 30% of the neurons in the previous layer in order to combat
overfitting and obtain a robust model. The model was trained with early stopping for 44
epochs. We set a seed value of 42 to ensure reproducibility in the random selection of the
test set. The modified EfficientNet-B7 architecture was trained on 18 000 CT images,
validated on 2000 CT images and tested on a hold-out set of 5000 images.

3.3. Experimental setup

Experiments were carried out on Kaggle’s GPU T4 × 2 and the Tensorflow library was
employed for DL. Table 1 shows the hyperparameter settings employed for the experi-
ments.

4. Results and discussion

The results of training, validation, and testing are presented in Table 2. From the table,
it can be observed that the model training and prediction are in step and it is not
overfitting.
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Tab. 3. Comparison of cancer prediction models on LC25000 dataset.

No. Ref. Cancer type ML/DL model Validation protocol Acc. [%]
1 [8] Lung and colon Inception,

Xception,
VGG-16,
ResNet,
MobileNet,
DenseNet,
NASNetMobile

Train (80%); val. (20%) 96-100

2 [15] Colon VGG-16 Train (70%); val. (30%) 99.6
3 [20] Colon MobileNetV2 Train (80%); val. (20%) 99.67
4 [17] Lung ResNet 101 Train (80%); val. (20%) 98.67
5 [23] Colon MA Colon NET Train (80%); val. (20%) 99.75
6 [21] Lung and colon DarkNet+ SVM Train (70%); val. (30%) 99.69
7 [10] Lung CNN Train (90%); val. (10%) 97.2
8 [16] Colon DenseNet,

ResNet,
SVM,
RF,
KNN,
XGB

Train (75%); val. (25%) 98.53

9 [5] Lung Ensemble Train (80%); val. (20%) 99.6
10 [1] Lung and colon DHS-CapsNet Train (70%); val. (15%);

test (15%)
99.23

11 Ours Lung and colon EfficientNetB7 Train (∼70%); val. (∼10%);
test (20%)

99.72

The accuracy and loss plots in Figures 3 and 4 are a confirmation of the fact that the
model is not overfitting. They show a smooth progression of training towards convergence
and this is an indication of the robustness of the EfficientNet architecture for transfer
learning on a task such as cancer detection from CT images.

Figure 5 shows the precision, recall, and F1-score values on the test set, and Figures 6
and 7 show the confusion matrix with and without normalization of the predictions
on the test set. These two figures again show the details of the predictive power of
the developed cancer detection model as there were very negligible misclassifications at
test time. It is noteworthy that this model performance was achieved without further
data augmentation on the 18000 training images and in 44 training epochs. This is an
indication that the compound scaling method of EfficientNet is effective in detecting
cancerous cell nodules in tissue CT images.
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Fig. 3. Training and validation accuracy.

Fig. 4. Training and validation loss.

Fig. 5. Precision, recall and F1-score values.

We compared the performance of our developed model with other existing models on
the LC25000 dataset. Table 3 shows our comparative analysis of works published between
the years 2020 and 2022 on cancer detection from CT images using the LC25000 dataset.
Most of the works have employed various pre-trained DL models, but none had employed
the EfficientNet model for this task. Also, it can be observed that our developed model
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Fig. 6. Normalized confusion matrix.

Fig. 7. Confusion matrix without normalization.
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significantly outperforms a good number of the works presented. However, a few works,
which performed at par with our work, have been closely ‘x-rayed’ and our analysis and
discoveries are presented in the next paragraph.

The paper [8] reported a 100% accuracy on the LC25000 dataset, but upon careful
examination, we found that they performed three binary classification tasks on three
subsets of the dataset and each of these subsets contains 10000 images. Therefore, their
classification model cannot be said to be as robust as ours. [15] used only the colon
cancer subset of the LC25000 dataset which contained only 10000 images. [21] used only
training and validation split and this method has been shown to result in overfitting to
the validation set. More so, the DarkNet part of their model was trained for 3000 epochs
and then some feature optimizations were carried out on the features before they were
used by SVM for a final classification. This does not compare to our model which was
trained for just 44 epochs yet achieved higher accuracy. As for [23], their work was also
built on the 10 000 images of colon tissues, which is just a binary classification task and
does not come near our multi-class classification of 5 classes ranging from lung to colon
cancer.

5. Conclusions and future work

While the research in the detection of lung cancer using ML and DL seems to be getting
more attention than colon cancer, both deadly diseases ultimately require early detection
and diagnosis by health practitioners in order to mitigate the spread to other parts of
the body. The use of ML and DL methods to aid in the diagnosis of these diseases will
not only reduce the burdens of relevant stakeholders in cancer diagnosis, but it also holds
great prospects for faster and more accurate diagnosis, thus resulting in fewer fatalities.

In this work, a robust DL method for lung and colon cancer has been developed.
Trained on only 18 000 images, the model was able to detect cancer in a hold-out test
set containing 5000 images to a very high degree of accuracy (99.72%). The fact that
existing works also have similar accuracies on the same dataset is a pointer to the fact
that we are drawing closer to a breakthrough in AI-assisted diagnosis of cancer disease.

Future work should focus on experimenting on a larger corpus, preferably from het-
erogeneous sources (e.g., various hospitals, various machines, etc.). More work also needs
to be done in terms of interpretation and analysis of the predictions to medical experts
and patients in order to improve the trust and confidence in AI-assisted diagnosis of
cancer.
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[21] M. Toğaçar. Disease type detection in lung and colon cancer images using the comple-
ment approach of inefficient sets. Computers in Biology and Medicine, 137:104827, 2021.
doi:10.1016/j.compbiomed.2021.104827.

[22] WHO. Cancer: Key facts, 7 Feb 2022. https://www.who.int/news-room/fact-sheets/detail/

cancer.

[23] M. Yildirim and A. Cinar. Classification with respect to colon adenocarcinoma and colon benign
tissue of colon histopathological images with a new CNN model: MA ColonNET. International
Journal of Imaging Systems and Technology, 32(1):155–162, 2022. doi:10.1002/ima.22623.

Machine GRAPHICS & VISION 32(1):85–97, 2023. DOI: 10.22630/MGV.2023.32.1.5 .

https://doi.org/10.1080/23270012.2020.1811789
https://doi.org/10.1007/978-3-030-70713-2_3
https://doi.org/10.1109/ICICoS51170.2020.9298990
https://doi.org/10.1007/978-981-16-7076-3_37
https://doi.org/10.1016/j.eswa.2022.117695
https://doi.org/10.24963/ijcai.2019/492
https://doi.org/10.14569/IJACSA.2021.0120880
https://doi.org/10.1016/j.compbiomed.2021.104827
https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
https://doi.org/10.1002/ima.22623
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.1.5




Performance Evaluation of Machine Learning Models
to Predict Heart Attack

Majid Khan1, Ghassan Husnain1∗, Waqas Ahmad1, Zain Shaukat1, Latif Jan1,
Ihtisham Ul Haq2, Shahab Ul Islam1, Atif Ishtiaq1

1Department of Computer Science, Iqra National University Peshawar, 25100, Pakistan
2Department of Mechatronics Engineering, University of Engineering and Technology,

Peshawar, 25100, Pakistan
∗Corresponding author: Ghassan Husnain (email: ghassan.husnain@gmail.com)

Abstract. Coronary Artery Disease is the type of cardiovascular disease (CVD) that happens when
the blood vessels which stream the blood toward the heart, either become tapered or blocked. Of
this, the heart is incapable to push sufficient blood to encounter its requirements. This would lead to
angina (chest pain). CVDs are the leading cause of mortality worldwide. According to WHO, in the
year 2019 17.9 million people deceased from CVD. Machine Learning is a type of artificial intelligence
that uses algorithms to help analyse large datasets more efficiently. It can be used in medical research
to help process large amounts of data quickly, such as patient records or medical images. By using
Machine Learning techniques and methods, scientists can automate the analysis of complex and large
datasets to gain deeper insights into the data. Machine Learning is a type of technology that helps
with gathering data and understanding patterns. Recently, researchers in the healthcare industry have
been using Machine Learning techniques to assist with diagnosing heart-related diseases. This means
that the professionals involved in the diagnosis process can use Machine Learning to help them figure
out what is wrong with a patient and provide appropriate treatment. This paper evaluates different
machine learning models performances. The Supervised Learning algorithms are used commonly in
Machine Learning which means that the training is done using labelled data, belonging to a particular
classification. Such classification methods like Random Forest, Decision Tree, K-Nearest Neighbour,
XGBoost algorithm, Näıve Bayes, and Support Vector Machine will be used to assess the cardiovascular
disease by Machine Learning.

Key words: cardiovascular disease, Machine Learning, heart attack, prediction.

1. Introduction

The heart is a very important organ of our body and most diseases involve the heart in
some way. Heart disease refers to any condition that affects the heart and its ability to
pump oxygen-rich blood to other parts of the body. There are different types of heart
diseases, including coronary artery disease, congenital heart disease, and arrhythmias.
Common symptoms can include chest pain, dizziness, and sweating. Risk factors for
heart disease include smoking, high blood pressure, diabetes, and obesity [20]. Early
monitoring and detection of heart diseases can greatly reduce the mortality rate. How-
ever, many people seek medical attention from a heart specialist only after the disease
has progressed significantly [15]. Research on new therapeutic drug agents is ongoing (see
for example [7]) but predicting a dangerous situation before it occurs is highly desirable.
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Predictions about whether someone is likely to develop a heart disease in the future
are therefore incredibly important. Unfortunately, these predictions are often not accu-
rate, leading to premature death. To help with this problem, Artificial Intelligence is
used to create algorithms that can process data in a way that is similar to processing per-
formed by humans. Biological factors as training data for machine learning algorithms
are used in order to teach a machine to recognize patterns that occur in nature. Exam-
ples of these biological factors include chest pain, angina, hypertension, age, cholesterol,
blood pressure, sex, etc. By using these data, the machine learning algorithms are
provided with enough information to accurately predict patterns in the real world [13].
In this paper, we are using various factors from biology, like cholesterol, blood pressure,
sex, and age, as the data used in the experiments. The aim is to use these data to train
machine learning algorithms, such as decision trees, linear regression, K-Nearest Neigh-
bour classifiers (K-NN), and Support Vector Machine (SVM). We are trying to prove
which algorithm can offer the best accuracy with these data sets. We shall then com-
pare the accuracy of the four distinct machine learning algorithms, and try to determine
which has the best accuracy.

2. Why machine learning

Machine learning is a type of technology that involves getting a computer to learn from
datasets and use this knowledge to make decisions. It does this by following two steps.
The first step is the training phase, where the computer is fed data that it can learn
from. The second step is testing, where the computer uses the data it has learned
from the training phase to make decisions that meet the specific requirements of the
application [25].

According to [22], there are three categories of machine learning algorithms: Re-
inforcement Learning, Supervised Learning, and Unsupervised Learning, as shown in
Figure 1.

Reinforcement Learning involves teaching the computer to achieve goals by trial and
error and providing rewards for successful outcomes.

Supervised Learning uses labeled data (data belonging to known groups) to under-
stand patterns in the data and then use them to identify and predict data groups in the
future. In this paper we shall pay attention mainly, but not exclusively, to the classifi-
cation methods which belong to Supervised Learning methods. They are divided into
five sub-categories: Näıve Bayes classifier, Decision Trees, Support Vector Machines,
Random Forest, and K–Nearest Neighbours. In this paper we shall also consider linear
regression and Neural Networks, which according to [22] belong to Regression methods.

Unsupervised Learning is the process of creating new information and relationships
by sorting unlabeled data into groups and categories, creating associative relationships,
and using the Hidden Markov Model to predict future probabilities.
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Fig. 1. Machine Learning classification. Source: [22], license: CC BY 3.0.

The machine learning methods seem to be very promising in predicting various heart
diseases, which can be concluded from the literature we shall review in the next Section.

3. Literature review

Recently, different studies have been conducted to try and figure out how to predict when
someone might have a heart attack. The results of these studies have been published
that define proposed solutions to the prediction of Heart Attacks. This section refers
to the use of machine learning algorithms, which are sets of instructions to a computer
that allow it to learn from data, and about how researchers have used these algorithms
to predict heart attacks. Below we have summarized and discussed a number of works
to see how successful they have been.

Saw et al. [18] used data from electronic medical records, examining each element of
the data and the effects it had on the results. They then created a module to demonstrate
the comparison between the data before and after any changes, or wrangling, had been
made. The authors used logistic regression for analyzing the data and finding patterns
in it. Random search was used to look for the best parameters for the prediction model.
The patients were classified into two groups: those who have cardiac disease, and those
without cardiac disease. The Sklearn Python library (better known under the name
Scikit-learn) [1] was used. The accuracy was calculated at 87%, which means that the
method was able to correctly predict heart attack risk with a good level of accuracy. The
authors used one machine learning algorithm and a small dataset to train and test it,
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which could be seen as a disadvantage of this work. A better algorithm could produce
better results [12,24].

The study [25] by Yekkala et al. suggests a way of finding important features in data
related to heart disease. It proposes a specific strategy for evaluating which features to
pay attention to and then uses the random forest algorithm and rough sets to classify
different types of cardiac diseases. The Heart Disease database [2] was used, which
is a part of the University of California Irvine (UCI) repository [21], a collection of
research datasets that can be used to study areas such as computer science and machine
learning. This dataset contained 270 individual pieces of data, referred to as instances,
and was cleaned up before being usedby deleting null or irrelevant instances. After that
Exploratory Data Analysis (EDA) was applied the precision of this method touched 84%.
The disadvantage of this work is that the parameters used were not introduced, so the
algorithms are accurate and effective; however, the results can not be repeated.

Keerthika et al. [6] suggest that machine learning algorithms, such as K-NN, SVM,
Logistic Regression, Decision Trees, Random Forests, and Näıve Bayes, can be used to
predict heart diseases. These algorithms were applied to Statlog (Heart) data [19] from
the UCI repository [21].. The result was that the K-NN algorithm achieved a score
of 87%, which means it was successful in correctly classifying 87% of the data. The
disadvantage of this approach is that it has multiple parameters so it is difficult to set
their proper values. To select the values of multiple parameters the grid search or random
search could be applied.

Guruprasad et al [4] used data on heart diseases from the Statlog (Heart) reposi-
tory [19]. The data were cleaned. Finally, they used a combination of two different
statistical models (a hybrid random forest and a linear model) to try to predict if some-
one may have heart disease. The proposed method has occurred to have a high accuracy
of 92% which is an advantage. However, even though it is considered the classifier with
the best accuracy, the results of the proposed method showed that it had the sensitivity
of 90%, the lowest one when compared with other algorithms, which is a disadvantage.

Kim et al. [8] proposed a method called NN-FCA. It involved two steps. The first
step was feature selection, which involved picking relevant data from the dataset. The
second step was feature correlation, where relationships between different variables in
the dataset were explored. Then, the Neural Network classification algorithm was used
on the KNHANES-VI dataset [9]. This method has the advantage of providing high
accuracy when predicting heart diseases. The disadvantage is that the dataset is too
small to do effective correlation analysis, so traditional machine learning algorithms can
provide similar performance without the added complication.

Kasbe et al. [5] proposed using a fuzzy expert system for predicting heart disease.
This system consisted of three major steps: fuzzification, rule base, and defuzzification.
The defuzzification step applied the centroid technique and the system used thirteen
different input parameters and one output parameter. The dataset used was taken from
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Tab. 1. Accuracy of algorithms used in the previous studies.

No. Algorithm Name Accuracy ∈ [0, 1]
1 Random Forest 0.94
2 Decision Tree 0.93
3 XGBoost 0.92
4 Support Vector Machine 0.90
5 K-Nearest Neighbour 0.70
6 Logistic Regression 0.69
7 Näıve Bayes 0.92

the UCI repository [19]. The benefit of this system is that it can be used easily and
the people who need it can use the system by themselves, while the accuracy is 93.33%.
While this system works well, it also adds complexity to the system due to the use of
fuzzy logic, and the results do not significantly differ from other systems and studies
done on the same dataset.

Shiva et al. [12] used a local dataset toaccurately predict heart attacks. They used a
correlation matrix to determine which features were most important and then used three
different algorithms: a neural network, SVM and K-NN. The neural network showed the
best results, with an accuracy of 93%. The advantage of this method is that the three
algorithms are all stable despite using different sizes of the dataset. The downside is
that the local dataset used is not representative of the whole global population.

Preetam et al. [16] suggested a hybrid genetic neural network algorithm as a method
to speed up predicting heart attacks from ECG signals. The first step before doing this
was to pre-process the data, which involves getting rid of any incorrect or extra data
and finding patterns in the ECG signals [3]. Then, they used the neural network and
connected it to a genetic algorithm to optimize the neural network weights. The benefit
of this method is that it can be used to reduce the time needed to predict heart attacks.
However, it also brings complexity to the neural network.

Malavika et al. [11] proposed some traditional machine learning algorithms (like Näıve
Bayes classifier, Logistic Regression, Random Forest, SVM, Decision Tree Classifier, and
K-NN) to predict heart diseases. These algorithms were trained and tested on the UCI
Statlog (Heart) dataset [19]. It was shown that the random forest algorithm had the
best accuracy. A pro of using these traditional algorithms is that 91.17% accuracy was
achieved, which is considered an acceptable accuracy. However, a con is that the dataset
did not use any feature extraction techniques, which could have helped improve the
results.

The accuracies achieved with the described methods can be seen Table 1, and the pa-
pers together with the databases used in them and the methods used have been gathered
in Table 2.

Machine GRAPHICS & VISION 32(1):99–114, 2023. DOI: 10.22630/MGV.2023.32.1.6 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.1.6


104 Performance evaluation of machine learning models to predict heart attack

Tab. 2. Summarized papers, datasets and algorithms.

No. Paper Year Dataset Algorithm

1 [20] 2019 Heart Disease dataset [2] Logistic Regression
2 [25] 2018 Heart Disease dataset [2] Random Forest, rough sets
3 [18] 2018 Author’s own dataset Logistic Regression, Näıve Bayes Classifier, Random Forest classifier
4 [6] 2022 Statlog (Heart) dataset [19] Decision Tree, Language Model, Random Forest, Support Vector Machine,
5 [8] 2017 KNHANES-VI dataset [9] K-NN, SVM, Logistic Regression, Decision Trees, Random Forest, Näıve Bayes
6 [5] 2017 Statlog (Heart) dataset [19] Fuzzy Logic
7 [12] 2021 Author’s own dataset Neural Networks, K-NN, SVM
8 [16] 2020 MIT-BIH [3] Neural Network Model
9 [11] 2020 Statlog (Heart) dataset [19] Logistic Regression, K-NN, SVM, Näıve Bayes, Decision Tree, Random Forest

4. Methodology

Figure 2 is a visual representation of the system’s methodology and illustrates the steps
made to analyze patients’ data. First, the patients’ data are collected and important
attributes are selected. Then, the data goes through a pre-processing step which involves
data cleaning. The data is then put through a number of algorithms, such as Random
Forest, K-Nearest Neighbour, Logistic Regression, Extreme Gradient Boost (XGBoost),
and SVM, to perform the training and testing processes and to generate accuracy scores
that represent the quality of classification of the heart disease patterns in the data set.

Fig. 2. Methodology used in the construction of the prediction system.
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Fig. 3. Overview of the dataset.

4.1. Collection of Data

The UCI repository [21] is a collection of datasets that have been compiled and evaluated
by many researchers and UCI authorities. In this paper, we are using the Statlog (Heart
disease dataset [19] from this repository. We have divided the dataset into two parts,
25% used as test data and 75% used as training data. The the training data will be
used to develop the prediction mechanism and the test data will be used to test its
effectiveness.

4.2. Feature Engineering

Feature Engineering is the process of choosing important characteristics, or features, of
a dataset to create column variables. This means that the characteristics are used in
a way that the data can be analysed. The variables will be used as the input data for
the prediction system.

One of the methods of feature selection which can be applied without relation to the
classification method which will later be used is the L1 Regularization (see for exam-
ple [23]) which involves training a linear model that uses an L1 penalty. As a result of
the process, the weights of unimportant features in the resulting model are zero. The
non-zeroed features are used in the machine-learning model.

In the case of this study, there were 13 features (and one outcome, hence 14 variables)
in the database. The number is not large and all the prediction models were capable
of capturing this number, so all the features were used in the training and testing. The
overview of the dataset and the features are shown in the next Section.

4.3. Overview of the dataset and the variables

The general overview of the dataset used is shown in Fig. 3. The variables, or features,
selected for use in the analysis, together with their basic statistical characteristics, are
displayed in Fig. 4. The meaning of the abbreviations used in the names of the variables
are summarized in Tab. 3.
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Fig. 4. Variables used in the analysis and their characteristics.

4.4. Correlation

The correlation between the features is shown in Fig. 5 using a heatmap plot. It shows
how similar (over zero) or different (below zero) the characteristics of the dataset are.
The heatmap was made with the Pandas Profiling tool in Visual Studio Code.
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4.5. Performance of Machine Learning algorithms

In this paper several different algorithms were used to build different models which char-
acterize themselves with various levels of accuracy. These algorithms include Random
Forest, K-Nearest Neighbour, Logistic Regression, Gradient Boosting, and SVM. The
measures of quality of these algorithms were checked on the testing set, to evaluate the
performance of these machine learning algorithms for predicting the likelihood of heart
attacks.. In the following, the results for each model are described in more detail.

Specifically, the Random Forest model achieved an AUC score of 0.9887, indicating
its ability to discern patterns and make accurate predictions. Similarly, the K-Nearest
Neighbour model exhibited a commendable AUC score of 0.9468, highlighting its pre-
dictive capabilities.

We also assessed the Logistic Regression model, which yielded an AUC score of
0.9391. Although slightly lower than the other models, it still demonstrated a valuable
predictive capacity. Furthermore, the Extreme Gradient Boost model exhibited a strong
performance, with an AUC score of 0.9774, indicating its ability to leverage boosting
techniques and generate accurate predictions.

Notably, the Support Vector Machine (SVM) model stood out with an exceptional
AUC score of 0.9985. This result showcases the SVM’s robustness in accurately classify-
ing individuals as either at risk or not at risk of heart attacks. The SVM model’s ability
to leverage kernel functions and identify complex patterns within the dataset contributes
to its remarkable predictive accuracy.

Tab. 3. The meaning of the abbreviations used in the names of the variables (simplified nonmedical
description).

No. Abbrev. Meaning No. Abbrev. Meaning

1 age age 2 sex sex
3 cp chest pain 4 trestbps resting blood pressure
5 chol cholesterol level 6 restecg resting electrocardiographic

measurement (0: normal,
1: ST-T wave abnormality,
2: left ventricular hypertro-
phy)

7 fbs fasting blood sugar 8 thalach maximum heart rate
achieved

9 exang exercise induced angina 10 oldpeak ST depression induced by
exercise relative to rest

11 slope ST segment shift relative to
exercise-induced increments
in heart rate

12 ca number of major vessels

13 thal thalassemia 14 target heart disease, study target
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Fig. 5. Heatmap of the dataset features.

The high AUC scores obtained by these machine learning models highlight their
effectiveness in predicting the likelihood of heart attacks. These findings have significant
implications for early detection and prevention strategies in cardiovascular health. By
incorporating these models into clinical practice, healthcare professionals can enhance
risk assessment and provide personalized interventions to individuals at higher risk.

Overall, our study demonstrates the potential of machine learning algorithms, in-
cluding Random Forest, K-Nearest Neighbour, Logistic Regression, Extreme Gradient
Boost, and Support Vector Machine, in accurately predicting the likelihood of heart at-
tacks. These models can assist healthcare professionals in identifying individuals who
may benefit from targeted preventive measures, ultimately contributing to improved
cardiovascular health outcomes.

5. Software used

In this study the Visual Studio Code environment was used as the programming platform,
with its support for C++, C#, .NET and its ability to cooperate with many different
types of languages and tools (such as JavaScript, Type Script, Node.js, Java, Python,
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PHP, and others). In the calculations and in producing the graphs shown in this paper
the NumPy and PyTorch packages [17] in Python ver. 3.10 were used.

6. Result analysis

6.1. Accuracy and other measures of performance quality

The confusion matrix is a visual representation of how well a classifier, or a model for
predicting outcomes, performs on a set of test data. It compares the actual results of
the model to the expected outcomes and is useful for understanding the results.

The accuracy of algorithms is calculated based on four values: true negative (TN)
– the number of people without heart diseases who have been identified correctly, true
positive (TP) – the number of people with heart diseases who have been identified
correctly, false positive (FP) – the number of people without heart disease who have
been incorrectly identified as having heart disease, and false negative (FN) – the number
of people with heart disease who have been incorrectly identified as being healthy.

The general measure of decision quality taking into account the true as well the false
results, and the positive and negative ones, is the accuracy:

Acc =
TP + FN

TP + FP + TN+ FN
.

There are at least two detailed aspects of a classifier (we shall stay with the detection
of disease as an example). These are: its sensitivity – ability to classify the patients with
a disease as ill, and its sensitivity – ability not to classify the healthy patients as ill.

Sens =
TP

TP + FN
,

Spec =
TN

FP + TN
.

The general performance of the system can be more accurately described by the
confusion matrix containing all the four numbers, as shown in Fig. 6.

The single parameter which captures the performance of a classification system is the
Area Under Curve (AUC). It is related to the Receiver Operating Characteristics (ROC)
which is a curve formed by all the pairs of values of the sensitivity and specificity, for all
possible thresholds in the classifier. The best value of the AUC is 1. For details please
see the basic literature [10,14].

6.1.1. Performance of Machine Learning Algorithms

To compare the accuracy scores between those received in the previous studies, summa-
rized in Table 1, and those achieved in the present study, shown in Table 4, the results
of the subsequent algorithms will be presented.
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Fig. 6. Example of a confusion matrix of a trained model.

Random Forest

In Table 1 (previous studies), the Random Forest algorithm achieved an accuracy of
0.94, while in Table 4 (current study), it achieved a slightly lower accuracy of 0.93. This
indicates a minor variation in the performance of the Random Forest algorithm between
the previous studies and the current study.

Decision Tree

Table 1 (previous) shows a Decision Tree accuracy of 0.93, whereas Table 4 (current)
reports an accuracy of 0.94. This suggests that the Decision Tree algorithm performed
slightly better in the current study compared to the previous studies.

Tab. 4. Accuracy and Area Under Curve (AUC) of the methods used in this study.

No. Model Accuracy [%] AUC ∈ [0, 1]
1 Logistic Regression 86.34 0.939
2 Näıve Bayes 85.37 0.931
3 Random Forest 93.67 0.989
4 Extreme Gradient Boost 94.64 0.977
5 K-Nearest Neighbour 87.81 0.947
6 Decision Tree 94.64 1.000
7 Support Vector Machine 98.05 0.998
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Extreme Gradient Boost)

In Table 1 (previous), XGBoost achieved accuracy of 0.92, and in Table 4 (current), XG-
Boost achieved an accuracy of 0.94. This indicates an improvement in the performance
of the XGBoost algorithm in the current study compared to the previous studies.

Support Vector Machine

In Table 1 (previous), Support Vector Machine achieved an accuracy of 0.90, while
in Table 4 (current) it achieved a higher accuracy of 0.98. This indicates a significant
improvement in the performance of the Support Vector Machine algorithm in the current
study compared to the previous studies.

K-Nearest Neighbour

Table 1 (previous) shows an accuracy of 0.70 for K-Nearest Neighbour, whereas Table 4
(current) reports a higher accuracy of 0.87. This suggests that the K-Nearest Neighbour
algorithm performed better in the current study compared to the previous studies.

Logistic Regression

Table 1 (previous) indicates a Logistic Regression accuracy of 0.69, while Table 4 (cur-
rent) reports a higher accuracy of 0.86. This indicates an improvement in the perfor-
mance of the Logistic Regression algorithm in the current study compared to the previous
studies.

Näıve Bayes

In Table 1 (previous), Näıve Bayes achieved an accuracy of 0.922, while in Table 4
(current) it achieved a lower accuracy of 0.85. This suggests a slight decrease in the
performance of the Näıve Bayes algorithm between the previous studies and the current
study.

7. Discussion of results

In our study, we evaluated the performance of several machine learning algorithms for
predicting the likelihood of heart attacks, as shown in Tab. 4. The tested algorithms
were: Logistic Regression, Näıve Bayes, Random Forest, Extreme Gradient Boost, K-
Nearest Neighbour, Decision Tree, and Support Vector Machine. We found that SVM
had the highest accuracy.

The results demonstrated the effectiveness of these models in accurately classifying
individuals at risk of heart attacks. Specifically, the Random Forest model achieved
an AUC score of 0.989, indicating its ability to discern patterns and make accurate
predictions. Similarly, the K-Nearest Neighbour model exhibited a commendable AUC
score of 0.947, highlighting its predictive capabilities.

We also assessed the Logistic Regression model, which yielded an AUC score of
0.939. Although slightly lower than the other models, it still demonstrated a valuable
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Fig. 7. Accuracy of the Machine Learning models tested in this study.

predictive capacity. Furthermore, the Extreme Gradient Boost model exhibited a strong
performance, with an AUC score of 0.977, indicating its ability to leverage boosting
techniques and generate accurate predictions.

Notably, the Support Vector Machine (SVM) model stood out with an exceptional
AUC score of 0.998. This result showcases the SVM’s robustness in accurately classifying
individuals as either at risk or not at risk of heart attacks. The SVM model’s ability to
leverage kernel functions and identify complex patterns within the dataset contributes
to its remarkable predictive accuracy.

The accuracies of the algorithms are compared graphically in Figure 7

The high AUC scores obtained by these machine learning models highlight their ef-
fectiveness in predicting the likelihood of heart attacks. These findings have significant
implications for early detection and prevention strategies in cardiovascular health. By in-
corporating these models into clinical practice, healthcare professionals can enhance risk
assessment and provide personalized interventions to individuals at higher risk. Overall,
our study demonstrates the potential of machine learning algorithms, including Ran-
dom Forest, K-Nearest Neighbour, Logistic Regression, Extreme Gradient Boost, and
Support Vector Machine, in accurately predicting the likelihood of heart attacks. These
models can assist healthcare professionals in identifying individuals who may benefit
from targeted preventive measures, ultimately contributing to improved cardiovascular
health outcomes.

8. Conclusion and future work

The heart is an essential part of the body. To predict cardiac issues, machine learning
algorithms are needed to help treat these cardiac ailments. This research paper used
seven different machine-learning algorithms to predict heart disease and found that the
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Support Vector Machine algorithm was the most accurate. We compared the results
of different machine learning algorithms to determine the one that is most suitable for
predicting heart disease to predict whether a person has heart disease or not. In this
research paper, accuracy is an important factor that is used to measure how well the
algorithm works. The dataset used for the research contains 14 attributes (13 features
and one target). Out of the seven machine learning algorithms tested to predict heart
disease, the Support Vector Machine was found to be the most accurate prediction
ability on a UCI dataset. In the future, more machine learning techniques could be used
to analyse cardiac illnesses and predict them earlier. With the help of proper machine
learning technologies, we can hopefully have a lower number of fatalities related to heart
problems.
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