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Abstract. In the context of multiple view geometry, images of static scenes are modeled as linear

projections from a projective space P3 to a projective plane P2 and, similarly, videos or images of suitable

dynamic or segmented scenes can be modeled as linear projections from Pk to Ph, with k > h ≥ 2.

In those settings, the projective reconstruction of a scene consists in recovering the position of the

projected objects and the projections themselves from their images, after identifying many enough

correspondences between the images. A critical locus for the reconstruction problem is a configuration

of points and of centers of projections, in the ambient space, where the reconstruction of a scene fails.

Critical loci turn out to be suitable algebraic varieties. In this paper we investigate those critical loci

which are hypersurfaces in high dimension complex projective spaces, and we determine their equations.

Moreover, to give evidence of some practical implications of the existence of these critical loci, we

perform a simulated experiment to test the instability phenomena for the reconstruction of a scene, near

a critical hypersurface.
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1. Introduction

As linear projections from P3 to P2 are the natural geometric model for images of static
three-dimensional scenes captured with pinhole cameras, also linear projections from Pk

to Ph, with k > h ≥ 3, can be useful in modelling images of particular dynamic and
segmented scenes [10, 14, 17, 19, 25, 26, 27]. The classical problem of the reconstruction
of a static scene – given multiple images of an unknown scene taken from unknown
cameras, reconstruct the positions of cameras and of scene points – can be generalized
as well in the setting of high dimensional projective spaces. These kinds of problems can
be nicely reinterpreted with tools of projective algebraic geometry, which guarantee that
sufficiently many images and sufficiently many sets of image correspondences allow for
a successful projective reconstruction. The reader is referred to [15] for a wide overview
of the role of projective geometry in Computer Vision.
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4 Critical hypersurfaces and instability for reconstruction of scenes. . .

Nevertheless, even in the classical set up of two projections from P3 to P2 there are
sets of critical points, i.e., points for which the projective reconstruction fails, in the
sense that for each critical configuration of scene points there exist a non projectively
equivalent sets of points and cameras that give the same images in the view planes.

The study of critical loci has been the object of interest for several authors, as shown
in literature: in the case of a single view of a static scene, where the objective is only the
reconstruction of the position of the camera and of the projection matrix (calibration),
Buchanan, [8], showed that all the critical configurations lay on a twisted cubic curve.
If the scene is static, it is well known that the minimum number of images necessary for
a full reconstruction is two. For two views, quadric surfaces were shown to be critical
hypersurfaces in [21, 22]. In the case of three or more views, contributions are found
in [16,20,23]. A comprehensive, detailed analysis both in the case of two and in the case
of multiple views was conducted in [13].

The analysis of dynamic or segmented scenes has led to the study of projections
from higher dimensional space Pk to the projective plane P2, as considered by Wolf and
Shashua in [27], where the additional dimensions of Pk, with respect to the ambient
space, are used to encode information on the evolution of the scene. In this extended
space the scene can be treated as static, providing a more manageable representation of
dynamic or segmented scenes of the usual space. In this context, critical loci in the case
of one view were theoretically described in [6]. The more involved analysis of the critical
loci for projective reconstruction from multiple views in higher dimensions is approached
in [7] and [2] where the general theoretical framework necessary to describe such critical
loci is introduced. This framework showed that critical loci are special algebraic varieties,
namely determinantal varieties, and in [3] the authors give a description of the critical
loci as zero-sets of suitable ideals. More precisely, revisiting the previous framework
in a fully projective context, in [3] critical loci for projective reconstruction in Pk from
n views to P2 turn out to be either hypersurfaces of degree k+1

2 = n, if the ambient
space is odd dimensional, or special determinantal varieties of codimension 2 and degree
(k+4)(k+2)

8 if the ambient space is even dimensional, when n is the minimum number of
views necessary to allow the reconstruction.

Finally, the notion of criticality can naturally be extended to projections from Pk

to image spaces of higher dimension, Ph, h ≥ 3, and the resulting critical loci turn out
to be still determinantal varieties whose codimension in Pk depends on k, h and on the
number n of projections.

In this paper the critical locus for n projections from Pk to Ph, h ≥ 3 is studied under
the hypothesis that n is the minimal number of projections which allow the reconstruc-
tion of the scene, and the dimensions of the ambient space, k, and of the image space,
h, are linked by the relation: k ≡ h − 1 mod h. The interest for this case comes from
the fact that, as shown in Section 3, under this numerical hypothesis the critical locus
turns out to be a hypersurface in Pk.
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M. Bertolini, L. Magri 5

This case can be also considered as a generalization of the situation studied in [3]
when k is odd. Indeed, in [3] projections are always performed on a projective plane P2,
hence only static images can be modeled. While in this paper we consider projections on
spaces of higher dimension Ph with h ≥ 3. This generalization allows us to model videos
of moving scenes, producing moving images in an image plane which can be treated as
a static scene in a projective space of dimension h ≥ 3.

Even if in our hypothesis the critical locus is a hypersurface hence it has the higher
dimension allowed in the ambient space, from a practical point of view, it is almost
unlikely that all points and all the cameras constitute a critical configuration. Neverthe-
less, for configuration close to critical ones, the attained reconstructions exhibit a certain
degree of instability, in the sense that small perturbations of the image points change
the reconstructed solution drastically. In order to validate this assertion, following the
setup conceived in [7], a simulated experiment for projections P5 → P3 is performed.

The paper is organized as follows: in Section 2 notations are fixed, some basic def-
initions from projective algebraic geometry are recalled and a brief introduction to the
general computer vision setting is offered for the convenience of the reader. In Section 3
the general theoretical framework for critical configurations and critical loci is described.
Section 4 is dedicated to the study of the critical hypersurface: in particular its equation
is determined and its singularities are investigated. In Section 5 the instability phe-
nomena are shown in a particular case, i.e. for projections P5 → P3, with the help of
Matlab [24].

2. General results and preliminaries

In this section we fix notation and terminology, we recall some definitions from projective
algebraic geometry which will be useful in the sequel and we give a short overview of
classical facts in computer vision related to the problem of projective reconstruction of
scenes and cameras from multiple view.

2.1. Notation and basic definitions from Algebraic Geometry

Given a matrix A = [aij ] with real or complex entries, AT denotes its transpose. The
j-th row of A is denoted by aj . Moreover, DRi1,...,in(A) denotes the matrix obtained
from A by deleting rows ai1 , . . . ,ain .

If A is the set of the first k integers {1, 2, 3, . . . , k}, we denote by A×n the cartesian
product ofA with itself n-times, i.e.A×n = A×· · ·×A = {1, 2, . . . , k}×· · ·×{1, 2, . . . , k}.

Now we give some basic definitions in Algebraic Geometry which are useful to un-
derstand the following sections. We shall limit ourselves to the case in which the ground
field is the field of complex numbers, C. However, for definitions and basic properties
concerning projective algebraic varieties, we suggest, for example, [12] or [18].
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6 Critical hypersurfaces and instability for reconstruction of scenes. . .

Following standard notation, Pk denotes the k-dimensional real (or complex) pro-
jective space and (x1, x1, ..., xk+1) the homogeneous coordinates of its points. Once
a projective frame is chosen for Pk, coordinate vectors X of points in Pk are written
as columns, thus XT = (X1, X2, ..., Xk+1). In this context, whenever multiplication by
a non-zero scalar is utilized, the scalar will be real or complex, accordingly. A linear
projective subspace Λ ⊆ Pk spanned by m+1 linearly independent points will be called
m-space or subspace of dimension m. By convention the empty set is considered as
a (−1)-space.

A projective algebraic variety in the projective space Pn is substantially a subset of
points of Pn defined by the common zeros of a family of homogeneous polynomials.

We need some notions which are basic to study algebraic varieties. Their definitions
need a certain amount of technical apparatus, hence we try to give here an informal
approach, following [12].

Given a homogenous ideal I ⊂ C[X1, . . . , Xk+1], V (I) denotes the projective alge-
braic variety defined as V (I) = {X ∈ Pk : f(X) = 0 for all f ∈ I}. Details on this
standard correspondence between ideals and varieties can be found for example in [9].

An algebraic variety is said to be irreducible, if it cannot be expressed as the union
of two non-empty proper sub-varieties. Every variety can be expressed as a finite union
X = X1∪X2∪...∪Xr of irreducible subsets (subvarieties) of X which are called irreducible
components of X .

The projective varieties contained in Pn are the closed sets of a topology called the
Zariski topology of Pn. The same name will be given to the topology induced by the
Zariski topology on the subsets of Pn.

In the Zariski topology, the non empty open sets are very big (they are dense), since
the closed sets are the common zeros of some polynomials. This notion is necessary
to introduce the notion of general (or, sometimes, generic). Indeed when a family
{Xp}p∈Σ of objects (points, linear spaces, varieties,...) is parameterized by the points of
an irreducible projective algebraic variety Σ, the expression “the general object of {Xp}
has the property P” means that “the subset of points p ∈ Σ such that the corresponding
object Xp has the property P , contains a Zariski open dense subset of Σ” (see for
example [12, p. 53]). For example in the family of all the conics in P2, the general conic
is irreducible, since the requirement to be degenerate corresponds to a closed condition
in the Zariski topology of the family of conics.

The dimension, dim(X ), of an irreducible projective variety X in Pn is the integer k
such that the general n− k-plane of Pn intersects X in a finite set of points.

If the variety is reducible, its dimension is the maximum of the dimensions of its
irreducible components.

A projective variety defined by a single homogeneous polynomial is called an hyper-
surface of Pn and it has dimension n − 1. A hypersurface X is the zero locus V (I) if I
is a principal ideal, i.e., an ideal generated by only one element.
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The degree of a k-dimensional projective variety X in Pn is the number (with mul-
tiplicity) of points of intersection of X with a general (n − k)-plane of Pn (from the
definition of dimension, this set of points is finite).

For instance a projective curve is a projective variety of dimension one. The degree
of a projective curve in P3 is the number of intersection points of the curve with a generic
2-plane of P3.

A point X of an irreducible projective variety X defined by a family of homogenous
polynomial Fi is said to be singular if the Jacobian matrix [∂Fi

∂xj
] has rank lower than

maximum in X. Otherwise the point is a smooth point. The variety X is smooth if it
has no singular points. Notice that in a family of varieties the condition to be singular
is a closed condition in the Zariski topology.

When the variety X is a hypersurface, a point X ∈ X is singular if and only if each
line passing through X intersects X with multiplicity bigger than 1.

2.2. General setting: scenes, cameras, views

For the convenience of the reader, in this subsections we succinctly recall the concepts of
pinhole cameras, centers of projection, views, reconstruction, and critical configurations.
For more details we refer the reader to [15] for the classical case of scenes in P3, and
to [2] for the general case of scenes in Pk.

Given a scene, i.e., a set of points in the ambient 3D−space, the action of taking
a picture can be modelled by maps that are linear projections from the space of the
scene to the plane of the image, the so-called view. It is therefore very convenient and
natural to assume that the ambient space is embedded in projective 3−space P3 and,
from the algebraic geometric point of view, it is more convenient to choose a complex
ambient space, instead of the real one. Therefore, from now on, all projective spaces are
assumed to be complex unless specifically mentioned.

A (pinhole) camera can be represented as a central projection P of points in P3,
from a point C, the center of the camera, onto the view plane P2. With respect to the
homogeneous coordinates X ≡ (X1, X2, X3, X4)

T and x ≡ (x1, x2, x3)
T in P3 and P2

respectively, the projection mapping P : P3 \ {C} → P2 can be described by µx = PX,
where µ is a non-zero constant and the 3 × 4-matrix P has maximal rank. The center
of projection C is the right annihilator of P. As customary, the projection map and one
of its matrix representations in a chosen frame are identified. The set of points in P3

having the same image under projection P is a line which is called a ray.

When several images of the same scene {Xj} are taken with different cameras Pi,
i = 1, . . . , n, the images xij = Pi(Xj), i = 1, . . . , n of the same point via different cameras
are called corresponding points.

As mentioned above, several authors have introduced generalizations of the classical
set up, dealing with certain types of dynamic or segmented scenes, that can be profitably
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8 Critical hypersurfaces and instability for reconstruction of scenes. . .

modelled through the framework of multiple view geometry in higher dimensional spaces.
In analogy with the situation in P3, a scene in Pk is a set of N points {Xj} ∈ Pk.
A camera is defined as a projection from Pk to a projective space Ph i.e. by a linear map
P associated to a full-rank (k + 1) × (h + 1) matrix P , whose null space is the center
of projection. As before, a ray is the set of points that are mapped to the same point
by P . In this case the center and the rays are linear subspaces of dimension k − h − 1
and k − h respectively. The notion of corresponding points generalizes to corresponding
subspaces in the higher dimensional setting: proper linear subspaces Li, i = 1 . . . n, of
different views, are said to be corresponding if there exists at least a point X ∈ Pk such
that Pi(X) ∈ Li for all i = 1 . . . n.

2.3. Fundamental matrices and Grassmann tensors

In the classical situation of two cameras P1 and P2 taking photographs of a scene
{Xj} ⊂ P3, the intrinsic relationships between corresponding points in the two view
planes are summarized by a 3×3 matrix F of rank 2, the fundamental matrix associated
to the pair of cameras P1 and P2. (see [15] for a thorough exposition.)

Generalizations of the notion of fundamental matrix for two view planes in P3, are
given in two different ways. On one side, a generalized fundamental matrix is defined in [4]
to express the relation between corresponding points in two image spaces Phi , i = 1, 2,
in Pk. On the other side, Hartley and Schaffalitzky in [17], introduced a class of tensors,
called Grassmann tensors, with the purpose of translating into appropriate equations the
relationships among corresponding points, for multiple views in higher ambient spaces.
As in the case of the fundamental matrix, Grassmann tensors are determined by the
projection matrices and, vice versa, the projection matrices can be reconstructed from
the Grassmann tensors, up to projective transformation of the ambient space. We recall
here the basic elements of their construction and for more details see also [2, 17].

Consider a set of projections Pj : Pk \ CPj
→ Phj , j = 1, . . . , n, hj ≥ 2 with centers

in general position. Moreover consider a profile, i.e a partition (α1, α2, . . . , αn) of k + 1,
i.e. 1 ≤ αj ≤ hj for all j, and

∑
αj = k + 1.

Let {Lj}, j = 1, . . . , n, where Lj ⊂ Phj , be a set of general sj-spaces, with sj =
hj −αj , and let Sj be the maximal rank (hj +1)× (sj +1)−matrix whose columns are a
basis for Lj . By definition, if all the Lj are corresponding subspaces there exists a point
X ∈ Pk such that PjX ∈ Lj for j = 1, . . . , n. In other words, there exist n vectors
vj ∈ Csj+1 j = 1, . . . , n, such that:

S1 0 . . . 0 P1

0 S2 . . . 0 P2

...
...

. . .
...

...
0 . . . 0 Sn Pn



v1

v2

...
vn

X

 =


0
0
...
0

 . (1)
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The existence of a non trivial solution {v1, . . . ,vn,X} for system (1) implies that the
system matrix has zero determinant. This determinant can be thought of as an n-linear
form, i.e. a tensor, in the Plücker coordinates of the spaces Lj . This tensor is the Grass-
mann tensor. In the cases of two views the Grassmann tensor turns out to be the
generalized fundamental matrix.

2.4. Projective reconstruction

While reconstruction problems can be posed in several geometric settings as metric,
affine, or projective, this work is conducted entirely within the projective framework
and therefore reconstruction will always be assumed to be achieved up to projective
transformations.

Within a projective setting the camera center is the only property of the camera which
is preserved under homographies of the view plane, hence projective reconstruction of
cameras consists only of the determination of their centers.

In this subsection we are working under the assumption that the centers CPj
of the

projections we consider are in general position. In the examples we will deal with, the
technical assumption of centers being in general position implies that

⋂
j CPj = ∅. Notice

that reconstruction of a scene would be impossible if
⋂

j CPj ̸= ∅ because a scene-point X
would be indistinguishable from any other point in the linear projective space generated
by X and

⋂
j CPj

.

Given n views of a scene {Xj} ⊂ Pk, the recovery of the scene structure has two
consecutive stages: the reconstruction of the camera centers, followed by the reconstruc-
tion of the scene, i.e., the position of the points {Xj} in Pk, once cameras have been
determined.

To perform both these tasks one needs to have a sufficient number of corresponding
points in a suitable number of views. In the classical case of P3, one easily sees that
two views and eight corresponding points allow the reconstruction of the fundamental
matrix F by solving a linear system. Once F is determined, projection matrices can also
be reconstructed, [15, Section 8.5.3]

In the more general case of multiple views and higher dimensional spaces, reconstruc-
tion is significantly more involved and requires the use of Grassmann tensors, see [2,17].

Assuming enough scene points are given, in general enough mutual positions, a first
natural question is to determine the minimum number of views necessary to allow recon-
struction. In this context two numbers play an important role: the minimum number ωk

of views necessary to reconstruct cameras Pi and a minimum number µk of views neces-
sary to reconstruct the scene {Xj} in Pk, when the position of the centers are assumed
to be known.

Both these numbers are implicitly given in [17], as the numerical conditions for the
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10 Critical hypersurfaces and instability for reconstruction of scenes. . .

existence of a suitable Grassmann tensor, and explicitly computed in [2] under the hy-
pothesis that all the image spaces have the same dimension h. For the convenience of
the reader, we recall them.

Assume that the ambient space is Pk and all the target spaces have the same dimen-
sion, i.e. h1 = h2 = · · · = hn = h. Then the following propositions hold [2]:

Proposition 1. Assume k − 1 = σh+ λ, where σ and λ are non negative integers and
λ ≤ h−1. Assuming that cameras are known (up to projective equivalence), the minimum
number of views necessary to reconstruct a scene for projections from Pk to Ph is

µk,h = σ + 1 .

Proposition 2. Assume k = sh+l, where s and l are non negative integers and l ≤ h−1.
The minimum number of views necessary to reconstruct the cameras for projections from
Pk to Ph is

ωk,h = s+ 1 .

2.5. Critical loci

As discussed in the previous section, sufficiently many views and sufficiently many sets
of corresponding points in the given views, should allow for a successful projective recon-
struction. This is generally true, but it is very easy to notice that even in the classical
set up of two projections from P3 to P2 one can have non projectively equivalent pairs of
sets of scene points and cameras that produce the same images in the view planes, from
a projective point of view, thus preventing reconstruction. Such configurations and the
loci they describe are referred to as critical. Critical loci arising in the reconstruction
from a single view, when only the camera can be reconstructed, are fully treated in [6].
A detailed treatment of critical loci in P3 is found in [13], where the classical result of
the criticality of a quadric surface in the case of 2-views, is analyzed.

A partial treatment of critical loci for multiple views in higher dimension is given
in [2]. As mentioned in the introduction, in this paper a general framework to study
critical loci was proposed, working in a setting in which affine charts had been chosen in
each view. Critical loci were shown to be special determinantal varieties, and particular
attention was given to the case of P4 in which a Bordiga surface was obtained as essential
component of the critical locus. This case has been further investigated in a fully projec-
tive context in [5] and in [1]. Finally, critical loci for multiple views, i.e., for projections
from Pk to P2, are extensively considered in [3], where the varieties arising as critical
loci turns out to be hypersurfaces of degree r in P2r−1 or varieties of codimension 2 and

degree (r+2)(r+1)
2 in P2r. Moreover, the ideal of these varieties is investigated.

We recall here the formalization of the notion of critical configuration and locus. Let
us suppose to have n views of a static scene in Pk, consisting of a set of N ≥ k + 3
points {Xj} in Pk. These n views correspond to n matrices Pi, i = 1, ..., n, of dimension
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(h+1)×(k+1) and maximal rank which give the projections xij = Pi(Xj) on the image
h-spaces.

Definition 1. A set of points {Xj}, j = 1, . . . , N, N ≥ k+3, in Pk is said to be a critical
configuration for projective reconstruction from n-views if there exist a non-projectively
equivalent set of N points {Yj} ⊂ Pk and two collections of (h + 1) × (k + 1) full-rank
projection matrices Pi and Qi, i = 1, . . . , n, such that, for all i and j, PiXj = µijQiYj,
µij ̸= 0. The two sets {Xj} and {Yj} are called conjugate critical configurations, with
associated conjugate matrices {Pi} and {Qi}.

According to [3], the natural setting to study the locus of all critical configurations
associated to sets of conjugate matrices is the product variety Pk × Pk, endowed with
the two standard projections π1 and π2 onto the two factors.

Let {Xj ,Yj} be conjugate critical configurations as above, with associated conjugate
matrices {Pi} and {Qi}.
Definition 2. If {(Xj ,Yj)} in Pk × Pk are pairs of conjugate critical configurations,
with associated conjugate matrices {Pi} and {Qi}, the associated unified critical locus for
projective reconstruction from n-views in Pk × Pk is the subscheme Uk = Uk

({Pi},{Qi}) ⊆
Pk × Pk defined by the equations PiXj = µijQiYj, given in Definition 1.

Critical loci appearing in practical applications, and studied in the literature, are the
projections of Uk onto each factor. This motivates the following definition:

Definition 3. Let Uk be the unified critical locus for projective reconstruction from
n-views with associated conjugate matrices {Pi} and {Qi}, and let π1 and π2 be the
natural projection from Pk × Pk onto each factor. The corresponding critical locus and,
respectively, conjugate critical locus for projective reconstruction from n-views in Pk are
the subschemes:

X k = X k
({Pi},{Qi}) = π1(Uk)

or respectively
Yk = Yk

({Pi},{Qi}) = π2(Uk) .

3. The critical hypersurface in the case k ≡ h− 1 mod h

Explicit equations of the critical locus X k can be obtained directly making use of the
Grassmann tensor introduced in the previous section.

Indeed, the Grassmann tensor T P1,...,Pn encodes the algebraic relations between cor-
responding subspaces in the different views of the projections P1, . . . , Pn. Hence by def-
inition of critical set, if {Xj ,Yj} are conjugate critical configurations, then, for each j,
the projections P1Xj , . . . , PnXj are corresponding points not only for the projections
P1, . . . , Pn, but for the projections Q1, . . . , Qn, too.

In this section we explicitly construct the Grassmann tensor for n projections from
Pk to Ph, under the hypothesis that k = h − 1 mod h. Then we use this tensor to
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12 Critical hypersurfaces and instability for reconstruction of scenes. . .

get the generators of the ideal of X k, which, under our hypothesis, comes out to be
a hypersurface.

The condition k ≡ h− 1 mod h, together with the hypothesis that n is the minimum
number of views to get a reconstruction, implies that k = nh− 1 and the only possible
profile for the Grassmann tensor is (h, h, . . . , h).

Using the Grassmann formula we get that, if all the centers are in general position,
dim(

⋂
j CPj) = k − n(h+ 1) < 0, hence the reconstruction is possible.

In this case L1, L2, . . . , Ln are points and equation (1) specializes to
S1 0 . . . 0 P1

0 S2 . . . 0 P2

...
...

. . .
...

...
0 0 . . . Sn Pn


︸ ︷︷ ︸

T
P1,...,Pn
L1,...,Ln


λ1

λ2

...
λn

X

 = 0 , (2)

where Sj = (x1,j , . . . , xh+1,j)
T are the homogeneous coordinates of points Lj . The left

matrix TP1,...,Pn

L1,...,Ln
becomes a square one of dimension n(h+ 1)× n(h+ 1). If in addition

L1, . . . , Ln are corresponding points, the above linear system has a nontrivial solution
{λ1, . . . , λn,X} and therefore

det(TP1,...,Pn

L1,...,Ln
) = 0 . (3)

Moreover, the case X = 0 doesn’t occur. Otherwise, there would exist a certain ī for
which λī ̸= 0 and we could get 0 = PīX = λīxī which implies xī = 0, a contradiction.

In other words, for the chosen profile (h, . . . , h), one sees that det(TP1,...,Pn

L1,...,Ln
) = 0 is

indeed the n–linear constraint between the homogeneous coordinates (x1,j , . . . , xh+1,j)
of the points Lj so to let them be correspondent.

Analogously, if L′
1, . . . , L

′
n is a set of corresponding points in n views, for a set of

projections Q1, . . . , Qn, we get:
S′
1 0 . . . 0 Q1

0 S′
2 . . . 0 Q2

...
...

. . .
...

...
0 0 . . . S′

n Qn


︸ ︷︷ ︸

T
Q1,...,Qn

L′
1,...,L′

n


λ1

λ2

...
λn

X

 = 0 , (4)

and the n linear relation between L′
1, . . . , L

′
n is given by the vanishing of det(TQ1,...,Qn

L′
1,...,L

′
n
).

Considering as corresponding spaces L′
1 = P1X, . . . , L′

n = PnX, expressed in coordi-
nates as S′

j = (p1
jX, . . . ,ph+1

j X)T , with X any point in the critical locus, one gets that
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the determinant of the following matrix must vanish:

M ′ =



p1
1X
...

ph+1
1 X

0 . . . 0 Q1

0

p1
2X
...

ph+1
2 X

. . . 0 Q2

...
...

. . .
...

...

0 0 . . .

p1
nX
...

ph+1
n X

Qn



. (5)

Hence the determinant of M ′ generates the ideal of the critical locus X k, as X has to
satisfy no other constraint. So we get that the ideal is principal and we have got the
following:

Theorem 1. Let k = nh−1 and let n be the number of views. Then X k is a hypersurface
of degree n, whose equations is

g =
∑

(j1,...jn)∈A×n

pj1
1 X · · ·pjn

n Xdet(DRj1,...,jn(Q)) , (6)

where Q is the n(h + 1) × (k + 1) matrix given by staking in column the projection
matrices Qj:

Q =


Q1

Q2

...
Qn

 . (7)

As already noted in the Introduction, it is worth observing that the case analysed
in Theorem 1 is a generalization to projections to Ph, h ≥ 3, of the case, discussed
in [3, Section 4] of projections on P2. Indeed the equation 6 obtained above for the
hypersurface X k is analogous to the one computed in [3, equation (8)], but the techniques
used are very different. Indeed the procedure followed in [3] is much more involved as
it conducts to get the generators of the principal ideal via the study of the actions of
goups on the maximal minors of suitable matrices. While here we get the generator of
the principal ideal via a direct application of the Grassmann tensor.
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4. Singularities of the hypersurface X k

In this section we investigate the singularities of X k and we prove the following propo-
sition:

Proposition 3. The points of Pk which belongs to at least two center of projections are
singular points for the hypersurface X k, in other words

⋃
i,j=1...n

(CPi
∩ CPj

) ⊂ Fk ,

where CPi
and CPj

denotes the centers of the projections Pi and Pj, respectively, and
Fk denotes the singular locus of X k. Moreover if k ≥ 2(h + 1) then Fk ̸= ∅, hence X k

is singular.

Proof.The thesis holds for a generic hypersurface of equation

f =
∑

(j1,...jn)∈A×n

aj1,...jnp
j1
1 X . . .pjn

n X , (8)

where the coefficients aj1,...jn ∈ C are not all zero. Indeed, the structure of the coefficients
aj1,...jn , which for the equation of X k are the maximal minors of the matrix Q, is not
relevant for the implication of the proposition; hence in the following we will consider
a hypersurface V (f) for arbitrary coefficients aj1,...jn .

First we can notice that all the projection centers CPi
, i = 1 . . . n, lies on V (f).

Indeed each CPi
is a (k − h− 1)-linear subspace of Pk, given by

CPi
=

⋂
j=1...h+1

V (pj
iX)

and, for each fixed i, every summand of f contains one pj
iX as a factor.

Then we show that CPi ∩CPj ⊆ Fk, for each i, j = 1 . . . n, i ̸= j. Indeed, Fk is the set
of points Ȳ ∈ X k such that each line passing through Ȳ intersects X k with multiplicity
bigger than 1.

Let l =< Ȳ , Z̄ >= {λȲ + µZ̄|(λ : µ) ∈ P1} a line through Ȳ ; the intersection points
l ∩ X k are computed via the solutions λ and µ of the equation:
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∑
(j1,...jn)∈A×n

aj1,...jnp
j1
1 (λȲ + µZ̄) . . .pjn

n (λȲ + µZ̄) =

∑
(j1,...jn)∈A×n

aj1,...jn(λp
j1
1 (Ȳ ) + µpj1

1 (Z̄)) . . . (λpjn
n (Ȳ ) + µpjn

n (Z̄)) =

λn
∑

(j1,...jn)∈A×n

aj1,...jnp
j1
1 (Ȳ ) . . .pjn

n (Ȳ )

+λn−1µ
∑

(j1,...jn)∈A×n

aj1,...jnp
j1
1 (Ȳ ) . . .pjs

s (Z̄) . . .pjn
n (Ȳ )

+λn−2µ2
∑

(j1,...jn)∈A×n

aj1,...jnp
j1
1 (Ȳ ) . . .pjs

s (Z̄) . . .pjt
t (Z̄) . . .pjn

n (Ȳ )

+ . . . = 0 ,

(9)

with (λ, µ) ̸= (0, 0) and s, t = 1, . . . , n.

Obviously we get that Ȳ ∈ Fk ⇐⇒ µ = 0 is a double solution of (9) ⇐⇒ the
coefficient of λn−1µ vanishes for all Z̄, being the coefficient of λn zero, as Ȳ ∈ X k. If Ȳ
belongs to at least two centers, this condition is verified.

Moreover, computing the dimension of CPi ∩ CPj in Pk via the Grassmann formula,
we get that dim(CPi

∩CPj
) ≥ 0 if and only if k ≥ 2(h+1), hence, under this assumption,

the hypersurface k ≥ 2(h+ 1) is singular.

5. Experimental validation and instability results

This section is devoted at reporting numerical results to demonstrate the occurrence of
instability phenomena near critical loci. Although, from a practical point of view, it is
almost unlikely that all points and all the cameras constitute a critical configuration,
nevertheless, for configuration close to critical ones, the attained reconstructions exhibit
a certain degree of instability, in the sense that small perturbations of the points change
the reconstructed solution drastically.

In order to validate the above discussion, following the setup conceived in [7], an ex-
periment for projections P5 → P3 is performed. Specifically, we illustrate the instability
of the reconstruction of a dynamic scene modelled by two projections from P5 to P3 by
performing the following steps.

•Random generation of projection matrices

Two pairs of projections matrices {P1, P2}, {Q1, Q2} are instantiated: without loss
of generality P1 is chosen as the canonical projection, the remaining projections are
randomly generated with integer entries:
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P1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 , P2 =


−3 0 0 −1 2 1
−1 −1 0 1 0 0
0 3 −2 0 0 −1
3 2 −2 2 0 0

 ,

Q1 =


0 −1 1 1 0 0
1 0 0 0 1 −2
0 3 0 0 −1 0
0 2 1 −2 −1 −1

 , Q2 =


0 2 0 0 1 −4
−1 1 2 1 0 0
1 0 0 1 0 0
2 1 −1 0 −2 −1

 .

•Equations of the critical locus

The ideal of the critical locus for the projection matrices {P1, P2}, {Q1, Q2} is deter-
mined, using Macaulay2 [11].

•Random generation of critical points

A set X of 500 points on the critical loci is randomly generated; this set of crit-
ical points on the corresponding algebraic set was obtained regarding the defining
polynomial as a real valued function and finding randomly distributed zeros through
numerical routines in Matlab [24]1.

•Perturbation of the critical points

The points in X are perturbed with increasing levels of zero-mean gaussian noise, in
particular we considered several levels of standard deviation σj , and obtained various
perturbed configurations. Precisely, we considered 30 different values of standard
deviation logarithmically spaced between decades 10−16 and 10−14.

•Projection of the perturbed critical points

For each perturbed configuration, i.e. for each σj , j = 1, . . . , 30, the noisy configura-
tions of points are projected in P3 using the camera matrices previously introduced.

• Fundamental matrix estimation

Critical points are projected on the two views giving rise to pairs of corresponding
points. These correspondence are hence used to estimate a generalized fundamental
matrix Fpoints. The procedure [4] employed to compute Fpoints follow closely the
classical one to estimate the fundamental matrix in the case of projections from P3

and P2: every pair of corresponding points give rise to a constraint on the entries of
Fpoints which in turn are determined by solving an overdetermined linear system. As
a reference, a generalized fundamental matrix Fcams was also computed directly from
the cameras. This matrix is not affected by the instability phenomenon.

1Code available upon request.
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•Estimating instability

Finally we compare the fundamental matrix obtained from correspondences with the
one computed from cameras. In order to assess the quality of the reconstructions
computed from the perturbed point clouds, we compared the two fundamental ma-
trices, measuring their antipodal distance d(Fpoints, Fcams). In other words, as both
Fpoints and Fcams are defined up to a multiplicative factor, we identified the space
of generalized fundamental matrices with a quotient of the unit sphere in R16 and
evaluate the distance between the corresponding two points as:

d(A,B) = min {∥A−B∥, ∥A+B∥} (10)

•Displaying the results

The distribution of these distances with respect to the noise level is reported in
Figure 1, where the average angular distance in 1000 trials is reported for each σj .

It can be appreciated that when the points of the scene lie near the critical locus – i.e.
low values of noise – the instability of the reconstruction ends in the fact that Fpoints is
far from Fcams and their respective distance are affected by great variance. Therefore,
the flawed estimation of Fpoints determines an unreliable reconstruction of a point cloud
close to be critical. On the contrary, when the points are far away from the neighborhood

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×10
-14

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

noise, σj

distance, d

Fig. 1. The antipodal distance d(Fpoints, Fcams), with respect to different levels of noise
σj , in points on a critical configuration. The average distance is the blue line
plot, the width of the shadowed area corresponds to ±standard deviation of the
antipodal distances distribution.
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of the critical locus – high values of σ – the fundamental matrix Fpoints estimated from
the correspondences is consistently close to the reference Fcams, and can be profitably
used to start the reconstruction process.

This phenomenon is absolutely consistent with the situations analyzed in the other
papers [2, 6, 7]: as expected, the larger the distance of points from the critical locus is,
the stabler the reconstruction gets.

6. Conclusion

In this paper we study the critical locus for the projective reconstruction of a set of
points, in the case of n projections from Pk to Ph for k > h ≥ 3, where n is the minimum
number of projections which allows the reconstruction (Propositions 1 and 2) and the
dimensions of the ambient space, k, and of the image space, h, are linked by the relation:
k ≡ h−1 mod h. Under this numerical hypothesis (Section 3) the critical locus turns out
to be a hypersurface in the ambient space, hence it has the higher dimension allowed. The
main theoretical result of the paper is contained in Section 3, where, using the notion
of Grassmann tensors previously recalled, the equation of the critical hypersurface is
obtained in Theorem 1.

Finally, to give evidence of some practical implications of the existence of critical
loci, we perform a simulated experiment, in the case of two projections from P5 to
P3, to show the instability phenomena for the reconstruction of a scene near a critical
hypersurface. Indeed, for points close to the critical locus, the attained reconstruction
exhibits a certain degree of instability, in the sense that small perturbations of the points
change the reconstructed solution drastically.
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Abstract. In this paper we present an approach to text area detection using binary images,
Constrained Run Length Algorithm and other noise reduction methods of removing the artefacts. Text
processing includes various activities, most of which are related to preparing input data for further
operations in the best possible way, that will not hinder the OCR algorithms. This is especially the
case when handwritten manuscripts are considered, and even more so with very old documents. We
present our methodology for text area detection problem, which is capable of removing most of irrelevant
objects, including elements such as page edges, stains, folds etc. At the same time the presented method
can handle multi-column texts or varying line thickness. The generated mask can accurately mark the
actual text area, so that the output image can be easily used in further text processing steps.

Key words: text area detection, handwritten text, machine learning, optical character recognition,
text recognition.

1. Introduction

Text recognition is a very demanding and varied field of research. Depending on the type
of document containing text, i.e., whether it is handwritten or printed, and in the case
of handwritten documents, what period is it from, in which region it originated, etc.,
the methods required to obtain processed text can differ significantly. Furthermore, even
before recognizing the actual text, a series of different operations need to be performed, to
first optimize the data, remove different types of noise (appearing during data acquisition
or occurring in scanned text) and detect the actual text area. Especially in case of
handwritten documents these first preprocessing steps are extremely important, since
any errors made at this stage can later result in lower accuracy of algorithms used in
optical character recognition (OCR).

Processing scanned documents is not a new problem, but its importance is rapidly
increasing. When it comes to printed documents, applications such as processing busi-
ness documents for further use, preparing captioning for hard-hearing persons or voice
readings for blind persons come to mind. This problem is even more crucial in the case

Machine GRAPHICS & VISION 29(1/4):21–31, 2020. DOI: 10.22630/MGV.2020.29.1.2 .

mailto:j.pach@bn.org.pl
mailto:artur_krupa@sggw.edu.pl
mailto:izabella_antoniuk@sggw.edu.pl
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2020.29.1.2


22 Text area detection in handwritten documents scanned for further processing

of older documents, and untranslated text. Processing handwritten text, especially old
or damaged manuscripts, can pose major problems. At the same time, storing the pro-
cessed text in digital form can speed up its translation, and ease the document circulation
between different units (scanned old texts tend to be stored in high resolution while not
always containing the amount of information justifying their size). Due to these and
other reasons the processing of various documents, especially the handwritten and old
ones, have become the objective for researchers and scientists from different fields.

When the text recognition problem for handwritten documents is approached, one
of key steps is outlining the area which contains the actual writing. Especially the old
documents usually contain a number of irrelevant components, like comments placed
on margins, different illustrations, folds, stains, initials, etc., which, if recognized as
main text, can actually hinder the quality of OCR made in the following steps. In
case of finding the text area, the methodologies used can be divided into three groups:
top-down, bottom-up and hybrid. The first approach divides a single image view into
smaller parts, to later exclude margins, initials and other elements from the main text.
The bottom-up approach groups sets of pixels with a homogenous structure which can
be defined using such properties as ink consistency, letter spacing, or similar. Later,
single letters are grouped into words, building text lines from them. Hybrid methods
use both methodologies, applying the machine learning methods as well as various other
computational models to better delimit the text area, and as a result also to improve
the text recognition quality.

Among the existing methods, one of the bottom-up procedures divides the binary
image (BI) of the processed manuscript by combining the data series encoding the back-
ground and ink, to later produce a descriptive rectangle containing only text, without
margins or other additional elements [4]. With this procedure both single and double
column texts can be processed. In [2] the authors find edges of tables and the margin
space. The denoting of the text space is performed by a tracking script to create a curvi-
linear separation path between each pair of subsequent text lines, which in result leads to
finding the separate text fragments. In [8] the text area is identified by first using image
binarization and later separating the graph of connected components (CC) with segmen-
tation methods. In a next step, Hough transform is applied to define each connected
component and to calculate the distance vector for each graph component, resulting in
designating the external edge blocks. Finally, the space found in this way is divided into
single text lines by analyzing the CC centroids, which later are grouped into final text
space. Another interesting method is applied to Arabic manuscripts analysis [1]. The
authors use advanced feature extraction based on image fragments analysis with graph
coherent components and a group of multilayer perceptrons, to achieve the highest pos-
sible accuracy in separating main text from margins. Finally, a method using Markov
random fields (MRF) described in [10] is applied to the analysis of the French manuscript
by Gustave Flaubert from XIXth century, to divide the text and the background [13,14].
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Taking into account research in the field of finding actual text area in old manuscripts,
it can be stated that there still is much space for improvement, especially when it comes
to the accuracy line detection, as well as to the speed of the entire process. Our research
is inspired by some of these shortcomings and strives to improve the overall text area
detection accuracy, while minimizing the number of mistakes at the same time. Results
of the presented procedure are meant to be used as an input in the subsequent text
processing algorithms.

2. Text area detection

When it comes to text area detection there are many different methods, most of which
have some common components. In our case we based our solution on the method
described in [17]. The algorithm used in that work is shown in Fig. 1, while each of its
key steps is described in subsections below.

Input
BI

Label-
ing

for CC

Avg
CC
est.

De-
noising

Text
recon-
stru-
ction

Output
BI

Fig. 1. Stages of the text area detection process.

2.1. Labeling

After we obtain the input binary image (see first stage in Fig. 1), we label each separate
CC element in this image, since each of them might be important in the recognition
process. In case of text separation we start from finding the text area, which is later
divided into lines, words, and, at the final stage, into individual letters. For the examples
of connected components please refer to Fig. 2.

There are three ways to describe the CC model (Fig. 3):
• based on the bounding box wrapped around the text [7],
• based on the convex hull related to the analyzed text [5],
• based on the ellipse wrapped around text [6].

The rectangle-based model is more than sufficient for testing purposes as far as
performance and efficiency is considered, so this model was used. The binarization was
implemented with the classic Otsu method [11]. Labeling the elements of the manuscript
requires that the procedure makes it possible to distinguish between three types of CC:
• large elements – blocks of text, stains, folds, shadows, initials;
•medium elements – separated words, letters and fragments;
• small elements – language-specific marks like accents, diacritic elements, dots or un-

classified noise.
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a b

Fig. 2. Example of CC labeling: (a) input binary image; (b) labeled output image with
color labels [9].

a b c

Fig. 3. CC labeling: (a) bounding box, after [7]; (b) convex hull, after [7]; (c) ellipse,
according to [16].

2.2. The modified Constrained Run Length Algorithm for noise reduction

Binarization of an image is a process in which pixels are assigned only one of two values –
0 or 1. Within the frames of the text recognition process the value 1 (white) will represent
the regions where ink is visible and 0 (black) where it is not. In the process of conversion
of a text from a color image to a binary image the white color is assigned to text as well
as to all irrelevant elements, like image noise, stains, folds and other unnecessary objects.
To reduce such noise, we used the Constrained Run Length Algorithm (CRLA) [3, 17]
which was modified to better fit our input data.

In the CRLA the Run-Length Encoding (RLE) method is used for information coding.
With this method the string in the form “abbcccddddeeeee” can be defined as a counted
string which contains the number of occurrences and the occurring character (e.g., ASCII
character). In the case of the presented example string, after encoding it with RLE it
might look like “1a2b3c4d5e”. Shortening of input strings can cause less data to be
transferred (here: 10 characters instead of 15). This algorithm was used for the first
time in data compression methods [12,15].

Coming back to noise removal, three important steps need to be performed:
• replacing strings of bits with pairs containing a value and a correlated number of

occurrences,
• defining which of the values should be replaced (setting the threshold for replacement),
• reverting the shortened string description to the original form.
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The algorithm is run twice: along rows and along columns of the image, giving two
images. In each direction, the strings of ones having the length less than the threshold,
are replaced with zeros. In passing the image along rows, as the threshold the average
width w̄ is used, and along the columns the threshold value is the average height h̄. The
RLE is helpful, as the lengths of the strings are explicitly contained in the code. In
this way, small white gaps are removed. Results for an example row of an image are
presented in Fig. 4.

The two resulting images – the effect of CRLA filtering along rows and columns – are
composed into one output image by performing the AND operation pixel-wise, which is
equivalent to pixel-wise arithmetic product.

The effect of the application of the CRLA method to an input image horizontally
and vertically is presented in Fig. 5. The application of CRLA to a scan of a manuscript
is shown in Fig. 6, where additionally the vertical and horizontal projections of image
intensities are shown.

After performing these operations, the output image contains significantly less noise.
At the same time, the shapes of underlying pages and small inscriptions in the margin
areas are mostly filled with zeros. Furthermore, the bottom area of the document, where
some notes written with different handwriting are placed, is visible equally clearly as the
main text. Also, at this point only small amount of noise still remains (i.e., remnants of
the edges of underlying pages) and resulting images can be further processed.

1 0 0 1 1 1 0 1 0 1 1 1

0 0 0 1 1 1 0 0 0 1 1 1

Fig. 4. Input (top) and output (bottom) of CRLA method for an example row.

a b c d

Fig. 5. Results of CRLA filtering: (a) input image; (b) filtered horizontally; (c) filtered
vertically; (d) output image: pixel-wise product of images b and c.

Machine GRAPHICS & VISION 29(1/4):21–31, 2020. DOI: 10.22630/MGV.2020.29.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2020.29.1.2


26 Text area detection in handwritten documents scanned for further processing

a b

Fig. 6. Noise cancellation in a manuscript: (a) before and (b) after the CRLA filtering.

2.3. Other noise reduction methods

With the above method, the most part of high-density noise, like stains, folds and similar
elements, have been removed. The next step addresses low-density noise elements, as
well as unusual objects that can pose some difficulties for the OCR algorithm. Now,
the masks of text regions will be generated by classifying image rows and columns as
belonging to the text area or not.

To find the threshold for this classification, the average numbers of ones are calculated
for each row and column in the binary image. Statistically, when it comes to historical
manuscripts, ink would take up to 20% of total page area (in present day documents
it would take up to 10%, since nowadays the handwriting is thinner). Therefore, every
row (or column) of the image can be safely considered as belonging to text region if it
contains more than 1

3 of white pixels.
The two images, one resulting from classifying the rows, and one from classifying the

columns, are combined into the output image by applying the pixel-wise product, as it
was done in the previous algorithm. A binary image of a Latin manuscript processed
with this method, containing the preliminary mask of text areas, is presented in Fig. 7.
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a b

Fig. 7. Preliminary text area in a Latin manuscript: (a) source and (b) result.

3. Image reconstruction

As mentioned before, the input data was a binary image of a manuscript that required
preparation for the text recognition process. After performing the above operations, the
output is a binary image without noise and without additional objects that could pose
problems in further processing steps. Initials, stains, weak ink or punctures present in
the original image were filtered out correctly. The final stage of processing is the re-
construction of the handwriting area. This can be compared to typical morphological
opening operation. The application of this method to the processing of historical docu-
ments was described in [4]. As it was the case with the previous algorithms, as a result
we get two images, each being a set of vectors: one with rows and one with columns.

To set the threshold ε for the algorithm, the average height h̄ of a connected compo-
nent in a page will be used:

h̄ =
1

n

n∑
i=1

hi , ε =
h̄

2
,

where hi is the average height of the i-th CC in a page of text, and n is number of all
CCs in this page. The rationale for setting the threshold to half of the average height
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Fig. 8. Three stages of image reconstruction (numbers on the left denote row indexes).

of the connected component is the observation that the height, and also the width, of
a typical small letter (like letter ‘a’, for example) is equal to ε.

The reconstruction goes on according to the following steps, along rows (or columns):
1. Set the changed flag to false.
2. Set the current element i of the row (or the column) to its first element.
3. It the element i is zero, then count the elements with values one in the neighborhood
[i− ε, i− 1] ∪ [i+ 1, i+ ε] of the i-th element (its closed ϵ-neighborhood without the
element itself). If their number is greater or equal to ε then change the i-th element
to one, and set the changed flag to true. Go to next element.

4. If not end of row (or column), then proceed from step 3. Otherwise, go to next row
(or column).

5. If the row (or column) was the last one, then check the changed flag. If false, then
stop. Otherwise, set the change flag to false, return to the first row (or column)
and proceed from step 2.

The two images, one resulting from performing the above algorithm by rows, and one
by columns, are combined into the output image by applying the pixel-wise product, as
it was done in the previous algorithms.

Let us consider an example three-column image shown in Fig. 8, where the columns
are processed. Assume that h̄ = 4, so the threshold ε = 2. Let us consider the first
column. The first i with a zero is row i = 2. Its neighborhood is composed of rows 1, 3
and 4, with three values equal to one; 3 ≥ ε so the condition for a change from zero to
one is true. The condition is also true for i = 5 and 13, so these elements are changed
to ones. The same will be done in the remaining two columns. In the next iteration
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1

2

a b c

Fig. 9. Intermediate and final results of text area segmentation for two non-trivial
manuscripts: (1) for a manuscript with differing text thickness and style, and
(2) for text with multiple columns, uneven spaces and noise produced by page
edges and other elements. Stages of processing: (a) image after binarization;
(b) text mask; (c) final result after reconstruction.

through this image, the row 12 is changed to one. The image is analyzed one more time
and there are no more rows to modify, so the algorithm stops.

Examples of results of the whole text area detection method described in this paper
are shown in Fig. 9. Two non-trivial manuscripts are considered: a manuscript with
differing text thickness and style, and a manuscript with text in multiple columns, with
uneven spaces and noise produced by page edges and other elements. In both cases the
unwanted artefacts are properly removed.
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4. Conclusion

In this paper we presented a method for text area segmentation for handwritten manu-
scripts, which can be used as one of the preprocessing steps for further text recognition
algorithms. Text recognition is a complex problem, with many difficulties, most of which
depend on the type of manuscript and on the final application of the obtained results.
The objectives of processing the text and of trying to understand its meaning can vary
greatly, from simply storing the data in a most efficient way, up to adjusting the final
content to very specific, individual needs.

Our method focuses on the first stage of this process, which is text area detection.
Since the algorithms used for text recognition and analysis can be very sensitive to
any noise present in the input data, it is crucial to achieve the best possible results at
this step. Our method is able to accurately outline the text area, while omitting most
of irrelevant elements, such as page edges, stains, folds, etc. At the same time, the
presented approach can handle a large level of variety in single manuscripts. Text area
can be accurately pointed out in documents with multiple columns, uneven text width,
and with different objects not related to actual text. At the same time it also does not
cut out the elements such as fragments of text that differ in line thickness. The obtained
images are free from most of such elements like margins, spaces between columns, etc.,
which are irrelevant to the subsequent analysis steps. The obtained final images can be
further used in text recognition algorithms.
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Abstract. MRI scanner captures the skull along with the brain and the skull needs to be removed

for enhanced reliability and validity of medical diagnostic practices. Skull Stripping from Brain MR

Images is significantly a core area in medical applications. It is a complicated task to segment an image

for skull stripping manually. It is not only time consuming but expensive as well. An automated skull

stripping method with good efficiency and effectiveness is required. Currently, a number of skull stripping

methods are used in practice. In this review paper, many soft-computing segmentation techniques have

been discussed. The purpose of this research study is to review the existing literature to compare the

existing traditional and modern methods used for skull stripping from Brain MR images along with

their merits and demerits. The semi-systematic review of existing literature has been carried out using

the meta-synthesis approach. Broadly, analyses are bifurcated into traditional and modern, i.e. soft-

computing methods proposed, experimented with, or applied in practice for effective skull stripping.

Popular databases with desired data of Brain MR Images have also been identified, categorized and

discussed. Moreover, CPU and GPU based computer systems and their specifications used by different

researchers for skull stripping have also been discussed. In the end, the research gap has been identified

along with the proposed lead for future research work.

Key words: skull stripping, brain MR Images, soft computing, meta-analysis.

1. Introduction

The rich advancement in computing world has made it easier for medical experts to
diagnose a particular disease or abnormality in living bodies. There are numerous com-
puter aided diagnostic techniques which are helping doctors, bio-scientists and other
medical investigators to understand the novel issues and their proposed solution. Image
processing is the backbone of any computer aided mechanism and there are numerous
techniques being used in medical field to investigate the human body out of which com-
mon techniques are X-rays, Computed Tomography, Magneto Encephalography, Positron
Emission Tomography, and the most common and popular technique is the Magnetic
Resonance Imaging (MRI) [29,54].

Primary competitive advantages of using MRI over other types include its quality of
being non-invasive and the fact that it provides more detailed, deep and comprehensive
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images of organs [3] than the majority of other methods. There are four common modali-
ties of MR images, including Longitudinal Relaxation Time (T1), Transverse Relaxation
Time (T2), Proton Density (PD) and Fluid Attenuated Inversion Recovery (FLAIR) [62].

Scanners of MRI scan the body and create numerous images from multiple rotated
axes, due to which, different views are reported for diagnosis. The 3D nature of MRI
helps taking the view of the body from left to right, top to down, and from front to
back [3,4,56]. The common types of anatomical orientation are Coronal plane from front
to back; Sagittal plane from left to right; and Transversal plane from top to down [56].

The brain is a very sensitive part of the human body as it is made of soft tissues which
are a combination of cerebrospinal fluid and fats. Such a complex system is fully covered
with the strongest bone of the body called the skull [44]. MRI scanners capture the skull
which needs to be removed for clearer understanding of the actual brain tissues [50].
The process of removing the skull from the brain images is called skull stripping. The
more precise and efficient skull stripping ensures better help for clinical diagnosis.

This research study consists in the review of existing methods available for skull
stripping from brain MR images along with their merits and demerits. Moreover, identi-
fying the research gap in order to understand the current status and get lead for future
research work also belongs to the scope of the present study.

1.1. Significance of the study

This research study provides understanding of the existing research gap and provides
an abstraction of the experimental framework for future experiments generally in the
field of digital image processing and most specifically in the domain of brain MR images
for removing skull and other non-brain cells, in order to enhance the readability and
understanding of brain MR images by medical experts for diagnostic purposes.

1.2. Methodology

This research study is carried out using semi-systematic review of literature pertaining
to skull stripping methods. Fully systematic review requires extensive resources as well
as at least 18 months to complete. Both said constraints provided the rationale to opt
for the semi-systematic approach instead of the fully systematic one. Reviewed research
studies are available in the respective cited journals for analyses using the meta-synthesis
approach. Thematic convergence of different skull stripping methods has been assessed as
the outcome of meta-synthesis on the basis of shared properties or architectural similarity
between them.
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2. Thematic convergence of skull stripping methods

Thematic convergence of developed, reviewed and discussed methods of skull stripping
and image processing by different authors in latest research studies has been discussed
in temporal order, i.e. older to newer.

2.1. Traditional methods

The reign of traditional methods have been popular in the field of image processing
until the invention of neural networks. The convergence of traditional methods has been
synthesized in the following subsections.

2.1.1. Traditional methods recently studied

Histogram Analysis and Deformable Model methods comprising the Thresholding and
Simplex Mesh respectively have offered significantly positive results on the scale of Jac-
card Index = 0.904, Dice Similarity Coefficient (DSC) = 0.95, Specificity = 0.985 [17].
Researchers experimented with Multi Atlas method [11] and Atlas model [20] with sig-
nificant results of DSC = 0.9802, Specificity = 0.9908, Sensitivity = 0.9802, Average
Distance = 0.66 and Hausdorff Distance = 7.72. Binarization method [40] including
the irrational filter has provided significant results on the scale of DSC = 0.942, Sen-
sitivity = 0.912, Specificity = 0.971, Overlap Fraction = 0.958 and Extra Fraction =
0.092. The said method remained competitive to the Otsu’s method [53]. Another tradi-
tional method named as S3 [48] based upon brain anatomy and image intensity has also
provided significant results on the scale of Jaccard Similarity > 0.99 and 0.95 for data-
sets taken from BrainWeb [5, 6] and IBSR [59] databases respectively; moreover, three
measures of DSC, Sensitivity and Specificity > 0.99 for both data-sets. Mathematical
Morphology [2] based upon erosion and dilation have also provided better results for
skull stripping.

The summary of above discussed traditional methods recently experimented with is
presented in Table 1.

2.1.2. Competitive methods in comparison with traditional methods

Common state of the art competitive methods in comparison with traditional methods
include Brain Extraction Tool (BET) [11,17,48], Brain Surface Extractor (BSE) [17,48],
Robust Brain Extraction (ROBEX) [11,48]. Afore-cited research studies have offered bet-
ter results in terms of performance measures such as Precision, Accuracy, Effectiveness
and Efficiency (PAEE) while comparing with aforementioned state of the art methods.

2.1.3. Data and systems used for traditional methods

Most common data-sets taken for experimenting with the most recently tested traditional
methods include Internet Brain Segmentation Repository (IBSR) [2, 11, 17, 40, 48, 59],
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Tab. 1. Summary of traditional methods
Author &
year

Methods
studied

Backbone archi-
tecture

Measures calcu-
lated

Methods
compared

Data type

Galdames
et al.
(2012) [17]

Histogram
Analyses
and De-
formable
Model

Thresholding and
Simplex Mesh

Jaccard Index .904;
DSC .9500; Speci-
ficity .985; Sensitiv-
ity .9900

HWA; BET
and BSE

T1 from
BrainWeb
and IBSR

Doshi et al.
(2013) [11]

Multi Atlas
Model

Single Atlas and
Multi Atlas

DSC .9802; Speci-
ficity .9908; Sen-
sitivity .9802; Av-
erage Distance .66;
Hausdorff Distance
7.72

BET and
ROBEX

T1 from
ADNI;
IBSR and
OASIS

Huang
and Parra
(2015) [20]

Atlas Model Unified Segmenta-
tion Algorithm

Tissue Correlation
Map

Intra-
method

T1 from
BrainWeb
and Marom
Bikson

Moldovanu
et al.
(2015) [40]

Binarization
Mehtod

Irrational Filter DSC .942; Senstiv-
ity .912; Specificity
.971; Overlap Frac-
tion .958; Extra
Fraction .092

Otsu [42];
Sauvola [51];
Niblack [41];
Bernsens [1]
methods

T1; T2;
GAD and
PD from
WBA; T2
from IBSR

Roy and
Maji
(2015) [48]

S3 Brain Anatomy and
Image Intensity

Jaccard Similarity
.99 for BrainWeb
and .95 for IBSR;
DSC .99; Senstivity
.99; Specificity .99

BET;
BSE and
ROBEX

T1 from
BrainWeb;
T1 from
IBSR

Bhadauria
et al.
(2020) [2]

Mathe-
matical
Morphology

Erosion and Dila-
tion

N/A Intra-
method

WBA and
IBSR

BrainWeb [5, 17, 20, 48], and Open Access Series of Imaging Studies (OASIS) [11, 27,
28]. Only T1 weighted brain MR images both simulated and real have been used for
the purpose. CPU based systems with 8GB RAM have been used by the number of
researchers for experimenting with traditional methods.

2.2. Deep Learning Neural Network based methods

Deep Learning Neural Network (DLNN) based methods took over the reign of traditional
methods because of their enhanced sophistication with their own strengths and weak-
nesses. The convergence of recently studied DLNN based methods has been synthesized
in the following subsections.

2.2.1. Recently developed DLNN methods

Through numerous experiments, the robustness of DLNN based architectures including
U-Net, Rectified Linear Unit (ReLU), ConvNet, ResNet, and ConsNet has been proved.
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Intensive review has suggested that the most common architectures include U-Net [7,12,
14,21,22,23,30,36,37,55].

U-Net architectures of both 2D and 3D types have successfully produced significant
results for different performance measures of PAEE in different research studies. In an
experimental research study, DSC = 0.71 has been achieved while utilizing the follow-
ing hyperparameters: Epochs = 4, Discount Rate = 0.5 and 0.2, and Learning Rate =
0.0004 [14]. In another study, researchers have achieved DSC = 0.965 with False Negative
Rate (FNR) = 0.2 and False Positive Rate (FPR) = 0.8 by implementing three layers
of Convolutional Neural Network (CNN) with one steroid in the first and two steroids
in the second layer [55]. Simultaneous Truth and Performance Level Estimation (STA-
PLE) constituted over 2D FCN U-Net has achieved DSC = 0.9575, 0.8887 and 0.8932
for three different data-sets of T1 weighted MR images with Learning Rate = 0.0001;
while the measures of Sensitivity, Specificity, Hausdorff and Mean Distance were also
significant [36]. The version of 2D U-Net has been extended for establishing 3D U-Net
through max-pooling and batch normalization, which has achieved DSC = 0.9903, Sensi-
tivity = 0.9853 and Specificity = 0.9953 on the data-set of T1 weighted MR images [21].
Researchers have experimented with the method HD-BET which is primarily comprised
of U-Net CNN with remarkable results for the measures of DSC = 0.976 and Hausdorff
Distance = 3.3 using T1, T2 and FLAIR images from databases of European Organiza-
tion for Research and Treatment of Cancer (EORTC), LONI Probabilistic Brain Atlas
(LPBA) and Neurofeedback Skull-stripped (NFBS) [22]. Researchers experimented with
3D U-Net based method comprised of Transfer Learning (TL) and Multi Output Net
which performed exceptionally with DSC = 0.785 and 0.843 on the data-set of Multi-
Atlas Labeling Challenge (MALC) and Hammers Adult Atlases (HAA), respectively [7].
Researchers experimented with another 2D U-Net based method of STAPLE which of-
fered high rates of DSC = 0.9718 and Symmetric Surface-to-Surface Mean Distance
(SSSMD) = 0.037 on T1 weighted images taken from databases of Calgary-Campinas,
LPBA and OASIS [37]. The score of other scales like Sensitivity = 0.9891, Specificity =
0.9946 and Hausdorff Distance = 9.713 have also been remarkable but could not outper-
form other state of the art methods in comparison. Different hyperparameters have been
used for the experiment including Learning Rate = 0.001, Exponential Decay = 0.995
after each epoch, and Fixed Kernel Size = 3×3 [37]. Time Distributed U-Net based CNN
method has been tested with Model Accuracy = 0.583 in intra-method comparison with
T1 weighted images taken from the database of MICCAI Brain Tumor Segmentation
(BraTS) [12]. Researchers experimented with the method of Cascade 3D U-Net based
CNN while using hyperparameters of Learning Rate = 10 – 5, Weight Decay = 0.0005,
Momentum = 0.9 (in Adam optimizer), and Epochs = 300 [23]. The method offered
considerably good results and achieved Root Mean Square (RMS) = 0.86 on 90 MR
images of kidney. In another research study, an experiment with the method of U-Net
based CNN named as ACEnet has been carried out with hyperparameters like Epochs
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= 100, Dropout Rate = 0.1, Momentum = 0.9 and Weight Decay = 0.0001 [30]. The
studied method offered remarkable results as DSC ≥ 0.8 and Average Time to Segment
≈ 10 s on T1 weighted MR images taken from databases of MALC, Alzheimer’s Disease
Neuro-imaging Initiative (ADNI), Mindboggle, and SchizBull (see [30] for references).

ReLU architectures have also successfully produced significant results for different
measures of PAEE in different research studies. An experiment has been run with
ReLU architecture and achieved significant results as DSC = 0.965, FNR = 0.2 and
FPR = 0.8 using T1 weighted images taken from NFBS [55]. Apart from this, an
experiment has been carried out with ReLU based CNN which provided remarkable
results for the measure of Sensitivity > 0.87, Specificity > 0.94 and Accuracy > 0.918
on T1 weighted images taken from OASIS [52]. Another ReLU based CNN named as
DeepMedic performed outstanding using hyperparameters of Learning Rate = 0.0005
and Epochs = 35 on T1 weighted MR images taken from different data-sets of OASIS,
LPBA, and St. Olavs Hospital [13]. ReLU has also been included in an experiment
along with U-Net features and achieved significant results [21]. An experiment has been
carried out on ReLU based CNN named as DeepICE using hyper-parameter of Epochs
= 20 with significant results of DSC = 0.9889 on T1 weighted MR images taken from
IXI, OASIS, and BSTP [38]. CNN based methods of Focal Loss and RetinaNet based
upon multiple architectures like ReLU, ConvNet, and ResNet have been experimented
with using hyperparameters of Learning Rate = 0.01 × 0.1 after 60K and then after
80K iterations, Momentum = 0.9 and Weight Decay = 0.0001 [31]. The method tested
increased the mean Average Precision 3-4 points on each T1 weighted MR image taken
from Common Objects in Context (COCO) [33].

The summary of the above listed DLNN methods is presented in Table 2.

2.2.2. The rise of masking technique in DLNN methods

Along with the success of U-Net and ReLU based DLNN, another great architecture
ResNet jointly with Region CNN R-CNN and in the latest cases with Faster R-CNN
methods [45, 46] has provided significant results in numerous experiments. The state of
the art method of Mask R-CNN [32] has been tested which is primarily based upon the
architecture of Faster R-CNN, Feature Pyramid Network (FPN), ResNet, and ResNeXt,
and is using hyperparameters of Learning Rate = 0.02, Weight Decay = 0.0001, and Mo-
mentum = 0.9 on T1 weighted MR images taken from COCO [18]. Before this, the FPN
has been studied which has later been induced to postulate and experiment the revolu-
tionary method of Mask R-CNN [32]. The developed FPN is based upon Faster R-CNN
and two versions of ResNet50 and ResNet101 with hyperparameters of Learning Rate =
0.02 × 0.1 after 60K and 80K iterations on T1 weighted MR images from COCO [33]
and PASCAL [15]. In continuation of their own work, researchers experimented with
RetinaNet which actually received the contribution from their own FPN [31]. Transfer
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Learning in Mask R-CNN has successfully been induced with hyperparameters of Learn-
ing Rate = 0.02 × 0.1 after 60K and then 80K iterations on T1 weighted MR images
from COCO and Visual Genome [19]. Non-local Neural Network functionally compris-
ing Mask R-CNN and ResNet architectures has been tested with hyperparameters of
Learning Rate = 0.01× 0.1 after every 150K iterations, Momentum = 0.9, and Weight
Decay = 0.0001 [58]. Apart from the novelty of the method, the experiment is unique
because the video data has been taken into experiment for segmenting moving objects.

2.2.3. Competitive methods in comparison with DLNN methods

DLNN methods have outperformed traditional methods [16] out of which prominent
DLNN methods include Bayesian Evolutionary Analysis by Sampling Trees BEaST [24,
37, 38, 47, 49], ROBEX [21, 22, 24, 37, 47, 49, 55], BET [22, 24, 37, 49], Hybrid Watershed
Algorithm (HWA) [24, 37], BSE [22, 24, 37, 49, 55], FMRIB Software Library (FSL) [55],
Analysis of Functional NeuroImages (AFNI) [47, 55], Advanced Normalization Tools
(ANTs) [22,55], CompNet [10], Spectre [47], Kleesiek’s method [21], 3dSkullStripping [22,
24], SLAN [7], Marker based Watershed Scalper (MBWSS), STAPLE and Optimized
Brain Extraction Tool (OptiBET) [37], FreeSurfer [57], NICE [38], G-RMI [31, 32], and
AttractioNet [32].

2.2.4. Data and systems used for DLNN methods

Experimental studies conducted to test different DLNN methods of skull stripping has
taken data from different databases out of which some are publicly available and for the
rest of them the prior permission is needed to access the database and to use data. Lead-
ing databases provided different types of brain MR images like T1 weighted, T2 weighted,
FLAIR etc. and such databases include OASIS [10, 13, 24, 36, 37, 38, 52], IBSR [24, 57],
LPBA [13,22,24], MALC [7,30], ADNI [30], PASCAL [19,32], COCO [18,19,31,32], Ham-
mers [7], NAMIC [49], MPRAGE [49], UKBB [7], BraTS [12, 14], Visual Genome [19],
NFBS [21,22,55], and Calgary-Campinas, [22, 36].

In addition to databases, different GPU based computer systems have been utilized by
researchers for image processing; out of which, NVIDIA Tesla M40 [18,19], NVIDIA GTX
1050 TI [12, 23] NVIDIA GTX 970 [55], and NVIDIA GTX Titan [13, 22, 30, 37, 38, 47]
are common.
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3. Research Gap

In the light of intensive literature review, we have come to the conclusion that the most
recent development has been made in the domain of DLNN and the scientific progress
has led the experts of digital image processing to successfully experiment with the latest
and robust CNN variant named as Mask R-CNN [18] for image segmentation. The
comprehensive literature audit did not provide sufficient empirical evidence pertaining
to the use of Mask R-CNN for skull stripping. The availability of deep learning weights
for hundreds of objects and classes and non-availability of the same for the skull stripping
in giant public digital libraries like COCO etc. are also empirical evidences addressing
the dearth of research stated above in the realm of image segmentation. The research
gap identified and discussed above needs prompt attention of researchers. Therefore, the
scientific research study may be carried out to experiment skull stripping using Mask R-
CNN along with its underlying structure and auxiliaries to ultimately bridge the existing
research gap.
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[51] J. Sauvola and M. Pietikäinen. Adaptive document image binarization. Pattern Recognition,
33(2):225–236, 2000. doi:10.1016/S0031-3203(99)00055-2.

[52] D. Selvathi and T. Vanmathi. Brain region segmentation using convolutional neural network. In
2018 4th Int. Conf. Electrical Energy Systems ICEES, pages 661–666, Chennai, India, 7-9 Feb
2018. doi:10.1109/ICEES.2018.8442394.

[53] H. Tariq, A. Muqeet, A. Burney, Akhtar H. M., and H. Azam. Otsu’s segmentation: Review,
visualization and analysis in context of axial brain MR slices. Journal of Theoretical & Applied
Information Technology, 95(22), 2017. http://www.jatit.org/volumes/Vol95No22/9Vol95No22.

pdf.

[54] H. Tariq and M. Shahbaz. MAFA: Multispectral adaptive fuzzy algorithm for edge detection
on MRI of head scan. International Journal of Computer Applications, 182(48):49–54, 2019.
doi:10.5120/IJCA2019918737.

[55] G. Valvano, N. Martini, A. Leo, et al. Training of a skull-stripping neural network with efficient
data augmentation. arXiv, 2018. arXiv:1810.10853 [cs.CV]. https://arxiv.org/abs/1810.10853.

[56] A. van der Plas. MRI techniques, 2016. https://www.startradiology.com/the-basics/

mri-technique/. [Accessed 10 Oct 2020].

[57] M. Wang and P. Li. Label fusion method combining pixel greyscale probability for brain MR
segmentation. Scientific Reports, 9:17987, 2019. doi:10.1038/s41598-019-54527-x.

Machine GRAPHICS & VISION 29(1/4):33–53, 2020. DOI: 10.22630/MGV.2020.29.1.3 .

https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/j.jneumeth.2014.07.023
https://doi.org/10.3390/app10051773
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ISBI.2018.8363667
https://doi.org/10.1109/ICAPR.2015.7050671
https://doi.org/10.1016/j.mri.2018.07.014
https://doi.org/10.1016/j.neuroimage.2013.12.002
https://doi.org/10.1016/S0031-3203(99)00055-2
https://doi.org/10.1109/ICEES.2018.8442394
http://www.jatit.org/volumes/Vol95No22/9Vol95No22.pdf
http://www.jatit.org/volumes/Vol95No22/9Vol95No22.pdf
https://doi.org/10.5120/IJCA2019918737
https://arxiv.org/abs/1810.10853
https://www.startradiology.com/the-basics/mri-technique/
https://www.startradiology.com/the-basics/mri-technique/
https://doi.org/10.1038/s41598-019-54527-x
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2020.29.1.3


H. Azam, H. Tariq 53

[58] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In Proc. 2018 IEEE Conf.
Computer Vision and Pattern Recognition CVPR, pages 7794–7803, Salt Lake City, USA, 18-23
Jun 2018. doi:10.1109/CVPR.2018.00813.

[59] A. Worth, C. Haselgrove, and D. Kennedy. IBSR. The Internet Brain Segmentation Repository,
2007. https://www.nitrc.org/projects/ibsr/. [Accessed 10 Oct 2020].

[60] L. Xu, H. Liu, E. Song, et al. Automatic labeling of MR brain images through extensible learning
and atlas forests. Medical Physics, 44(12):6329–6340, 2017. doi:10.1002/mp.12591.

[61] B. Yilmaz, A. Durdu, and G. D. Emlik. A new method for skull stripping in brain MRI us-
ing multistable cellular neural networks. Neural Computing and Applications, 29(8):79–95, 2018.
doi:10.1007/s00521-016-2834-2.

[62] J. Zhou, H.-Y. Heo, L. Knutsson, et al. APT-weighted MRI: Techniques, current neuro appli-
cations, and challenging issues. Journal of Magnetic Resonance Imaging, 50(2):347–364, 2019.
doi:10.1002/jmri.26645.

Machine GRAPHICS & VISION 29(1/4):33–53, 2020. DOI: 10.22630/MGV.2020.29.1.3 .

https://doi.org/10.1109/CVPR.2018.00813
https://www.nitrc.org/projects/ibsr/
https://doi.org/10.1002/mp.12591
https://doi.org/10.1007/s00521-016-2834-2
https://doi.org/10.1002/jmri.26645
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2020.29.1.3




Multi-View Attention-Based Late Fusion (MVALF)
CADx System for Breast Cancer Using Deep Learning

Hina Iftikhar1,2, Ahmad Raza Shahid1,2, Basit Raza1,2,
Hasan Nasir Khan1,2

1Medical Imaging and Diagnostics Laboratory (MID),

National Centre of Artificial Intelligence (NCAI), Islamabad, Pakistan
2Department of Computer Science, COMSATS University Islamabad (CUI), Pakistan

basit.raza@comsats.edu.pk

Abstract. Breast cancer is a leading cause of death among women. Early detection can significantly

reduce the mortality rate among women and improve their prognosis. Mammography is the first line procedure

for early diagnosis. In the early era, conventional Computer-Aided Diagnosis (CADx) systems for breast

lesion diagnosis were based on just single view information. The last decade evidence the use of two views

mammogram: Medio-Lateral Oblique (MLO) and Cranio-Caudal (CC) view for the CADx systems. Most

recent studies show the effectiveness of four views of mammogram to train CADx system with feature fusion

strategy for classification task. In this paper, we proposed an end-to-end Multi-View Attention-based Late

Fusion (MVALF) CADx system that fused the obtained predictions of four view models, which is trained for

each view separately. These separate models have different predictive ability for each class. The appropriate

fusion of multi-view models can achieve better diagnosis performance. So, it is necessary to assign the proper

weights to the multi-view classification models. To resolve this issue, attention-based weighting mechanism is

adopted to assign the proper weights to trained models for fusion strategy. The proposed methodology is used

for the classification of mammogram into normal, mass, calcification, malignant masses and benign masses.

The publicly available datasets CBIS-DDSM and mini-MIAS are used for the experimentation. The results

show that our proposed system achieved 0.996 AUC for normal vs. abnormal, 0.922 for mass vs. calcification

and 0.896 for malignant vs. benign masses. Superior results are seen for the classification of malignant vs

benign masses with our proposed approach, which is higher than the results using single view, two views and

four views early fusion-based systems. The overall results of each level show the potential of multi-view late

fusion with transfer learning in the diagnosis of breast cancer.

Key words: breast cancer, mammogram, four-view mammogram, information fusion, late fusion, transfer

learning.

1. Introduction

Breast cancer is one of the most death-causing invasive diseases among women. In 2018,
2.1 million cases of breast cancer were recorded by the World Health Organization
(WHO) and 627 000 women died of breast cancer, which is 6.5% of all cancer-related
deaths in that year [49]. The death rate has been decreasing since the last few decades.
The decrease is due to the advancement in early diagnosis, treatment, and awareness
about the symptoms [37]. However, in the past years women death rate was still high
due to the diagnosis is frequently still too late. Early diagnosis prevents the patient
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from invasive tumor and it also increases the survival rate by five to ten years. Mam-
mography is a reliable and initial diagnostic method for early diagnosis of breast cancer.
Mammograms are low energy X-rays of the breast and radiologist use it to identify the
abnormalities in the breast. Breast screening has been performed on two views: Cranio-
Caudal (CC) and Medio-lateral Oblique (MLO) of the left and right breast. CC view is
top-down screening and MLO view is taken under 45 degrees [19,46].

Breast cancer includes calcifications and masses. Calcifications are the deposits of
calcium in woman’s breast and can be shown clearly as white dots in the screening
process. There are further two types of calcification: macrocalcifications and micro-
calcifications [29]. Macrocalcifications are large white spots that are considered as the
non-cancerous and are dispersed randomly in the breast. Microcalcifications are the
small white deposits of calcium and are mostly considered as non-cancerous. Although,
if these deposits are clustered together then this may be alarming as early breast can-
cer [47]. Masses are the lesions in woman’s breast that can be cancerous or non-cancerous.
The benign masses, that is, the non-cancerous ones are smooth or oval in shape with
circumscribed boundary. The masses that are known as cancerous, that is, malignant,
spread into their neighborhood by forming spicules. Diagnosis of masses is a challenging
task due to the variations in their shape, appearance and size [29]. However, manual
detection of the symptoms of cancer using mammograms is susceptible to human errors
and laborious due to variability. In the current technical era, Computer-Aided Diagno-
sis (CADx) systems are used for reliable and fast diagnosis of disease. CADx systems
have potential to reduce the heavy workload of the radiologist. These systems served as
a second reader to improve the accuracy of the final decision.

In the last few years, deep learning has become one of the most successful methods
in computer vision tasks [25]. Especially, Convolution Neural Networks (CNNs) have
been proved as the reason for the boom of deep learning. Deep learning-based CADx
systems [11, 13, 36] have attained the level appropriate for producing more realistic so-
lutions in tumor diagnosis. The four major steps are involved in CNN-based CADx
systems to assist the radiologist in making the final decision [50]. Firstly, the prepro-
cessing step is performed to remove the noise from images. In the second step the region
of the tumor is segmented out from the image. The feature extraction task is carried
out for the region of the tumor in the third step. In the last step, the tumor classifica-
tion task is performed. Traditional CADx systems were based on manual handcrafted
features, which have shown the limited accuracy for complex problems. Several studies
have been performed to build a CADx system for breast lesion classification and de-
tection. In 2013, Kozegar et al. [27] used the traditional feature selection and machine
learning techniques for iterative breast segmentation. Their proposed system had the
ability to classify the segmented region of the lesion. Other results and the literature on
the segmentation-based mammography analysis systems can be found for example in [7].

A number of recent studies have been published on fully automated CNN-based
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Fig. 1. Examples of ROIs of four mammographic views in the CBIS-DDSM dataset.

CADx system for tumor detection and classification tasks [8, 11, 13, 22]. The deep
learning-based CADx systems have been introduced for different medical domains, for
example brain tumor detection, lung disease diagnosis, lymph node, breast cancer diag-
nosis, and many others. We mainly focused on breast lesion classification [4, 5, 8, 10, 18,
32,33,34]. CNN is an end-to-end supervised learning process without any descriptor on
the whole raw image. CNN learns the discriminant features automatically and its most
surprising characteristic is that it achieves good generalization for vision tasks with the
2D input images [29].

Deep CNNs are more complex architectures than CNNs and require a large amount
of data to train a model. Due to high computation complexity, training the model
on a small amount of data leads to overfit. To overcome this problem, the transfer
learning is used. Transfer learning is a technique of transferring the knowledge from
one domain to another domain. In medical imaging, where small datasets are available,
transferring of knowledge from another domain has been very effective. The knowledge
transfer consists in using a network which is pre-trained on images coming from some
domain. There are two modes of transferring the knowledge: first, transferring the
knowledge from the medical domain, and second, transferring the knowledge from some
other domain, for example, the domain of natural images. The current evidences show
the high performance of using pre-trained models to achieve better accuracy [12, 22,
29, 36]. In recent years, the authors achieved reasonable accuracies for breast cancer
detection and classification task using the transfer learning techniques [2, 12,29].

Information extracted from multi-view images is more significant for decision mak-
ing than that extracted from a single view. Multi-view mammograms are used by the
radiologist to make a final decision. We will overcome the problem of not gaining profit
from the multi-view nature of mammograms in CC and MLO views. In the previous
studies, most of the research has been based on single-view images in the development of
a CADx system. Breast screening provides the four views: Right MLO (R-MLO), Left
MLO (L-MLO), Right CC (R-CC) and Left CC (L-CC) of mammograms as shown in
Fig.1. Radiologists always start from the CC view, and when they find any abnormalities
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in this view they check the information from all views for making a final decision. Most
of the studies focused on the CADx systems based on just two views (CC and MLO
mammograms) [8,9]. Recent studies focused on the four-views information-based CADx
systems which achieved the best accuracy for breast lesion classification. Multi-view
information fusion mainly focuses on the analysis of mammograms using CC and MLO
views of the left and right breast. Information fusion is based on two strategies: early
fusion and late fusion. Early fusion is used to fuse the extracted features of different
models and late fusion is based on combining the results of classification of the multiple
models. The results of two-views CC and MLO models are fused to classify the breast
lesion into malignant and benign [17] and produce significant results in terms of accu-
racy for the classification task. In the recent study, Khan et al. proposed a Multi-View
Feature Fusion (MVFF) based CADx system that includes three stages [26].

Nevertheless, the multi-view information fusion has gained more success in recent
years in context of breast cancer. According to the previous studies on the mammo-
graphic views, the breast screening is performed on bilateral view, CC and MLO, of
right and left breast. Bassett et al. [6] believed that the CC view, with particular em-
phasis on the medial view imaging, conveys the most significant information. The CC
view is the medial view in screening and has a great aspect of deep tissues to be vi-
sualized. Normally, these deep tissues in medial aspect of breast are not possible to
capture in the MLO lateral view [6, 19, 45]. However, both projections are complemen-
tary to capture the most accurate information. In current era, one of the key challenges
is to overcome the high False Positive Rate (FPR) that existed in the previous CADx
systems. The four-view fusion systems reduce the high FPR [24]. Wei et al., in 2011,
proposed a computer-aided detection system of four view information fusion for mass
detection [48]. In comparison with single-view their system performed better in terms
of accuracy and FPR. In 2015, Yanfeng Li et al. [30] proposed a bilateral image analysis
scheme for mass detection to reduce the FPR. The results show the significance of pro-
posed system in which the approach of bilateral analysis for mass detection reduce the
FPR. Among the methods of breast mass detection [30,31,48] few of the research works
on the multi-view information fusion for classification task [41, 51] use the multi-agent
and feature fusion approach, respectively. The results show that the decision fusion
mechanism reduces the problem for the classification task. Since the many masses are
difficult to identify in one view and give more information in the other view, the late
fusion approach reduces the FPR [51]. The four-view information fusion-based CADx
systems can be considered as the simulation of radiologist’s interpretation and are able
to serve as a second reader.

The main focus of this research is to utilize the effectiveness of attention-based
weighted late fusion in CADx systems to reduce the false positive rate for mammo-
gram classification. In the late fusion, separate deep CNN models are trained for each
view, i.e., L-CC, R-CC, L-MLO, and R-MLO of mammograms. The pre-trained CNN
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architectures are used to fine-tune on mammograms to classify the breast lesions. The
obtained results of trained models are fused to achieve the best performance in terms of
classification of breast masses. The proposed Multi-View Attention-based Late Fusion
(MVALF) model outperforms the multi-view model and provides the state-of-the-art
technique for mass classification tasks. Our proposed system is evaluated on benchmark
dataset CBIS-DDSM (references will be given in Subsection 3.1). The main contributions
of this research are as follows.

•A novel attention-based weighting algorithm is proposed to increase the effectiveness
of our multi-view late fusion-based CADx system. Each model has its own predictive
ability, therefore assigning the equal weights to all the models is not a good approach.
In this regard, attention-based weighting algorithm assigns the higher weights to those
models which have higher sensitivity.

•A Multi-View Attention-based Late Fusion (MVALF) system is proposed for the di-
agnosis of breast cancer. The main contribution of this work is to efficiently take the
advantage of the four mammographic views of each patient because conventionally
developed CADx systems have used two views information and ignored the impor-
tance of late fusion of separately trained multi-view models. The proposed MVALF
approach yields good performance measures and shows the effectiveness of late fusion
for four-view models to reduce the false positive rate.

•The end-to-end system is proposed, which is not limited to just classify the mam-
mogram into cancerous or non-cancerous. The proposed MVALF-based CADx has
the ability to classify the mammogram at different levels. The first level is about the
classification into normal and abnormal. At the second level, the mammograms are
classified on the basis of their abnormality. Finally, at the last level the mammograms
are classified according to their level of pathology.

This paper proceeds as follows: Section 2 presents the literature review, Section 3
describes the methodology, Section 4 gives the details of experimentations and the results
are discussed in it, and finally Section 5 concludes the paper.

2. Literature review

Many studies have been published on CNN-based CADx systems for breast cancer clas-
sification. Chakraborty et al. [10] proposed a novel method that was used to detect non-
palpable breast cancer. The automatic diagnosis is difficult due to variability in size,
irregularities in shape and occlusions in breast tissue. The proposed method classifies
the masses along with characterized oriented tissue and multi-resolution features using
Gray-Level Co-Occurrence Matrix (GLCM) and Angle Co-Occurrence Matrix (ACM).
Recently Ribli et al. used fast Region-based CNN (R-CNN) for mass detection and clas-
sification into malignant and benign [34]. They achieved state-of-the-art performance on
the INBreast dataset and their system reached high sensitivity with few false negatives,
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and with AUC of 0.85. Al-masni et al. [4] in 2018 proposed a YOLO-based CADx system
for breast cancer detection. Their CADx system detects the location and diagnoses the
masses and classifies them into benign and malignant class using CNN. The last fully
connected layer of architecture is trained on ROI-based mammograms. In 2017, Lotter
et al. [32] proposed a methodology for breast cancer mass detection and segmentation.
The author proposed a patch-based CNN classifier for lesion classification and achieved
0.92 AUC. In another study, Akselrod-Ballin et al. [3] used fast R-CNN to detect the
breast abnormalities on the INBreast dataset and achieved TPR 0.93 and FPI 0.56 for
mass mammograms.

Chougrad et al. [12] explored the importance of a pre-trained model and determined
the best strategy to train CNNs architectures. They focused on the use of the pre-trained
model for classification of breast lesions. The pre-trained models VGG16, ResNet50 and
InceptionV3were used instead of random initialization. The proposed full framework for
breast cancer screening achieved AUC of 0.9 for masses classification into benign and ma-
lignant. Recently, in 2019 Hua Li et al. [29] proposed an improved DenseNet for mammo-
gram classification into benign and malignant class based on a deep learning pre-trained
model. The proposed model, DenseNet II, performs the classification task accurately
and effectively. AlexNet, VGGNet, GoogleNet, DenseNet and the proposed DenseNet II
were trained on processed data. The authors claimed that the system was robust and
good at generalization. In the same year, Agarwal et al. [2] proposed a patch-based CNN
for automated mass detection. The transfer learning models (ResNet50, VGG16, Incep-
tion) were used to train on the CBIS-DDSM dataset and the evaluation revealed that
InceptionV3 performed the best on automatic mass detection. The evaluation results
demonstrated that patch-based transfer learning CNNs performed substantially well for
mass detection on CBIS-DDSM.

While the previous networks were trained on a single view and two views of mammo-
grams, recent years witnessed great advancement in multi-view information-based CADx
systems and information fusion of different models attained the state-of-the-art perfor-
mance [1]. Carneiro et al. proposed a multi-view based CADx system for breast cancer
risk prediction using two views of mammograms [8, 9]. Tan et al. proposed a four-view
based feature fusion model for near term breast cancer risk prediction [43]. Jiao et al. [23]
created and trained a CNN-based CADx system by combining the results of two classi-
fiers and classified the mass mammograms into malignant and benign. They concluded
that the results obtained from multi-view model fusion achieved higher classification per-
formance than that using a single view. A similar work has been proposed in 2019, Khan
et al. used the early fusion strategy to diagnose the tumor in breast. They utilized the
extracted mammographic information of four views. The system had the capability to
classify the tumor into malignant and benign. They achieved the classification accuracy
of 77% and AUC of 0.84 [26].
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In our work, we focus on the attention-based weighted late fusion technique by uti-
lizing the four views of mammogram.

3. Materials and methods

In this section, we first describe the publicly available datasets, data pre-processing, data
augmentation, CNN architectures used for our proposed system, evaluation metrics for
testing the performance of CADx system, and the overall methodology with attention-
based weighting algorithm.

3.1. Dataset

In this study, the dataset that we used to perform the experiments on our proposed
MVALF based CADx system were CBIS-DDSM and mini-MIAS. DDSM [20,21] was the
first version of CBIS-DDSM. It contains the digital images of mammographic screening
of 2 620 patients. It contains the verified pathology information (benign and malignant)
of each case. The four view information for each case is available with MLO and CC
views of the left and right breasts. CBIS-DDSM [39, 44] is a subset of images selected
from the original dataset and curated by expert radiologists [15,28]. It has been used for
the training and also for performance evaluation of the proposed MVALF system. The
images are compressed and converted into DICOM format. The Mammographic Image
Analysis Society (MIAS) is another curated digital mammographic dataset of breast
lesions [40] with images of resolution 1024×1024 pixels. The analysis is performed on
extracted ROI images of 224×224 pixels of mini-MIAS [14] for normal class. Table 1
shows the detailed description of the train and test split of mammographic dataset using
four views.

3.2. Data pre-processing

In order to enhance the performance of the CADx system, we need to perform some
mandatory task to make the data clarity better for training a model. We used the
ROI-based mammograms from the publicly available dataset. We also performed image

Tab. 1. Dataset description of mammograms in CBIS-DDSM and mini-MIAS.

Abnormality Type Training Testing Total
Normal 3008 512 3520
Abnormal 2864 12 3376
Calcification 1546 256 1802
Mass 1318 256 1574
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pre-processing such as contrast and brightness enhancement, resizing and image normal-
ization on the selected datasets. The pre-processing helps to achieve better classification
accuracy.

3.3. Data augmentation

Deep learning models perform better when we have a large amount of data. The data in
medical imaging domain are very limited in size. The scarcity of the dataset in training
the deep learning models leads them to overfit. Data enhancement or data augmentation
is an approach to help increase dataset size. It also leads to better robustness and helps
to prevent overfitting when training is done on a smaller dataset. We performed data
enhancement on our dataset to improve the performance of the system. The images
were augmented by rotating by a 0-45 degree angle, the shearing in the range of 0.2,
zooming in the range of 0.2, horizontal shifting in the range of 0.2 of the image width,
and vertical shifting in the range of 0.2 of the image height. The horizontal flip and
vertical flip were performed, and to fill newly created pixels the fill mode strategy was
applied. The augmented images were different from each other and there was no exact
copy of any of the original images.

3.4. CNN architectures

CNNs are trained on images to recognize the visual pattern with minimal preprocessing.
We analyzed the well-known transfer learning models on ImageNet (natural images) [16]
along with fine-tuned layers on mammograms. The ImageNet is a dataset containing mil-
lions of natural images. ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
is a competition for classification and object detection held every year [1, 16]. We have
evaluated the performance in the classification of mammograms of the three well known
CNN architectures that have been the winners of ILSVRC.

3.4.1. VGGNet

Simonyan et al. in Visual Geometry Group (VGG) from University of Oxford proposed
VGGNet [38]. It was much deeper than the previous networks. They used the filter size
of 3×3 instead of 5×5, 7×7 or 11×11, as in AlexNet [35]. The network was runner-up
of ILSVRC 2015 challenge for image classification with top five error rate of 7.3% and it
also performed best in the image localization task. There are many versions of VGGNet;
however, VGG16 and VGG19 are the most popular. VGG19 performed better than
VGG16 although it is computationally more expensive.

3.4.2. InceptionV3

GoogLeNet was the winner of ILSVRC in 2014 for image classification with top five
error rate of 6.7%. Szegedy et al. [42] from Google designed a much deeper network with
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22 layers. A novel element known as the inception module was introduced to reduce the
computational complexity of the network. In this network the number of parameters
was reduced from 60 million (AlexNet) to 4 million.

3.4.3. ResNet50

Residual block network won the ILSVRC 2015 with 3.6% error rate [35]. It is a much
deeper network than others with 152 layers. It consists of a residual block where each
block contains two 3×3 convolution layers. Skip connections are used in ResNet to
remove the vanishing gradient problem [25]. ResNet50 achieved good performance in all
tasks such as localization, classification and object detection in ILSVRC.

3.5. Performance Evaluation

The CADx system is evaluated for the correct classification of mammograms. The model
is evaluated using sensitivity, specificity, and accuracy as the measures of classification
quality. Sensitivity is the True Positive Rate (TPR) and specificity is the True Negative
Rate (TNR). Accuracy is measured by the performance of the model in terms of general
correctness. We also evaluated the model using the ROC curve and the Area Under the
ROC Curve (AUC). ROC curve is a 2-axis presentation with sensitivity on the y-axis
and False Positive Rate (FPR) on the x-axis that is calculated as 1 − specificity. In
the following Equations (1) to (3), sensitivity, specificity and accuracy are calculated in
terms of the numbers of True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) classifications.

Sensitivity = TPR =
TP

TP + FN
, (1)

Specificity = TNR =
TN

TN+ FP
, (2)

Accuracy = ACC =
TP+ TN

TP+ FN+ FP + TN
. (3)

3.6. Proposed four-view model fusion

A fully automated deep CNN-based framework is proposed for mammogram classification
using Regions of Interest (ROI’s) as input images. Firstly, the dataset is divided into four
views: L-CC, R-CC, L-MLO, and R-MLO. Afterwards, the four models are trained on
each view separately for all patients. The obtained results from four models of all views
are combined to generate the final prediction for mass classification. The prediction
fusion of multiple models is known as late fusion [24].

We applied the late fusion strategy on the trained model of each view to generate the
final decision. The radiologists also examined the mammograms in the same manner to
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make the final decision about the abnormalities. We performed many experiments with
variations in hyperparameters. The experiments were made with four view-based CADx
systems with various pre-trained models along with the fine-tuning strategy. Fig. 2 shows
the proposed MVALF based CADx system for the breast mammogram classification.

3.6.1. Network training

The first stage of the proposed system is related to the model training. At this stage, we
fine-tuned the deep CNN models for each view, i.e. L-CC, R-CC, L-MLO, and R-MLO,
separately. The best fitted fine-tuned layers have been selected after performing various
experiments using different numbers of freezing layers. We also performed experiments
for two-view and multi-view cases using pre-trained models. Finally, we concluded from
the results that the pre-trained models performed better on multi-view information while
the number of datasets was limited. It can be observed that the transferring of knowledge
from one domain to another domain helps to achieve better accuracy.

3.6.2. Multiview late fusion strategy

The last level of our system represents the fusion of four view results, which were obtained
from the model training phase of each view separately. In breast cancer the screening
mammograms are taken from two angles: MLO and CC of left and right breasts. The
radiologist makes a final decision after viewing the information from four views. Our
proposed CADx system is capable of classifying the mammograms using the four views.
Afterwards, the results of all models are fused using the attention-based weighted late
fusion strategy and the final decision of the diagnostic task is achieved. The details of
the personalized weighting algorithm to prioritize the models are discussed in the next
paragraphs.

Attention-based weighting algorithm After training theM models (whereM = 4)
on the four views of mammogram, they have the ability to classify the unseen data into
the respective binary classes. Their output is fused to make the final decision. Rather
than considering the information of all views equally, the Attention based Weighting
Algorithm (AWA) has been adopted. It calculates the weights of predictive score for
each view of the models based on their sensitivity to increase the TPR and decrease the
FPR.

Let model1,model2,model3, . . . ,modelM be the M models and R1, R2, R3, . . . , Rn

be the classification results, each of the specific model. Suppose that C is the number
of classes of the given dataset labelled as class1, class2, class3, . . . , classC . The matrix
W = (wm), 1 ≤ m ≤ M is the weight matrix of M models. The testing image is
classified by assigning the label of the model according to the highest score.

In our proposed framework, W is calculated based on TPR. According to the previous
studies on the mammogram views, the breast screening is performed on bilateral view
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CC and MLO of right and left breast. However, both projections are important to
capture the more accurate information. The highest weight is assigned to the view with
the highest sensitivity. In our case, the total number of classes is C = 2 and the number
of models is M = 4. The pseudo code for our AWA is presented in Algorithm 3.1.

Algorithm 3.1 Attention-based Weighting Algorithm

for modelm ← model1 to modelM do
TruePos(m)← ⟨number of true positive instances in⟩(modelm)
FalseNeg(m)← ⟨number of false negative instances in⟩(modelm)
SensitivityM(m)← TruePos(m)/(TruePos(m) + FalseNeg(m))
W (m)sen ← SensitivityM(m)

end for

4. Results and discussion

In this study, we used the attention-based late fusion strategy and evaluated the different
CNN architectures for the classification of mammograms into three levels: mammogram
classification, abnormality classification, and pathology classification. Furthermore, we
performed experiments on a single view, two views and four views with the early fusion
strategy for the comparative study with our proposed CADx system.

4.1. Experimental setup

In the experimental environment, the input size of the ROI image was 224×224. The
ROI-based images were pre-processed before training on the CNN architectures. We
used the stochastic gradient descent optimization algorithm with 0.0001 learning rate
with a momentum of 0.9. The categorical-cross entropy was used as the loss function
and the batch size was set between 20 to 50 for training. The dataset had a split of 0.2
for the validation set to evaluate the performance of the correct classification of mam-
mograms. We used the experimental setup for training our models with the specification
of NVIDIA Tesla P100, 16 gigabytes of memory, CUDA 10.1 version, Keras 2.2.5 version
with TensorFlow 1.15.0 at the backend. The stopping criteria for training the model was
set to 200 epochs with the patience level of 15.

4.2. Transfer learning and fine tuning

The transfer learning technique is used in our proposed methodology with fine-tuning
strategy. The state-of-the-art pre-trained models (i.e. VGGNet, GoogleNet, ResNet)
were trained on the public dataset of ImageNet that contains the natural images of
1000 classes. We removed the last fully connected classification layer of the pre-trained
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Tab. 2. The total number of parameters that need to be trained on mammograms using
CNN models.

CNN Models Total Layers Freezing Layer Trainable Parameters Batch Size
VGG19 22 14 14 158 848 50
InceptionV3 311 170 16 338 816 50
ResNet50 175 100 19 452 928 50

models and added two fully connected layers. The first layer has 300 connections and the
second layer is used for final classification with two neurons. The approach of freezing
layers in the pre-trained model reduces the number of trainable parameters. This helps
overcome the problem of computational complexity in deep CNN models. The last,
fully connected layers that are fine-tuned on mammograms surpass the overfitting which
occurs due to random initialization in deep CNN networks.

The Table 2 shows the total number of layers, freezing layers of pre-trained models,
total number of trainable parameters and batch size which was used in our experiments.

4.3. Monitoring the performance of our model

The basic structure of our proposed model is shown in Fig. 2. Our proposed MVALF
based CADx system classifies the mammograms at three levels. The first level presents
the classification of normal and abnormal mammograms. The second level describes the
classification of abnormality into calcification and mass classes. The last level is about
the classification of pathology into malignant and benign classes.

4.3.1. Classification into Normal and Abnormal

In the first level, classification of Normal and Abnormal classes is performed using the
proposed MVALF based CADx system. The MVALF based CADx system outperformed
the single view, two views and four views-based early fusion. Table 3 shows the perfor-
mance of the proposed model. The model achieved a good balance between TPR and
FPR. The use of transfer learning improves the performance of the proposed system. The
four-view models use the weighted information fusion strategy on the basis of TPR, that
helps to achieve the AUC of 0.996 shown in Fig. 3. Our proposed MVALF performed
better on all the pre-trained models. InceptionV3 and ResNet50 performs slightly bet-
ter with respect to VGG19. The achievements of the proposed model in comparison
to previous studies are shown in Table 6. The proposed MVALF based CADx system
performs 7% better than multi-view, two-view and single-view feature fusion.

4.3.2. Classification into Mass and Calcification

Secondly, experiments were performed to classify the abnormality into Calcifications
and Masses. The experimental results in Table 4 show the preformance of the proposed

Machine GRAPHICS & VISION 29(1/4):55–78, 2020. DOI: 10.22630/MGV.2020.29.1.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2020.29.1.4


68 Multi-View Attention-based Late Fusion (MVALF) CADx system. . .
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Fig. 3. ROC plotting for Normal and Abnormal classification. The testing performance

of (a) VGG19, (b) InceptionV3, and (c) ResNet50 is presented, using the pro-
posed MVALF-based CADx system.
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Tab. 3. Performance measures of proposed MVALF for the classification of Normal
vs. Abnormal mammograms.

Models Views Training Accuracy Testing Accuracy Sensitivity Specificity AUC
VGG19 R-CC 96.5%±0.88% 99.22%±0.68% 98.46% 100% 0.992

L-CC 99.33%±0.57% 98.83%±0.22% 99.21% 98.45% 0.988
L-MLO 99.00%±0.98% 98.83%±0.90% 97.71% 100% 0.989
R-MLO 99.54%±0.22% 98.05%±0.90% 96.24% 100.00% 0.981
Proposed Multiview
(Late Fusion)

– 99.22%±0.78% 100% 98.44% 0.992

InceptionV3 R-CC 98.01%±1.2% 97.66%±1.50% 98.41% 96.92% 0.977
L-CC 99.26%±0.53% 99.22%±0.71% 99.22% 99.22% 0.992
L-MLO 99.93%±0.07% 99.22%±0.41% 99.22% 99.22% 0.992
R-MLO 99.99%±0.10% 99.61%±0.59% 99.22% 99.00% 0.996
Proposed Multiview
(Late Fusion)

– 99.61%±0.29% 100% 99.22% 0.996

ResNet50 R-CC 98.45%±1.50% 99.22%±0.11% 100% 98.46% 0.992
L-CC 97.44%±2.10% 99.61%±0.30% 99.22% 100% 0.996
L-MLO 99.56%±0.15% 99.22%±0.13% 98.46% 100% 0.992
R-MLO 98.28%±1.17% 98.83%±1.23% 98.45% 99.21% 0.988
Proposed Multiview
(Late Fusion)

– 99.61%±100% 100% 99.22% 0.996

MVALF-based CADx system. The late fusion of four-view models with their attentional
mechanism VGG19 performs better with our proposed late fusion strategy in terms
of AUC. However, the MVALF model achieved higher specificity with InceptionV3 in
contrast with low sensitivity as compared to VGG19. The main reason behind the best
performance of VGG19 for abnormality classification is the good quality of models for
each view, i.e. R-CC, L-CC, L-MLO and R-MLO. The weights are assigned on the basis
of sensitivity, as each separate model in VGG19 has high sensitivity, so that the model
with higher weights improves the overall performance of the system. The model achieves
the AUC of 0.922, testing accuracy of 92.12%, sensitivity of 93.55%, and specificity of
90.91%. Fig. 4 shows the ROC curvec of VGG19, InceptionV3 and ResNet50, and as
it is clearly shown in the figure, this ensemble of the weighted information of all the
views leads to achieving good performance in terms of AUC. The comparison study
of the proposed model and the previous approach is shown in Table 6. This study
shows the clear difference between the impact of different transfer learning models. The
depth of each model has a different impact on the results of the classification task. The
VGG19 with very few trainable parameters has achieved good accuracy and AUC for
the abnormality classification.

4.3.3. Classification into Malignant and Benign

We performed different experiments for the two-class classification into Benign masses
and Malignant masses. Table 5 shows the different experimental results of each view
separately and for our proposed MVALF-based CADx system. The proposed system
performed best for the classification task and achieved AUC of 0.896, testing accuracy of
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Fig. 4. ROC plotting for Calcification and Mass classification. The testing performance

of (a) VGG19, (b) InceptionV3, and (c) ResNet50 is presented, using the pro-
posed MVALF based CADx system.

Machine GRAPHICS & VISION 29(1/4):55–78, 2020. DOI: 10.22630/MGV.2020.29.1.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2020.29.1.4


H. Iftikhar, A. R. Shahid, B. Raza, H. N. Khan 71

Tab. 4. Performance measures of proposed MVALF for the classification of Mass vs. Cal-
cification mammograms.

Models Views Training Accuracy Testing Accuracy Sensitivity Specificity AUC
VGG19 R-CC 95.09%±1.53% 86.72%±.23% 87.30% 86.15% 0.867

L-CC 87.79%±1.98% 84.38%±1.57% 84.38% 84.38% 0.844
L-MLO 88.67%±1.53% 82.81%±1.98% 83.21% 80.00% 0.828
R-MLO 97.89%±0.98% 92.19%±0.54% 82.19% 82.19% 0.922
Proposed Multiview
(Late Fusion)

– 92.19%±1.56% 93.55% 90.91% 0.922

InceptionV3 R-CC 89.26%±1.98% 78.13%±2.14% 100% 69.57% 0.781
L-CC 79.10%±2.34% 77.34%±2.19% 79.60% 87.23% 0.773
L-MLO 79.93%±2.19% 75.00%±2.78% 76.67% 73.53% 0.750
R-MLO 89.02%±1.78% 85.61%±1.78% 84.12% 79.22% 0.852
Proposed Multiview
(Late Fusion)

– 86.72%±1.57% 78.33% 94.12% 0.876

ResNet50 R-CC 86.45%±0.98% 75.78%±0.98% 69.41% 88.37% 0.758
L-CC 87.44%±0.97% 85.16%±1.65% 84.62% 85.71% 0.852
L-MLO 77.09%±2.19% 68.75%±2.45% 68.18% 69.35% 0.688
R-MLO 78.21%±1.57% 69.53%±2.98% 63.16% 87.88% 0.695
Proposed Multiview
(Late Fusion)

– 81.25%±1.54% 77.33% 86.79% 0.811

89.91%, the sensitivity of 86.71%, and the specificity of 94.39%. The performance of our
system in term of the ROC curve is shown in Fig. 5. Furthermore, for the comparative
study we also performed experiments with single view, two views and four views feature
fusion for the mass classification. The results presented in the Table 6 show that our
proposed MVALF-based system outperformed and was able to surpass the state-of-art
multi-view models.

The comparison between three different state-of-the-art pre-trained models are shown
in Fig. 5. The pre-trained model VGG19 outperforms InceptionV3 and ResNet50 for
the mass classification in MVALF system. However, our proposed system achieved best
results with AUC of 0.896 in contrast with single view, two views and four view early
fusion based system which have obtained AUC of 0.737, 0.842 and 0.769, respectively.
The proposed MVALF model performs 5% better than the multi-view feature fusion
model, 5–10% better than the single and two-views models. The MVALF based CADx
system provides a benchmark approach of information fusion for classification tasks into
the medical field, especially for breast cancer where four-view information of the patient
is available. Table 5 depicts the performance measures of our proposed classifier into
Benign and Malignant cases.

4.3.4. Comparison summary of our work with others

The comparison study was performed to evaluate the performance of our proposed
MVALF-based CADx system in comparison to previous studies that use the deep CNN
models for mammogram classification tasks. For instance, we compared between single
view and two views. Furthermore, we compared our proposed system with the recent
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Fig. 5. ROC plotting for Benign and Malignant classification. The testing performance

of (a) VGG19, (b) InceptionV3, and (c) ResNet50 is presented, using the pro-
posed MVALF based CADx system.
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Tab. 5. Performance measures of proposed MVALF for the classification of Malignant
mass vs Benign mass mammograms

Models Views Training Accuracy Testing Accuracy Sensitivity Specificity AUC
VGG19 R-CC 96.57%±1.67% 88.64%±1.57% 88.59% 88.71% 0.886

L-CC 81.33%±0.98% 78.82%±2.18% 75.90% 83.45% 0.783
L-MLO 88.67%±0.45% 69.81%±2.14% 66.83% 75.89% 0.689
R-MLO 75.54%±1.56% 66.20%±2.91% 62.35% 79.35% 0.647
Proposed Multiview
(Late Fusion)

– 89.91%±1.57% 86.71% 94.39% 0.896

InceptionV3 R-CC 89.26%±1.98% 77.77%±2.13% 70.50% 79.76% 0.811
L-CC 73.10%±2.41% 67.40%±1.54% 75.44% 89.00% 0.851
L-MLO 79.93%±1.58% 70.51%±3.20% 72.96% 77.67% 0.791
R-MLO 84.02%±1.11% 75.26%±2.91% 73.00% 70.69% 0.785
Proposed Multiview
(Late Fusion)

– 80.07%±2.01% 98.73% 78.43% 0.860

ResNet50 R-CC 86.45%±1.45% 78.07%±2.10% 78.57% 77.59% 0.781
L-CC 87.44%±1.98% 84.21%±1.98% 78.26% 93.33% 0.868
L-MLO 77.09%±2.19% 78.95%±2.78% 76.67% 73.91% 0.842
R-MLO 68.21%±2.98% 76.84%±1.98% 77.50% 86.21% 0.789
Proposed Multiview
(Late Fusion)

– 83.33%±1.57% 94.64% 72.41% 0.851

Tab. 6. Comparison with different mammography classification techniques using state-
of-the-art pre-trained models on the CBIS-DDSM dataset.

Views Models Normal or Abnormal Mass or Calcification Malignant or Benign
Single View VGG19 0.940 0.877 0.737

InceptionV3 0.907 0.875 0.692
ResNet50 0.914 0.862 0.644

Two View VGG19 0.998 0.844 0.843
InceptionV3 0.938 0.842 0.821
ResNet50 0.971 0.883 0.811

Four Views (Early Fusion) Small VGGNet [26] 0.934 0.923 0.769
Proposed Multiview (Late Fusion) VGG19 0.992 0.922 0.896

InceptionV3 0.996 0.876 0.860
ResNet50 0.996 0.811 0.851

study performed on the four-view analysis using feature fusion strategy. Khan et al. in
2019 proposed a small VGGNet with the feature fusion strategy [26]. The system had
the capability to classify the breast tumor using mammograms with four views. The
results in Table 6 reveal that our proposed MVALF-based CADx system outperform
the previous studies. We achieved the AUC of 0.996 for normal and abnormal mammo-
gram classification, AUC of 0.922 for abnormality classification, and AUC of 0.896 for
pathology classification.

5. Conclusion

In this work, we proposed a novel multi-view attention-based late fusion CADx system
for mammogram classification using the transfer learning approach. We performed ex-
periments using four views information and the results provide the evidence of achieving
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the best testing accuracy rate due to late information fusion. We observed that in the
late fusion technique for mammogram classification, the overfitting problem occurs due
to the unbalance and the limited size of the dataset. According to our assessment, data
enhancement plays an important role in reducing the over-fitting problem. Furthermore,
the comparison study shows that the proposed model achieves good classification per-
formance and also reduces the computational complexity of the system with the help
of the pre-trained model. We conclude that VGGNet pre-trained on ImageNet models
with fine-tuning performs the best among all the pre-trained models for our proposed
attention-based weighted late fusion approach. Table 6 demonstrates the comparative
overview of the previous studies with the proposed MVALF-based CADx system. The
results clearly show the effectiveness of the proposed technique. Our system provides
a baseline for the new approach to attention-based weighted late fusion using the CBIS-
DDSM for abnormality and pathology classification.

In the future work, we will experiment to analyze the impact of different sources for
the improvement of the proposed CADx system.

Acknowledgement

This work has been supported by Higher Education Commission under Grant # 2 (1064),
and is carried out at the Medical Imaging and Diagnostics (MID) Lab at COMSATS
University Islamabad, under the umbrella of the National Center of Artificial Intelligence
(NCAI), Pakistan.

References

[1] Large Scale Visual Recognition Challenge 2015 (ILSVRC2015), 2015. http://www.image-net.org/

challenges/LSVRC/2015/results. [Aceessed Jun 2020].
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2017. doi:10.1007/978-3-319-67558-9 37.

[4] M. A. Al-masni, M. A. Al-antari, J.-M. Park, et al. Simultaneous detection and classification of
breast masses in digital mammograms via a deep learning YOLO-based CAD system. Computer
methods programs in biomedicine, 157:85–94, 2018. doi:10.1016/j.cmpb.2018.01.017.
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Abstract. The acquisition of accurately coloured, balanced images in an optical microscope can
be a challenge even for experienced microscope operators. This article presents an entirely automatic
mechanism for balancing the white level that allows the correction of the microscopic colour images
adequately. The results of the algorithm have been confirmed experimentally on a set of two hundred
microscopic images. The images contained scans of three microscopic specimens commonly used in
pathomorphology. Also, the results achieved were compared with other commonly used white balance
algorithms in digital photography. The algorithm applied in this work is more effective than the classical
algorithms used in colour photography for microscopic images stained with hematoxylin-phloxine-saffron
and for immunohistochemical staining images.

Key words: auto white balance algorithm, microscope image processing, staining of microscopic
slides, digital microscopy.

1. Introduction

The consistency of visible colours is one of the fascinating possibilities that the human eye
provides. A person can look at an object from any angle, but regardless of the varying
lighting conditions, the colour of the observed element will not change significantly.
This effect is achievable due to the highly complex structure of the eye. In the case of
humans, colour perception is compensated by the adaptive capacity of tissues and the
capabilities of the human brain. However, computer algorithms cannot deal with this
type of problem. At the same time, colour stability is the essential element in case of
image processing and analysis as well as recognition of objects placed in processed scenes.
Hence, colour stability plays a significant role, especially in the algorithms of automatic
image segmentation [24] or feature extraction [25] in microscopic medical images.

The use of electronic image capture technology in medicine is based on the solution
used in the past in conventional photography, i.e. the photosensitive film. The main
difference, however, is the colour representation used in traditional and in microscopic
photography.
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In the case of digital photography, the image is created as a result of interaction of the
incident light reflected from the surface of the photographed object with the light sensor.
Recording of a microscopic image (referred to as a slide), for which the light source is
placed centrally below the object on the laboratory glass, is realised by recording the
flux passing through the object and falling on the optical system. As a result of this
treatment, the image is more natural than in the case with the incident light and has
a white background. In this case, the light penetrates through the microscopic specimen.

The ability to adjust the white balance to the colour space is an important feature in
the case of images obtained by optical sensors in modern electron microscopes. Most of
the images are represented in the popular RGB space, so the resulting images are also
stored in this space.

The eye and the physiological mechanisms which perform the image processing in
the human vision system are not fully explored, but the eyes’ ability to capture objects
in the vicinity of the light beam which is reflected from them, is known. In such a case
the brain adjusts the input light spectrum so that the colour perception is consistent
with the colour values of the observed object far from the beam. This, in turn, means
that despite the different lighting parameters, the objects illuminated in this way remain
perceptually uniform.

The research issues discussed are related primarily to microscopic images which are
used by a very wide scientific community. Medical images, chemical reagents – the use
of microscopy allows researchers to see what cannot be seen with the human eye. The
medical images constitute a basis in the research methodology, and have a direct impact
on the therapy applied and its effectiveness.

Medical images require proper preparation both before their acquisition and after
saving the digital form of the slide taken from the sample. A comparison of two images
made under the same laboratory conditions with the same staining may still show some
colour discrepancy, as described in [17]. One of the parameters which have the most
important influence on the quality of the image is the white balance. An incorrectly
performed optimization of the white balance of an image can affect the possibility of
further processing of the used material. To our best knowledge, at present in the domain
of medical imaging there is a deficit of tools for white balance adjustment.

Unambiguity in medicine is critical, but it often happens that images are created by
different medical groups, using completely different devices. Each team has a different
approach to the calibration process, which is a condition of operational reliability. Just
as the measurement of alcohol in the exhaled air should be performed with a certified and
calibrated device, the materials used in the tests should be prepared in an appropriate
manner. Despite the existence of various recommendations, the measurement conditions
or rules describing the required sequence of actions, the images often remain without
suitable colour preprocessing.

In the case of microscopic medical images, they are usually analysed by using feature
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Tab. 1. Description of data sets containing test images.
Stain Quantity Series Lens Magnification
HPS 100 HPS Hitachi HV F22CL 20x

IHC 50 CK34 CIS VCC-FC60FR19CL 40x
50 KI68 CIS VCC-FC60FR19CL 20x

extraction for objects present in such images. Inadequately prepared images can hinder
the implementation of further operations. In recent years, many methods have been
defined to solve this type of problem. In [25] the extraction of features by the use of
basic morphological segmentation and the description of the observed objects are shown,
defining their geometric parameters along with their variability. However, the method
reacts differently to the images illuminated with different intensity. Each time it is
necessary to select the appropriate parameters of operation.

The colour information contained in the slides is very useful in the assessment of sim-
ilarity of regions of the images. The availability of information in three colour channels
instead of one grey level makes it possible to apply more advanced methods of analysis.
Among such methods we can distinguish the L*a*b* segmentation method [1] or the
automatic white balance methods [6]. We can also distinguish normalization methods,
such as histogram extension, colour transfer method, or spectral methods [10]. Mainly
the latter is often used in microbiology and pathomorphology. It is based on estimating
the tinting spectrum by adjusting the proportions of tinting to the intensity range for
each pixel, even in the case of significant differences in shades.

2. Images

The experimental part described in the paper was based on the use of microscopic medical
images. The collection consisted of 200 images coming from microscopic scans of actual
tissues. All the images are 1500×1500 pixels size. The images used were made using
two types of staining which enhance important features necessary for medical analysis:
hematoxylin-phloxine-saffron staining (HPS) and immunohistochemistry staining (IHC).
Staining with IHC was performed with the application of two different biological markers:
CK34 and KI67. Sets of images stained with IHC were collected using slides obtained
from the Archives of the Military Medical University. The set stained with HPS was
prepared from the OpenSlide public microscope slide collection (from [7], part of [9],
described in [8]). Images were acquired using a variety of devices and in different optical
and colour settings. Table 1 contains information about the number of samples and the
file settings used during recording.

The images were divided into four series of 25 images for each type of staining.
Each series was taken from different microscope slides, and the images in the series were
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selected randomly. This ensured that all the cases considered were independent and
that the methods used were not closely correlated with the properties of the chosen data
subset.

3. Existing methods

Most of the widely available algorithms designed to ensure colour stability have been
successfully implemented in colour photography [13]. However, such solutions have not
yet been used for medical applications, and in particular not for the preparation of
materials taken from microscopic sources.

The concept of white balance in digital technology is related to certain limitations of
optical sensors performing the acquisition operations for the projection of the light beam
reflected from the object onto the matrix area. White balance consists in adjusting the
colour depending on the ambient light and the light falling onto the optics. Incorrect
selection of light balance causes that the object correctly seen by the human eye will
be, for example, too much inclined in the direction of yellow (giving the impression of
warm) or too much biased versus to blue (giving the impression of cold).

In its simplest form, this phenomenon is represented by the colour temperature scale
(Fig.1). Leaving aside the physical issues of the nature of light, we can see that the
determination of the temperature makes it possible to select appropriate parameters
of the image colour transformation using this scale. It should be therefore determined
whether a given light is cold or warm. The higher the temperature on the scale, the colder
the light, and warmer in the opposite direction. The aforementioned terms of warm and
cold are theoretical concepts that characterise the generally accepted perception of colour
by humans.

A typical home light source has a temperature of around 3000 K. Daylight (solar)
also called white light has the temperature of around 5400 K during the day and 6700K
on a cloudy day. At night, it is almost completely blue, and the temperature ranges
from 8000 to 10000K.

Fig. 1. Illustration of the light colour temperature scale indicating the relationship be-
tween the temperature (referenced to an ideal black-body radiator) and the colour
of the light source perceived in a given range – warm for lower temperatures
and cold for higher temperatures (saturation is amplified to make hues visible).
Source: [11], used in [26], among others. See also [27].

Machine GRAPHICS & VISION 29(1/4):79–94, 2020. DOI: 10.22630/MGV.2020.29.1.5 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2020.29.1.5


R. Roszczyk, A. Krupa, I. Antoniuk 83

Fig. 2. The spectrum of visible light, its location in the spectrum of electromagnetic
waves and the information on which parts of this spectrum reach the earth sur-
face. Source: [18].

In the case of photography or optics, it is usually necessary to calibrate the device
to reflect the white correctly, and thus all other colours, based on the ambient light. In
modern devices, there are often predefined profiles that offer the selection of temperature
values in the average range. However, there may be cases when these values are far from
the existing conditions, despite being set well.

In professional photography, the so-called grey cards, referring to surfaces reflecting
18% of the light falling on them, are used. This solution was introduced and widespread
by the Kodak company (card R-27 [5]). The choice of the above value is not accidental.
Each color can be defined by the parameters determining the electromagnetic wave’s
physical properties or by a subjective evaluation, a sensory representation related to the
organ of vision. Human white light consists of a mixture of wavelengths ranging from
380 to 790 nanometers, and this is related to the spectrum of solar radiation reaching
sea level [3]. Different animals see different parts of the light spectrum and can use
colour perception systems other than that of humans. In Figure 2 the spectrum of the
visible light and its location in the wider spectrum of electromagnetic waves is shown
together with the information on which parts of this spectrum reach the earth surface.
The spectrum of light emitted from a surface depends on the spectrum of the incident
light and on the physical features of the surface itself, which influence the light reflection.
The relation of the light wave and the human perception of colour is influenced by the
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phenomenon of colour metamerism, which consists in that a given colour impression can
be received by various combinations of light wave lengths (for example, a yellow colour
is perceived when the yellow light is present and also when red and green lights are
observed together). Therefore, the perceived colour of the surface can strongly depend
on the type of the light source which illuminates it.

In the case of microscopic photography, we deal with relatively homogeneous illu-
mination going from the source to the lens. In addition, the light stream is targeted
and often has a bounded region of incidence, which ensures that different microscopes
produce similar images. However, this is not always the case, and similarly as for the
cameras, it is recommended to calibrate the microscope before each measurement series.
Such a process is usually carried out by performing the colour correction for an image of
a clean glass and by selecting the appropriate settings based on the known parameters
of the optics of the device.

The calibration process ensures that the measurements are comparable to each other
over time; however, slight differences between devices introduce some uncertainty con-
cerning the mutual similarity of the results. Thus, a microscopic slide made with a cal-
ibrated device from one manufacturer is not identical in colour to a slide made with
a device of another one. In addition, the calibration procedure takes time that cannot
be omitted in the case of regular measurements of a large number of samples.

The idea behind this research was to bring about a situation in which it is possible
to collect images from the microscope without the necessity to carry out the calibration
process, and without the necessity to limit the comparison of images to only images from
the same device or the same type of the optical acquisition system used. Freeing oneself
from these limitations became the basis for developing a solution based precisely on the
mechanism of white balance. Issues related to this have already been raised before, inter
alia, in [4, 10,17].

We have founded our study on the retinex theory1 originally introduced in [14,15,19].
This theory gave rise to the White Patch Retinex algorithm for enhancing the colour
constancy [14, 19, 22]. It underwent intensive development, see for example [2, 21] in
which the retinex theory was discussed. In this paper, the retinex algorithm has been
modified for colour correction of microscopic images.

3.1. Retinex

In the retinex theory the human impression of light intensity is treated as depending on
the relative difference of image brightnesses rather than on the absolute values, which
is based on extensive experimental material (described, among others, in [14, 15, 16,19],
and many earlier works cited in [16]). The term lightness is used instead of brightness or

1In the first papers the name of the theory and method, retinex, was spelled with lowercase first letter.
In later publications the first letter became uppercase, like in the Retinex White Patch algorithm. So,
we shall apply the lowercase and uppercase spellings in the respective fragments of the text.
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intensity. In the simplest form of the retinex algorithm [15] all the random paths leading
from a random point in the image to the specified point, in which the lightness value
is calculated (the term lightness is used in the literature of the retinex theory instead
of brightness). In the first version of the algorithm the relative value of the lightness
resulted from the comparison of brightnesses on the individual paths with the value of
the lightness of a specified pixel. Considering all the paths is computationally complex
but makes it possible to perform a full analysis of an image. The result is the average
of the quotients of values of all the subsequent lightness value changes along the paths.
It is described by the so calculated lightness value L(x) over all the paths according to
the formula (we shall use a clear description of the retinex algorithm from [20]):

L(x) =

∑N
k=1 L(x; yk)

N
(1)

where: N – number of all the paths, x – starting point of a path, yx – final pixel of each
path, L(x; yk) – relative value of pixel lightness for a single path:

L(x; yk) =

nk∑
tk=1

δ

[
log

I(xtk)

I(xtk+1
)

]
(2)

where: nk – number of pixels in a single path, tk – subsequent iterated index of pixels
in the range, xtk – lightness in a current pixel, xtk+1

– lightness value in the next pixel,
δ – threshold of contrast for the given t, where t ∈ [0, 1]:

δ(s) =

{
s if |s| ≥ t

0 if |s| < t
(3)

The idea of the algorithm is to find the largest value along the path. In the case of an
analysis path by path, the reset system sets to zero the previously found value, if a new
value is greater than the one found previously, so the new value becomes the largest one.
Additionally, the algorithm performs the task of assuring that its start takes place in
the region where the largest lightness value appears. The details of that concept were
described in [21].

A relatively important modification of retinex, applied in this research, was the algo-
rithm of Single-Scale Retinex (SSR) [12] (submitted in 1995). It is based on the classic
choice of a typical local value of lightness with the nearest neighbours method (NN). Is
is crucial to take into account each of the channels of the colour model in this process.
From the point of view of the efficiency and ease of description of the phenomenon, the
HSV model should be more suitable for the retinex algorithm than the RGB model.
This is related above all with the search for the lightness path, which is directly the
V component (Value) in the HSV model. For the imaging task and for the analysis of
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a typical image the RGB model is used, however, because the lightnesses in the separate
hue channels are considered in retinex, according to the existence of separate receptors
for the long, middle and short wavelengths in the human visual system.

The general form of retinex in a given point for one iteration is described with the
formula

Ri(x, y) = log(Ii(x, y))− log(Ii(x, y) ∗ F (x, y)) (4)

where: Ii – input image for one channel of the source (i− tego), F – normalised function
of the neighbourhood for the pixels belonging to this neighbourhood.

The function F (x, y) proposed by the author of the algorithm is the classic cross
averaging method

F (x, y) =
C

x2 + y2
(5)

where C – normalization coefficient.
Alternatively, the Gaussian function is used in SSR:

F (x, y) = C ∗ exp
−(x2+y2)

2σ2 (6)

where: σ – scale of the filter (deviation). According to the experiments described in [12],
σ = 80 is a good value for calculations. The use of the convolution operation applied
before calculating the logarithm in (4) has also been demonstrated.

3.2. White Patch

White Patch is the method based on the Retinex theory, which assumes the full use of
the possibilities of the active areas of the eye (the rods), which capture the complete
information coming from the light falling on them. The brightest point is the one that
reflects 100% of the light from the chosen colour [6].

Taking into account that the input image is most often described in the tri-colour
component (RGB), the operation should be performed separately for each component.
Due to the fact that all the rods are responsible for the white colour, therefore, the
obtained range of stimuli is maximised to the entire spectrum by proportionally changing
the values. The method is then based on adopting the following transformed data format:

Rmax = max
x,y

R(x, y) , (7)

Gmax = max
x,y

G(x, y) , (8)

Bmax = max
x,y

B(x, y) . (9)
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where: (x, y) – coordinates of the point with maximum value lightness of the given colour
component, respectively, red (R), green (G) or blue (B).

The White Patch method has been crossed out for digital photography due to the
lack of unequivocal effectiveness for both grayscale and colour scale images. However,
microscopic images in the processing are ultimately converted to grayscale, so in this
case, it is possible to implement a combination of these methods.

The White Patch method for the path mechanism is realised in an the way analogical
to the retinex algorithm. For the image with high resolution and compression ratio, and
with the necessity of representing the hue in wider ranges, the Multi-Scale Retinex (MSR)
has been introduced [23]. It is a solution founded on weighted summing of single results
for each path separately:

RMSRi =

N∑
n=1

ωnRni , (10)

Rni
= log(Ii(x, y))− log(Ii(x, y) ∗ F (x, y)) , (11)

where: N – scale of the solution with respect to the coefficient σ (number of SSR
components), ω – weight for each scale.

4. Normal Patch Retinex

Taking into account the above information, an algorithm under the name Normal Patch
Retinex (NPR) is proposed that uses the advantages of the White Patch and Retinex
algorithm, based on normalisation using the luminance values of both base algorithms
and chrominance matching to obtain an optimised base algorithm. The preparation
method is based on the modification of the above-mentioned algorithms.

To understand the procedure, one can visualise the sequential operations according
to the scheme shown in Fig. 3.

The source image is read in at the beginning. In the second step, this image is
processed with the classic histogram normalization, to find its corrected brightness. In
the third step, which can be performed in the parallel way with the second step, the
original input image is processed with the White Patch Retinex method. The images
from the second and third step are stored separately. These average value of these two
images, pixel by pixel, are calculated and stored as the Average Illuminant.

The original, source image is then transformed by colour balance adjustment, with
the use of the Average Illuminant image. The image obtained in this way is stored as
the result of the white balance equalization process.

This algorithm was implemented, on the basis of the results received in the trials
with the individual algorithms an in the combined methods, presented in Table 2.
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Fig. 3. Diagram representing the general outline of the Normal Patch Retinex algorithm.

The received results indicate univocally that the White Patch Retinex algorithm and
the Normal Patch Retinex proposed in this paper yield the most profitable results for
the set of the tested images, from the viewpoint of the white balance. The IHC and HPS
staining was considered here.

If the whole available set of images and the unification of the method for each type
of images acquired with the microscopic method, the proposed Normal Patch Retinex
algorithm clearly appears as the most efficient one (Table 3).

Angular error is a helpful metric to evaluate the estimation of an illuminant against
the ground truth. The smaller the angle between the illumination determined for the
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Tab. 2. Average values of the angular error for the input images of each set for the
applied white balance methods.

Method IHC HPS
Original 0.48 1.65

Mean Shift Gray Pixel 0.98 4.14
Color Histogram Normalisation 1.92 2.22

Gray World 0.84 5.30
Cheng’s Principal Component Analysis 1.73 3.25

White Patch Retinex 0.47 1.63
All Gray Pixels 2.71 1.64

YUV Gray Pixels 0.73 3.59
Normal Patch Retinex 1.07 1.37

Tab. 3. Standard deviation and averages of the angular error for all input images.
Method Angular Error Standard deviation
Original 1.87 1.66

Mean Shift Gray Pixel 2.30 1.93
Color Histogram Normalisation 1.95 0.84

Gray World 2.76 2.09
Cheng’s Principal Component Analysis 2.11 1.26

White Patch Retinex 1.86 1.67
All Gray Pixels 2.55 3.60

YUV Gray Pixels 1.67 1.58
Normal Patch Retinex 1.32 0.77

ground truth and the estimated illumination, then the better the quality of the estimate.
To better understand how to use the determined luminance value, make assumptions as
illustrated in Fig.4.

5. Results

Images from the slide sets described in Section 2 were used for testing (sample images
are shown in Fig. 5). The images were mixed between sets to verify the effectiveness of
the adapted algorithm.

In the present study, the original form of staining does not matter much for the
algorithms used, due to that the images are transformed to the grayscale.

For research and comparison purposes, the methods used mainly in digital photog-
raphy to balance white in input images were used here. The summary can be found in
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Fig. 4. Luminance lines in the colour space depending on the RGB parameter and the
estimated luminance value converted from the reference value.

Table 2. As it can be seen, the most appropriate white balance coefficients were achieved
for three methods: the aforementioned retinex method, the method based on the White
Patch, and the grayscale method for the HSV colour space.

Taking into account the above results, it was assumed that the combination of the
mentioned methods might be a solution that makes further use of medical images inde-
pendent from the parameter of the amount of light or method used for microscopic data
acquisition. The first step is to convert the input image to grayscale.

The Table 3 contains the summary results of the comparison of the proposed algo-
rithm in comparison with popular algorithms used in colour photography. For each value
of the angular error, standard deviations were calculated for the entire study population
consisting of 200 input images. The result achieved by the Normal Patch Retinex algo-
rithm is by far the best with the smallest deviation of the results of the tested samples
from the mean value.

In the case of implementing the solution for microscopic images, it was assumed that
the converted grayscale image should be normalised. The transfer of RGB colours to the
grayscale space ensures that the components retain their values despite the expansion of
the colour spectrum.

In traditional photography, algorithms search for the darkest and brightest places to
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a b

Fig. 5. Comparison of two slides made under different laboratory conditions with differ-
ent staining methods. IHC samples, stained with: (a) CK34, (b) KI67.

determine the range of values across the entire set of spaces. To extend the histogram
for a grey image in a similar way, it is necessary to find pixels with dark and light
values, respectively. The difference of this algorithm for microscope slides is that the
light surfaces are the passage of light through the object, and the dark ones – places
where the beam was stopped.

In other words, while in photography, the light falling on a bright object reflects off
it and hits the sensor in the lens, in the case of a microscopic object, the reflected light
does not reach the lens because it reflects off the glass. The algorithm should, therefore
perform the colour assignment in the opposite way than the value of the scanned slide
indicates.

Referring to the microscopic output image constructed in this way, the result is an
image with the most optimally matched colour balance. However, to verify the thesis,
the Normal Patch Retinex needs to be implemented and carried out for the collected
data set. Fig. 6 shows sequentially numbered results of the algorithm’s operation.

According to the aforesaid method of calculating the luminance in the RGB space,
the correct determination of the estimated value requires to average the value calculated
by the algorithm and the reference luminance value. The difference between the offset
angles of both luminance is the value sought for which the white balance method using
chrominance adaptation can be later used.

Machine GRAPHICS & VISION 29(1/4):79–94, 2020. DOI: 10.22630/MGV.2020.29.1.5 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2020.29.1.5


92 Normal patch Retinex robust alghoritm for white balancing in digital microscopy

Fig. 6. Comparison of the effects of white correction on the basis of a preparation
with immunohistochemistry staining. Algorithm numbering: (1) original image,
(2) white balancing with Colour Histogram Normalisation, (3) white balancing
with White Patch Retinex, (4) white balancing with Normal Patch Retinex.
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6. Conclusion

The proposed white balance correction algorithm in microscopic images allows for quick
and effective colour equalisation. This algorithm does not require the prior preparation
of input data or other pre-processing methods. The big advantage of the Normal Patch
Retinex algorithm is its speed, full automaticity and ease of use.

The presented algorithm solves the problem of white balance equalization in a way
dedicated to microscopic imaging. Previously, the algorithms used in colour photography
were used for medical imaging. This algorithm properly corrects the white balance in
images of tissues stained with different methods. The algorithm can be successfully used
in the process of pre-treatment of single scans of microscopic slides or the entire series
of microscopic images. The use of NPR to align the colour space of a series of images
allows obtaining a consistent colour space for all processed images.
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